Методы решения систем логических уравнений. Способы решения систем логических уравнений

Носкин Андрей Николаевич,
учитель информатики
высшей квалификационной категории,
кандидат военных наук, доцент
ГБОУ Лицей №1575 город Москва

Оптимизированный метод отображения для решения задачи 23 из КИМ ЕГЭ по информатике и ИКТ

Одной из самой трудной задачей в КИМ ЕГЭ является задача 23, в которой надо найти количество различных наборов значений логических переменных, которые удовлетворяют указанному условию.
Данная задача является едва ли не самым сложным заданием КИМ ЕГЭ по информатике и ИКТ. С ним, как правило, справляются не более 5% экзаменуемых {1}.
Такой маленький процент учеников, которые справились с данным заданием объясняется следующим:
- ученики могут путать (забыть) знаки логических операций;
- математические ошибки в процессе выполнения расчетов;
- ошибки в рассуждениях при поиске решения;
- ошибки в процессе упрощения логических выражений;
- учителя рекомендуют решать данную задачу, после выполнения всей работы, так как вероятность допущения
ошибок очень велика, а «вес» задачи составляет всего лишь один первичный балл.
Кроме того, некоторые учителя сами с трудом решают данный тип задач и поэтому стараются решать с детьми более простые задачи.
Также усложняет ситуацию, что в данном блоке существует большое количество разнообразных задач и невозможно подобрать какое-то шаблонное решение.
Для исправление данной ситуации педагогическим сообществом дорабатываются основные две методики решения задач данного типа: решение с помощью битовых цепочек {2} и метод отображений {3}.
Необходимость доработки (оптимизации) данных методик обусловлена тем, что задачи постоянно видоизменяются как по структуре, так и по количеству переменных (только один тип переменных Х, два типа переменных Х и Y, три типа: X, Y, Z).
Сложность освоения данными методиками решения задач подтверждается тем, что на сайте К.Ю. Полякова существует разборов данного типа задач в количестве 38 штук{4}. В некоторых разборах приведены более одного типа решения задачи.
Последнее время в КИМ ЕГЭ по информатике встречаются задачи с двумя типа переменных X и Y.
Я оптимизировал метод отображения и предлагаю своим ученикам пользоваться усовершенствованным методом.
Это дает результат. Процент моих учеников, которые справляются с данной задачей варьируется до 43% от сдающих. Как правило, ежегодно у меня сдает ЕГЭ по информатике от 25 до 33 человек из всех 11-х классов.
До появления задач с двумя типами переменными метод отображения ученики использовали очень успешно, но после появления в логическом выражении Y, я стал замечать, что у детей перестали совпадать ответы с тестами. Оказалось, они не совсем четко стали представлять, как составить таблицу отображений с новым типом переменной. Тогда мне пришла мысль, что для удобства надо все выражение привести к одному типу переменной, как удобно детям.
Приведу более подробно данную методику. Для удобства буду ее рассматривать на примере системы логических выражений, приведенных в {4}.
Сколько различных решений имеет система логических уравнений

(x 1 ^ y 1) = (¬x 2 V ¬ y 2 )
(x 2 ^ y 2) = (¬ x 3 V ¬ y 3 )
...
(x 5 ^ y 5 ) = (¬ x 6 V ¬ y 6 )

где x 1 , …, x 6 , y 1 , …, y 6 , - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.
Решение:
1. Из анализа системы логических уравнений мы видим, что присутствует 6 переменных Х и 6 переменных У . Так как любая из этих переменных может принимать только два значения (0 и 1), то заменим эти переменные на 12 однотипных переменных, например Z.
2. Теперь перепишем систему с новыми однотипными переменными. Сложность задачи будет заключаться во внимательной записи при замене переменных.

(z 1 ^ z 2) = (¬z 3 V ¬ z 4 )
(z 3 ^ z 4) = (¬ z 5 V ¬ z 6 )
...
(z 9 ^ z 10 ) = (¬ z 11 V ¬ z 12)


3. Построим таблицу, в которой переберем все варианты z 1 , z 2 , z 3 , z 4 , поскольку в первом логическом уравнении четыре переменных, то таблица будет иметь 16 строк (16=2 4); уберем из таблицы такие значения z 4 , при которых первое уравнение не имеет решения (зачеркнутые цифры).
0 0 0 0
1
1 0
1
1 0 0
1
1 0
1
1 0 0 0
1
1 0
1
1 0 0
1
1 0
1

4. Анализируя таблицу, строим правило отображения пар переменных (например, паре Z 1 Z 2 =00 соответствует пара Z 3 Z 4 = 11) .

5. Заполняем таблицу, вычисляя количество пар переменных, при котором система имеет решение.

6. Складываем все результаты: 9 + 9 + 9 + 27 = 54
7. Ответ: 54.
Приведенная выше оптимизированная методика решения задачи 23 из КИМ ЕГЭ позволила ученикам вновь обрести уверенность и решать успешно этот тип задачи.

Литература:

1. ФИПИ. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2015 года по ИНФОРМАТИКЕ и ИКТ. Режим доступа: http://www.fipi.ru/sites/default/files/document/1442163533/informatika_i_ikt.pdf

2. К.Ю. Поляков, М.А. Ройтберг. Системы логических уравнений: решение с помощью битовых цепочек. Журнал Информатика, № 12, 2014, с. 4-12. Издательский дом "Первое сентября", г.Москва.
3. Е.А. Мирончик, Метод отображения. Журнал Информатика, № 10, 2013, с. 18-26. Издательский дом "Первое сентября", г.Москва.

Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A →B ) + (C →D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A →B и Y = C →D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

(x 1 x 2 )*(x 2 x 3 )*…*(x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассужд ниях и построении де рева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Как решать некоторые задачи разделов A и B экзамена по информатике

Урок №3. Логика. Логические функции. Решение уравнений

Большое количество задач ЕГЭ посвящено логике высказываний. Для решения большинства из них достаточно знания основных законов логики высказываний, знания таблиц истинности логических функций одной и двух переменных. Приведу основные законы логики высказываний.

  1. Коммутативность дизъюнкции и конъюнкции:
    a ˅ b ≡ b ˅ a
    a ^ b ≡ b ^ a
  2. Дистрибутивный закон относительно дизъюнкции и конъюнкции:
    a ˅ (b^с) ≡ (a ˅ b) ^(a ˅ с)
    a ^ (b ˅ с) ≡ (a ^ b) ˅ (a ^ с)
  3. Отрицание отрицания:
    ¬(¬а) ≡ а
  4. Непротиворечивость:
    a ^ ¬а ≡ false
  5. Исключающее третье:
    a ˅ ¬а ≡ true
  6. Законы де-Моргана:
    ¬(а ˅ b) ≡ ¬а ˄ ¬b
    ¬(а ˄ b) ≡ ¬а ˅ ¬b
  7. Упрощение:
    a ˄ a ≡ a
    a ˅ a ≡ a
    a ˄ true ≡ a
    a ˄ false ≡ false
  8. Поглощение:
    a ˄ (a ˅ b) ≡ a
    a ˅ (a ˄ b) ≡ a
  9. Замена импликации
    a → b ≡ ¬a ˅ b
  10. Замена тождества
    a ≡ b ≡(a ˄ b) ˅ (¬a ˄ ¬b)

Представление логических функций

Любую логическую функцию от n переменных – F(x 1 , x 2 , … x n) можно задать таблицей истинности. Такая таблица содержит 2 n наборов переменных, для каждого из которых задается значение функции на этом наборе. Такой способ хорош, когда число переменных относительно невелико. Уже при n > 5 представление становится плохо обозримым.

Другой способ состоит в том, чтобы задавать функцию некоторой формулой, используя известные достаточно простые функции. Система функций {f 1 , f 2 , … f k } называется полной, если любую логическую функцию можно выразить формулой, содержащей только функции f i .

Полной является система функций {¬, ˄, ˅}. Законы 9 и 10 являются примерами, демонстрирующими, как импликация и тождество выражается через отрицание, конъюнкцию и дизъюнкцию.

Фактически полной является и система из двух функций – отрицания и конъюнкции или отрицания и дизъюнкции. Из законов де-Моргана следуют представления, позволяющие выразить конъюнкцию через отрицание и дизъюнкцию и соответственно выразить дизъюнкцию через отрицание и конъюнкцию:

(а ˅ b) ≡ ¬(¬а ˄ ¬b)
(а ˄ b) ≡ ¬(¬а ˅ ¬b)

Парадоксально, но полной является система, состоящая всего из одной функции. Существуют две бинарные функции – антиконънкция и антидизъюнкция, называемые стрелкой Пирса и штрих Шеффера, представляющие полую систему.

В состав базовых функций языков программирования включают обычно тождество, отрицание, конъюнкцию и дизъюнкцию. В задачах ЕГЭ наряду с этими функциями часто встречается импликация.

Рассмотрим несколько простых задач, связанных с логическими функциями.

Задача 15:

Дан фрагмент таблицы истинности. Какая из трех приведенных функций соответствует этому фрагменту?

X 1 X 2 X 3 X 4 F
1 1 0 0 1
0 1 1 1 1
1 0 0 1 0
  1. (X 1 → X 2) ˄ ¬ X 3 ˅ X 4
  2. (¬ X 1 ˄ X 2) ˅ (¬X 3 ˄ X 4)
  3. ¬ X 1 ˅ X 2 ˅ (X 3 ˄ X 4)

Функция под номером 3.

Для решения задачи нужно знать таблицы истинности базовых функций и помнить о приоритетах операций. Напомню, что конъюнкция (логическое умножение) имеет более высокий приоритет и выполняется раньше, чем дизъюнкция (логическое сложение). При вычислениях нетрудно заметить, что функции с номерами 1 и 2 на третьем наборе имеют значение 1 и уже по этой причине фрагменту не соответствуют.

Задача 16:

Какое из приведенных чисел удовлетворяет условию:

(цифры, начиная со старшего разряда, идут в порядке убывания) → (число — четное) ˄ (младшая цифра – четная) ˄ (старшая цифра – нечетная)

Если таких чисел несколько, укажите наибольшее.

  1. 13579
  2. 97531
  3. 24678
  4. 15386

Условию удовлетворяет число под номером 4.

Первые два числа условию не удовлетворяют уже по той причине, что младшая цифра является нечетной. Конъюнкция условий ложна, если один из членов конъюнкции ложен. Для третьего числа не выполняется условие для старшей цифры. Для четвертого числа выполняются условия, накладываемые на младшую и старшую цифры числа. Первый член конъюнкции также истинен, поскольку импликация истинна, если ее посылка ложна, что имеет место в данном случае.

Задача 17: Два свидетеля дали следующие показания:

Первый свидетель: Если А виновен, то В и подавно виновен, а С – невиновен.

Второй свидетель: Виновны двое. А точно виновен и виновен один из оставшихся, но кто именно сказать не могу.

Какие заключения о виновности А, В и С можно сделать на основании свидетельских показаний?

Ответ: Из свидетельских показаний следует, что А и В виновны, а С – невиновен.

Решение: Конечно, ответ можно дать, основываясь на здравом смысле. Но давайте рассмотрим, как это можно сделать строго и формально.

Первое, что нужно сделать – это формализовать высказывания. Введем три логические переменные — А, В и С, каждая из которых имеет значение true (1), если соответствующий подозреваемый виновен. Тогда показания первого свидетеля задаются формулой:

A → (B ˄ ¬C)

Показания второго свидетеля задаются формулой:

A ˄ ((B ˄ ¬C) ˅ (¬B ˄ C))

Показания обоих свидетелей полагаются истинными и представляют конъюнкцию соответствующих формул.

Построим таблицу истинности для этих показаний:

A B C F 1 F 2 F 1 ˄ F 2
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 0 0

Суммарные свидетельские показания истинны только в одном случае, приводящие к однозначному ответу – А и В виновны, а С – невиновен.

Из анализа этой таблицы также следует, что показания второго свидетеля более информативны. Из истинности его показания следует только два возможных варианта — А и В виновны, а С – невиновен или А и С виновны, а В – невиновен. Показания первого свидетеля менее информативны – существует 5 различных вариантов, соответствующих его показаниям. Совместно показания обоих свидетелей дают однозначный ответ о виновности подозреваемых.

Логические уравнения и системы уравнений

Пусть F(x 1 , x 2 , …x n) – логическая функция от n переменных. Логическое уравнение имеет вид:

F(x 1 , x 2 , …x n) = С,

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до 2 n различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

F(x 1 , x 2 , …x n) = 1

Действительно, пусть задано уравнение:

F(x 1 , x 2 , …x n) = 0

В этом случае можно перейти к эквивалентному уравнению:

¬F(x 1 , x 2 , …x n) = 1

Рассмотрим систему из k логических уравнений:

F 1 (x 1 , x 2 , …x n) = 1

F 2 (x 1 , x 2 , …x n) = 1

F k (x 1 , x 2 , …x n) = 1

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций F:

Ф = F 1 ˄ F 2 ˄ … F k

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции Ф, что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция Ф имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог — бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция Ф имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – x 1 , x 2 , …x 5 . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, — конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации (x1→ x2) — первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева:

Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную X 1 . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной X 2 , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой X 1 имеет значение 1, требует, чтобы на этой ветви X 2 имело значение 1. Ветвь, на которой X 1 имеет значение 0, порождает две ветви со значениями X 2 , равными 0 и 1. Построенное дерево задает три решения, на которых импликация X 1 → X 2 принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию X 2 → X 3 . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная X 2 уже имеет значения на дереве, то на всех ветвях, где переменная X 2 имеет значение 1, переменная X 3 также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная X 2 имеет значение 0, даст разветвление на две ветви, где переменная X 3 получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

(x1→x2) /\ (x2→x3) /\ (x3→x4) /\ (x4→x5) = 1
имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:

Второе уравнение нашей системы аналогично первому:

(y1→y2) /\ (y2→y3) /\ (y3→y4) /\ (y4→y5) = 1

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных X i может быть скомбинировано с каждым решением для переменных Y j , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (x2→x3) /\ (x3→x4) /\ (x4→x5) = 1
(y1→y2) /\ (y2→y3) /\ (y3→y4) /\ (y4→y5) = 1
(x1→y1) = 1

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения X 1 → Y 1 следует, что когда X 1 имеет значение 1(одно такое решение существует), то и Y 1 имеет значение 1. Таким образом, существует один набор, на котором X 1 и Y 1 имеют значения 1. При X 1 , равном 0, Y 1 может иметь любое значение, как 0, так и 1. Поэтому каждому набору с X 1 , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

(¬X 1 ˅ X 2) ˄ (¬X 2 ˅ X 3) ˄ (¬X 3 ˅ X 4) ˄ (¬X 4 ˅ X 5) ˄ (¬X 5 ˅ X 1) = 1

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

(X 1 → X 2) ˄ (X 2 → X 3) ˄ (X 3 → X 4) ˄ (X 4 → X 5) ˄ (X 5 → X 1) = 1

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

X 1 ≡ X 2 ≡ X 3 ≡ X 4 ≡ X 5 = 1

Это уравнение имеет два решения, когда все X i равны либо 1, либо 0.

Задача 21

(X 1 → X 2) ˄ (X 2 → X 3) ˄ (X 3 → X 4) ˄ (X 4 → X 2) ˄ (X 4 → X 5) = 1

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

(X 1 → X 2) ˄ (X 2 ≡ X 3 ≡ X 4) ˄ (X 4 → X 5) = 1

Построим дерево решений для этого уравнения:

Задача 22

Сколько решений имеет следующая система уравнений?

((X 1 ≡ X 2) ˄ (X 3 ≡ X 4)) ˅(¬(X 1 ≡ X 2) ˄ ¬(X 3 ≡ X 4)) = 0

((X 3 ≡ X 4) ˄ (X 5 ≡ X 6)) ˅(¬(X 3 ≡ X 4) ˄ ¬(X 5 ≡ X 6)) = 0

((X 5 ≡ X 6) ˄ (X 7 ≡ X 8)) ˅(¬(X 5 ≡ X 6) ˄ ¬(X 7 ≡ X 8)) = 0

((X 7 ≡ X 8) ˄ (X 9 ≡ X 10)) ˅(¬(X 7 ≡ X 8) ˄ ¬(X 9 ≡ X 10)) = 0

Ответ: 64

Решение: Перейдем от 10 переменных к 5 переменным, введя следующую замену переменных:

Y 1 = (X 1 ≡ X 2); Y 2 = (X 3 ≡ X 4); Y 3 = (X 5 ≡ X 6); Y 4 = (X 7 ≡ X 8); Y 5 = (X 9 ≡ X 10);

Тогда первое уравнение примет вид:

(Y 1 ˄ Y 2) ˅ (¬Y 1 ˄ ¬Y 2) = 0

Уравнение можно упростить, записав его в виде:

(Y 1 ≡ Y 2) = 0

Переходя к традиционной форме, запишем систему после упрощений в виде:

¬(Y 1 ≡ Y 2) = 1

¬(Y 2 ≡ Y 3) = 1

¬(Y 3 ≡ Y 4) = 1

¬(Y 4 ≡ Y 5) = 1

Дерево решений для этой системы простое и состоит из двух ветвей с чередующимися значениями переменных:


Возвращаясь к исходным переменным X, заметим, что каждому значению переменной Y соответствует 2 значения переменных X, поэтому каждое решение в переменных Yпорождает 2 5 решений в переменных X. Две ветви порождают 2 * 2 5 решений, так что общее число решений равно 64.

Как видите, каждая задача на решение системы уравнений требует своего подхода. Общим приемом является выполнение эквивалентных преобразований для упрощения уравнений. Общим приемом является и построение деревьев решений. Применяемый подход частично напоминает построение таблицы истинности с той особенностью, что строятся не все наборы возможных значений переменных, а лишь те, на которых функция принимает значение 1 (истина). Часто в предлагаемых задачах нет необходимости в построении полного дерева решений, поскольку уже на начальном этапе удается установить закономерность появления новых ветвей на каждом следующем уровне, как это сделано, например, в задаче 18.

В целом задачи на нахождение решений системы логических уравнений являются хорошими математическими упражнениями.

Если задачу трудно решить вручную, то можно поручить решение задачи компьютеру, написав соответствующую программу решения уравнений и систем уравнений.

Написать такую программу несложно. Такая программа легко справится со всеми задачами, предлагаемыми в ЕГЭ.

Как это ни странно, но задача нахождения решений систем логических уравнений является сложной и для компьютера, оказывается и у компьютера есть свои пределы. Компьютер может достаточно просто справиться с задачами, где число переменных 20 -30, но начнет надолго задумываться на задачах большего размера. Дело в том, что функция 2 n , задающая число наборов, является экспонентой, быстро растущей с увеличением n. Настолько быстро, что обычный персональный компьютер за сутки не справится с задачей, у которой 40 переменных.

Программа на языке C# для решения логических уравнений

Написать программу для решения логических уравнений полезно по многим причинам, хотя бы потому, что с ее помощью можно проверять правильность собственного решения тестовых задач ЕГЭ. Другая причина в том, что такая программа является прекрасным примером задачи на программирование, соответствующей требованиям, предъявляемым к задачам категории С в ЕГЭ.

Идея построения программы проста, — она основана на полном переборе всех возможных наборов значений переменных. Поскольку для заданного логического уравнения или системы уравнений число переменных n известно, то известно и число наборов – 2 n , которые требуется перебрать. Используя базовые функции языка C# — отрицание, дизъюнкцию, конъюнкцию и тождество, нетрудно написать программу, которая для заданного набора переменных вычисляет значение логической функции, соответствующей логическому уравнению или системе уравнений.

В такой программе нужно построить цикл по числу наборов, в теле цикла по номеру набора сформировать сам набор, вычислить значение функции на этом наборе, и если это значение равно 1, то набор дает решение уравнения.

Единственная сложность, возникающая при реализации программы, связана с задачей формирования по номеру набора самого набора значений переменных. Красота этой задачи в том, что эта, казалось бы, трудная задача, фактически сводится к простой, уже неоднократно возникавшей задаче. Действительно, достаточно понять, что соответствующий числу i набор значений переменных, состоящий из нулей и единиц, представляет двоичную запись числа i. Так что сложная задача получения набора значений переменных по номеру набора сводится к хорошо знакомой задаче перевода числа в двоичную систему.

Вот как выглядит функция на языке C#, решающая нашу задачу:

///

/// программа подсчета числа решений

/// логического уравнения (системы уравнений)

///

///

/// логическая функция — метод,

/// сигнатура которого задается делегатом DF

///

/// число переменных

/// число решений

static int SolveEquations(DF fun, int n)

bool set = new bool[n];

int m = (int)Math.Pow(2, n); //число наборов

int p = 0, q = 0, k = 0;

//Полный перебор по числу наборов

for (int i = 0; i < m; i++)

//Формирование очередного набора — set,

//заданного двоичным представлением числа i

for (int j = 0; j < n; j++)

k = (int)Math.Pow(2, j);

//Вычисление значения функции на наборе set

Для понимания программы, надеюсь, достаточно сделанных объяснений идеи программы и комментариев в ее тексте. Остановлюсь лишь на пояснении заголовка приведенной функции. У функции SolveEquations два входных параметра. Параметр fun задает логическую функцию, соответствующую решаемому уравнению или системе уравнений. Параметр n задает число переменных функции fun. В качестве результата функция SolveEquations возвращает число решений логической функции, то есть число тех наборов, на которых функция принимает значение true.

Для школьников привычно, когда у некоторой функции F(x) входным параметром x является переменная арифметического, строкового или логического типа. В нашем случае используется более мощная конструкция. Функция SolveEquations относится к функциям высшего порядка – функциям типа F(f), у которых параметрами могут быть не только простые переменные, но и функции.

Класс функций, которые могут передаваться в качестве параметра функции SolveEquations, задается следующим образом:

delegate bool DF(bool vars);

Этому классу принадлежат все функции, которым в качестве параметра передается набор значений логических переменных, заданных массивом vars. В качестве результата возвращается значение булевского типа, представляющее значение функции на этом наборе.

В заключение приведу программу, в которой функция SolveEquations используется для решения нескольких систем логических уравнений. Функция SolveEquations является частью приводимого ниже класса ProgramCommon:

class ProgramCommon

delegate bool DF(bool vars);

static void Main(string args)

Console.WriteLine(«У Функции And решений — » +

SolveEquations(FunAnd, 2));

Console.WriteLine(«У Функции 51 решений — » +

SolveEquations(Fun51, 5));

Console.WriteLine(«У Функции 53 решений — » +

SolveEquations(Fun53, 10));

static bool FunAnd(bool vars)

return vars && vars;

static bool Fun51(bool vars)

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

static bool Fun53(bool vars)

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && (!((vars == vars) || (vars == vars)));

Вот как выглядят результаты решения по этой программе:

10 задач для самостоятельной работы

  1. Какие из трех функций эквивалентны:
    1. (X → Y) ˅ ¬Y
    2. ¬(X ˅ ¬Y) ˄ (X → ¬Y)
    3. ¬X ˄ Y
  2. Дан фрагмент таблицы истинности:
X 1 X 2 X 3 X 4 F
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

Какой из трех функций соответствует этот фрагмент:

  1. (X 1 ˅ ¬X 2) ˄ (X 3 → X 4)
  2. (X 1 → X 3) ˄ X 2 ˅ X 4
  3. X 1 ˄ X 2 ˅ (X 3 → (X 1 ˅ X 4))
  4. В состав жюри входят три человека. Решение принимается, если за него голосует председатель жюри, поддержанный хотя бы одним из членов жюри. В противном случае решение не принимается. Постройте логическую функцию, формализующую процесс принятия решения.
  5. X выигрывает у Y, если при четырех бросаниях монеты трижды выпадает «орёл». Задайте логическую функцию, описывающую выигрыш X.
  6. Слова в предложении нумеруются, начиная с единицы. Предложение считается правильно построенным, если выполняются следующие правила:
    1. Если четное в нумерации слово заканчивается на гласную, то следующее слово, если оно существует, должно начинаться с гласной.
    2. Если нечетное в нумерации слово заканчивается согласной, то следующее слово, если оно существует, должно начинаться с согласной и заканчиваться гласной.
      Какие из следующих предложений правильно построены:
    3. Мама мыла Машу мылом.
    4. Лидер всегда является образцом.
    5. Правда хорошо, а счастье лучше.
  7. Сколько решений имеет уравнение:
    (a ˄ ¬ b) ˅ (¬a ˄ b) → (c ˄ d) = 1
  8. Перечислите все решения уравнения:
    (a → b) → c = 0
  9. Сколько решений имеет следующая система уравнений:
    X 0 → X 1 ˄ X 1 → X 2 = 1
    X 2 → X 3 ˄ X 3 → X 4 = 1
    X 5 → X 6 ˄ X 6 → X 7 = 1
    X 7 → X 8 ˄ X 8 → X 9 = 1
    X 0 → X 5 = 1
  10. Сколько решений имеет уравнение:
    ((((X 0 → X 1) → X 2) → X 3) →X 4) →X 5 = 1

Ответы к задачам:

  1. Эквивалентными являются функции b и c.
  2. Фрагмент соответствует функции b.
  3. Пусть логическая переменная P принимает значение 1, когда председатель жюри голосует «за» принятие решения. Переменные M 1 и M 2 представляют мнение членов жюри. Логическая функция, задающая принятие положительного решения может быть записана так:
    P ˄ (M 1 ˅ M 2)
  4. Пусть логическая переменная P i принимает значение 1, когда при i-м бросании монеты выпадает «орёл». Логическая функция, задающая выигрыш X может быть записана так:
    ¬((¬P 1 ˄ (¬P 2 ˅ ¬P 3 ˅ ¬P 4)) ˅
    (¬P 2 ˄ (¬P 3 ˅ ¬P 4)) ˅
    (¬P 3 ˄ ¬P 4))
  5. Предложение b.
  6. Уравнение имеет 3 решения: (a = 1; b = 1; c = 0); (a = 0; b = 0; c = 0); (a = 0; b = 1; c = 0)

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 18»

городского округа город Салават Республики Башкортостан

Системы логических уравнений

в задачах ЕГЭ по информатике

Раздел «Основы алгебры логики» в заданиях ЕГЭ считается одним из самых сложных и плохо решаемых. Средний процент выполнения заданий по данной теме самый низкий и составляет 43,2.

Раздел курса

Средний процент выполнения по группам заданий

Кодирование информации и измерение ее количества

Информационное моделирование

Системы счисления

Основы алгебры логики

Алгоритмизация и программирование

Основы информационно- коммуникационных технологий

Исходя из спецификации КИМа 2018 года этот блок включает четыре задания разного уровня сложности.

задания

Проверяемые

элементы содержания

Уровень сложности задания

Умение строить таблицы истинности и логические схемы

Умение осуществлять поиск информации в сети Интернет

Знание основных понятий и законов

математической логики

Умение строить и преобразовывать логические выражения

Задание 23 является высоким по уровню сложности, поэтому имеет самый низкий процент выполнения. Среди подготовленных выпускников (81-100 баллов) 49,8% выполнивших, средне подготовленные (61-80 баллов) справляются на 13,7%, оставшаяся группа учеников данное задание не выполняет.

Успешность решения системы логических уравнений зависит от знания законов логики и от четкого применения методов решения системы.

Рассмотрим решение системы логических уравнений методом отображения.

(23.154 Поляков К.Ю.) Сколько различных решений имеет система уравнений?

((x 1 y 1 ) (x 2 y 2 )) (x 1 x 2 ) (y 1 y 2 ) =1

((x 2 y 2 ) (x 3 y 3 )) (x 2 x 3 ) (y 2 y 3 ) =1

((x 7 y 7 ) (x 8 y 8 )) (x 7 x 8 ) (y 7 y 8 ) =1

где x 1 , x 2 ,…, x 8, у 1 2 ,…,у 8 - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение . Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено четыре переменных. Зная x1 и y1, можем найти все возможные значения x2 и y2, удовлетворяющие первому уравнению. Рассуждая аналогичным образом, из известных x2 и y2можем найти x3, y3, удовлетворяющее второму уравнению. То есть, зная пару (x1 , y1) и определив значение пары (x2 , y2) , мы найдем пару (x3 , y3 ), которая, в свою очередь, приведет к паре (x4 , y4 ) и так далее.

Найдем все решения первого уравнения. Это можно сделать двумя способами: построить таблицу истинности, через рассуждения и применение законов логики.

Таблица истинности:

x 1 y 1

x 2 y 2

(x 1 y 1 ) (x 2 y 2 )

(x 1 x 2 )

(y 1 y 2 )

(x 1 x 2 ) (y 1 y 2 )

Построение таблицы истинности трудоемко и неэффективно по времени, поэтому применяем второй способ - логические рассуждения. Произведение равно 1 тогда и только тогда, когда каждый множитель равен 1.

(x 1 y 1 ) (x 2 y 2 ))=1

(x 1 x 2 ) =1

(y 1 y 2 ) =1

Рассмотрим первое уравнение. Следование равно 1, когда 0 0, 0 1, 1 1, значит (x1 y1)=0 при (01), (10), то пара (x 2 y 2 ) может быть любой (00), (01), (10), (11), а при (x1 y1)=1, то есть (00) и (11) пара (x2 y2)=1 принимает такие же значения (00) и (11). Исключим из этого решения те пары, для которых ложны второе и третье уравнения, то есть x1=1, x2=0, y1=1, y2=0.

(x 1 , y 1 )

(x 2 , y 2 )

Общее количество пар 1+1+1+22=25

2) (23.160 Поляков К.Ю.) Сколько различных решений имеет система логических уравнений

(x 1 (x 2 y 2 )) (y 1 y 2 ) = 1

(x 2 (x 3 y 3 )) (y 2 y 3 ) = 1

...

( x 6 ( x 7 y 7 )) ( y 6 y 7 ) = 1

x 7 y 7 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,y1), (x2,y2) первого уравнения.

(x 1 (x 2 y 2 ))=1

(y 1 y 2 ) = 1

Решением второго уравнения являются пары (00), (01), (11).

Найдем решения первого уравнения. Если x1=0, то x2 , y2 - любые, если x1=1, то x2 , y2 принимает значение (11).

Составим связи между парами (x1 , y1) и (x2 , y2).

(x 1 , y 1 )

(x 2 , y 2 )

Составим таблицу для вычисления количества пар на каждом этапе.

0

Учитывая решения последнего уравнения x 7 y 7 = 1, исключим пару (10). Находим общее число решений 1+7+0+34=42

3)(23.180) Сколько различных решений имеет система логических уравнений

(x 1 x 2 ) (x 3 x 4 ) = 1

(x 3 x 4 ) (x 5 x 6 ) = 1

(x 5 x 6 ) (x 7 x 8 ) = 1

(x 7 x 8 ) (x 9 x 10 ) = 1

x 1 x 3 x 5 x 7 x 9 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,x2), (x3,x4) первого уравнения.

(x 1 x 2 ) (x 3 x 4 ) = 1

Исключим из решения пары, которые в следовании дают 0 (1 0), это пары (01, 00, 11) и (10).

Составим связи между парами (x1,x2), (x3,x4)

Пусть – логическая функция от n переменных. Логическое уравнение имеет вид:

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

Действительно, пусть задано уравнение:

В этом случае можно перейти к эквивалентному уравнению:

Рассмотрим систему из k логических уравнений:

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций :

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции , что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации () - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева


Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой имеет значение 1, требует, чтобы на этой ветви имело значение 1. Ветвь, на которой имеет значение 0, порождает две ветви со значениями , равными 0 и 1. Построенное дерево задает три решения, на которых импликация принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная уже имеет значения на дереве, то на всех ветвях, где переменная имеет значение 1, переменная также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная имеет значение 0, даст разветвление на две ветви, где переменная получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:


Второе уравнение нашей системы аналогично первому:

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных может быть скомбинировано с каждым решением для переменных , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения следует, что когда имеет значение 1(одно такое решение существует), то и имеет значение 1. Таким образом, существует один набор, на котором и имеют значения 1. При , равном 0, может иметь любое значение, как 0, так и 1. Поэтому каждому набору с , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

Это уравнение имеет два решения, когда все равны либо 1, либо 0.

Задача 21

Сколько решений имеет уравнение:

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

Построим дерево решений для этого уравнения:


Задача 22

Сколько решений имеет следующая система уравнений?



Понравилась статья? Поделитесь с друзьями!