Обзор удивительных подводных домов, отелей, городов: просто потрясающе! Подводные дома! Хотели бы так жить? Подводный дом и его достоинства.

Любой, кто читал какую-либо научную фантастику, в тот или иной момент думал о том, как замечательно было бы жить в странных средах обитания, например, под водой. За последние полвека люди пытались воплотить эту фантазию в жизнь и удивительно то, что многие из них в этом преуспели. Если вы готовы раскошелиться на довольно кругленькую сумму и не возражаете жить по соседству с одной или двумя тигровыми акулами, существует несколько способов, с помощью которых вы сможете на самом деле жить в море.

10. «Суб-Биосфера» (Sub-Biosphere)

Фотография: Фил Поли (Phil Pauley)

Одной из самых амбициозных попыток создать подводное жилище является детище человека по имени Фил Поли. Суб-Биосфера по сути является именно тем, о чём вы подумали, основываясь на её названии, и проект её создания находится ближе всего к постройке подводного города из всех проектов, которые в настоящее время находятся на стадии разработки. Несмотря на то, что Суб-Биосфера пока ещё не является функционирующим жильём, концепт-арта и чертежей достаточно для того, чтобы заставить любого из нас захотеть спуститься в солёные глубины и провести длительный период времени под водой.

Суб-Биосфера состоит из нескольких этажей, находящихся в капсулах, каждая из которых будет способна разместить до 100 жителей. Задумкой Поли является подводный город, который будет полностью самодостаточным и включать в себя районы для выращивания сельскохозяйственных культур и выработки собственной электроэнергии. Будет ли Суб-Биосфера когда-либо построена ещё предстоит выяснить, но Поли продолжает неустанно работать над логистикой и финансированием, чтобы начать строительство, а также, по слишком явному совпадению, над художественным произведением, основанном на концепции подводного города.

9. «Коншельф» (Conshelf)

Как может кто-то когда-либо даже упоминать об идее жизни под водой, не вспомнив единственного и неповторимого Жака Ив Кусто (Jacques Cousteau)? Самый известный водный эксперт в истории успешно создал подводные жилищные и научно-исследовательские объекты. В отличие от чего-то вроде Суб-Биосферы, проект Коншельф не был предназначен для долгосрочного проживания, несмотря на то, что в нём было большинство удобств дома, находившегося в гигантском металлическом барабане. Проект Коншельф прошёл уже три итерации, и Коншельф III уже был домом для шести исследователей, которые жили под водой в течение почти месяца.

Идея воплотилась в жизнь в 1962 году, когда Коншельф I находился в 10 метрах под поверхностью Средиземного моря у берегов Марселя. Небольшое, тесное помещение, технически называемое Диогеном (Diogenes) служило домом для пары учёных в течение недели. Оно было оснащено библиотекой, телевидением и радио, и использовалось в качестве научно-исследовательской станции для изучения морской жизни. Вскоре после успеха эксперимента Коншельф I, был запущен Коншельф II. Оно было оснащено ещё большим количеством фантастических удобства, таких как гараж, аквариум, и ещё один научно-исследовательский центр, находившийся глубже в море, на этот раз в помещение жили пять человек в течение месяца. Наконец, самым амбициозным проектом стал Коншельф III, находившийся на невероятной глубине 100 метров от поверхности воды.

8. Подводная лаборатория Ла Чалупа «La Chalupa Research Lab» / Гостиница под водой (Jules Undersea Lodge)


Фотография: Гостиница под водой «Jules Undersea Lodge»

То, что изначально было подводной лабораторией Ла Чалупа, объектом, который, по сути, находился в ведении «Taco Bell», стало гостиницей под водой после того как объект исчерпал свою пользу в качестве станции, в которой морская жизнь изучалась у побережья Пуэрто-Рико. Объект был особенно популярен среди знаменитостей, поскольку он являлся исследовательской станцией, переделанной в своего рода подводный отель.

Структура полностью погружена в воду и находится на дне лагуны. Она контролируется с помощью центра управления наземного базирования. Посетители попадают в гостиницу с помощью подводного порта, который доставляет их в центр объекта. В гостинице есть две спальни и общая гостиная зона, в которой даже есть кондиционер, потому что на дне моря видимо не так холодно, как показывается в фильмах. Комната отдыха оснащена телевизором и DVD-плеером, а также телефоном. В каждой из спален также есть гигантские стеклянные иллюминаторы, позволяющие любопытным дайверам смотреть на вас, пока вы спите, поэтому эта гостиница определенно не для застенчивых людей.

7. Подводная лаборатория Галатея (Galathee Underwater Lab) / Проект СиОрбитер (SeaOrbiter Project)


Фотография: Жак Ружери (Jacques Rougerie)

СиОрбитер это концепция полностью мобильного, в основном подводного исследовательского и разведочного объекта. Это своего рода подводный космический корабль, дрейфующий по всему миру, чтобы облегчить изучение океана и животных, живущих в его глубинах. Подводная лаборатория Галатея, открытая Жаком Ружери в 1977 году послужила вдохновением для этого проекта. Это была подводная среда обитания, разработанная специально для того, чтобы минимизировать вмешательство в покой морского мира. Её можно было разместить на любой глубине от 9 до 60 метров под поверхностью океана.
Так же, как и космические станции, на дизайне которых она была основана, СиОрбитер позволяет совершать долгосрочные морские путешествия по всему миру, в которых могут участвовать приблизительно 20 человек за один раз. Руководители проекта планируют разработать подводные транспортные средства, которые позволили бы им исследовать глубины, находящиеся до 6 000 метров от поверхности океана. СиОрбитер также можно будет потенциально использовать, чтобы помочь в подготовке космонавтов. Повышенное давление и изоляция похожи на те условия, с которыми космонавтам придётся столкнуться в космическом пространстве. Проект СиОрбитер активно ищет финансирование, и на данный момент создатели собрали лишь 45 процентов необходимой суммы.

6. Силэб (SEALAB)


Одной из первых попыток позволить людям жить ниже поверхности океана стал проект Силэб. Нет, Силэб это не тот мультфильм, который вы смотрите поздно вечером, кушая исследовательские лаборатории, заказанные из Тако Белл (Taco Bell). Как и Коншельф, проект Силэб также прошёл в три этапа. Первый Силэб был запущен у берегов Бермуд в 1964 году, но отрезан приближавшимся штормом.

Силэб II был запущен в 1965 году и был оснащён теми удобствами, которыми не обладал Силэб I, например, горячей проточной водой и холодильником. Длина этой подводной лаборатории достигала 17 метров, и она могла погрузиться на 62 метра под воду. На борту Силэб посменно жили команды водолазов, причём каждая из команд жила на борту как минимум две недели за раз. Среди тех, кто жил на Силэбе был Скотт Карпентер (Scott Carpenter), который получил известность как один из астронавтов группы «Меркурий 7». Карпентер сделал подводный звонок своему коллеге по «Меркурию 7» астронавту Гордону Куперу (Gordon Cooper), находившемуся на тот момент на орбите Земли в космической капсуле Джемини (Gemini), потому что астронавты — это позёры.

Силэб III был запущен в 1969 году у берегов Калифорнии, но проект окончился трагедией, когда судно начало протекать и неудачная попытка ремонта привела к смерти «акванавта» Берри Кэннона (Berry Cannon).

5. Аквариус (Aquarius)


Если вам посчастливилось быть студентом Международного университета Флориды (Florida International University), вам может быть предоставлен доступ к одному из последних оставшихся в эксплуатации подводных научно-исследовательских объектов в мире, метко названному Аквариус. В течение периодов до 10 дней за один раз исследователи плавают в Аквариусе изучая морскую жизнь у берегов островов Флорида-Кис (Florida Keys). Металлический кокон может выдержать давление воды при глубине до 37 метров под поверхностью океана и вмещает до шести человек за один раз.

Внутри Аквариус является полностью укомплектованной квартирой, которая включает в себя холодильники, кондиционер, душ, туалеты, микроволновую печь и даже доступ в Интернет. Совсем недавно, в ноябре прошлого года, группа студентов последнего курса Международного университета Флориды, специализирующихся на морских исследованиях провели неделю, проживая и проводя исследования на борту Аквариуса. Стоимость обучения в университете, вероятно, намного дешевле, чем пребывание в коммерческом подводном отеле, что делает Аквариус главной целью любителей океана ограниченных финансовыми возможностями.

4. Тектит (Tektite)


В 1969 году правительство Соединенных Штатов профинансировало проект под названием Тектит, названный в честь метеоров, которые врезаются в океан и падают на дно. Проект Тектит, состоял из четырёх акванавтов, которые жили в погружённой под воду станции с февраля по апрель 1969 года, и его целью должна была быть подготовка космонавтов для длительных пребываний в космосе.

Вторая инкарнация проекта Тектит была запущена в 1970 году и включала в себя 11 различных миссий, позволяя 53 акванавтам провести 2-3 недели погружёнными в подводный мир. Сам Тектит выглядел более или менее как пара гигантских металлических резервуаров. В них были расположены апартаменты экипажа и аппаратная, соединённая с мостом, плюс общее помещение для проведения исследований. Апартаменты предоставляли домашние удобства, с радиоприемниками и телевизорами, а также с кроватями и почти полностью оборудованной кухней. Несмотря на то, что она больше не функционирует как исследовательская лаборатория, вы всё равно можете просмотреть на подводный дом в Музее Тектита (Tektite Museum).

3. Гидролаборатория (Hydrolab)


В течение многих лет сотни исследователей пользовались Гидролабораторией, принадлежащей Национальному управлению океанических и атмосферных исследований (National Oceanographic and Atmospheric Administration), в качестве базы для научного исследования Атлантического океана. Гидролаборатория, расположенная у берегов американских Виргинских островов (Virgin Islands), позволила учёным работать в течение нескольких недель за раз на дне океана, а на её борту могло свободно разместиться до четырёх учёных.

Сама лаборатория была достаточно маленькой и тесной, её длина составляла всего 5 метров, высота 2,5 метра и она могла погружаться на глубину до 40 метров. Несмотря на то, что она была менее чем идеальной средой для страдающих клаустрофобией людей, она была оснащена водопроводом, электричеством и спальными местами, наряду с большими смотровыми портами для наблюдения за окружающим подводным миром. После того как она находилась в эксплуатации в течение более чем десяти лет, Гидролаборатория была списана с эксплуатации в 1986 году, но на неё всё ещё можно посмотреть в Музее естественной истории (Museum of Natural History).

2. Атлантика (Atlantica)

Деннис Чемберленд (Dennis Chamberland) является немного мечтателем, но он относится к тому редкому виду мечтателей, которые на самом деле воплощают свои мечты в реальность. Вероятно, этому способствует тот факт, что он является инженером в НАСА, и среди его задач числятся попытки сделать возможным проживание людей, как под водой, так и в космосе. В центре его планов находится экспедиция на Атлантике, которая является его вполне реальной и очень серьёзной попыткой создания настоящего подводного города.

Чемберленд уже построил подводный дом, рассчитанный на двух человек, но его конечная цель заключается в создании обширного общества, что позволит людям оставаться на дне океана практически бесконечно. В соответствии с его планами, Атлантика должна быть чем-то вроде района жилого комплекса в дополнение к тому, что она будет научно-исследовательским центром. Когда его спрашивают о жизни в предложенном им сообществе, он описывает невероятные сценарии, будто взятые из мультсериала Джетсоны (Jetsons), в которых люди запрыгивают в свои подводные лодки, чтобы съездить в кино.

1. Плавучий дом «H2OME»


Фотография: Подводные Структуры США (US Submarine Structures)

В то время как большинство подводных домов недоступны для тех, кто не является морскими учёными или готовы ждать до следующего десятилетия для того, чтобы собрать достаточно средств, существует ещё один вариант. По низкой цене всего в 10 миллионов долларов, вы можете приобрести свой собственный роскошный подводный дом, вернее, плавучий дом «H2OME». Те же люди, которые построили один из самых известных подводных отелей в мире, под названием Посейдон (Poseidon), теперь предлагают подводные дома, изготовленные на заказ.

Компания, под названием Подводные Структуры США, по-видимому, пытается монополизировать рынок подводной собственности. На их веб-сайте описаны подводные казино и рестораны, в дополнение к полностью законченным домам, а также ещё целый ряд подводных возможностей. Они хвастаются тем, что их дома поддерживают такое же давление как на поверхности, то есть вы никогда не промокните на пути к лестнице или лифту. Дома состоят из двух этажей, с парой спален, комнат отдыха, и абсолютно всем, что вы могли когда-либо пожелать иметь в своём доме, который идеально подходит для начинающих злодеев мира, вышедших с экранов серий о Бонде.

Человечество веками мечтало поселиться в морских пучинах, освоить их, сделать естественным пространством для жизни. Садко и Ихтиандр, капитан Немо и профессор Стромберг были не случайными героями, а знаковыми образами людей, которые жили в подводном мире. Но рекордное пребывание Фабьена Кусто в подводном доме парадоксальным образом продемонстрировало крах этих надежд.

Свобода и декомпрессия

Старые кинохроники показывают, как выглядели водолазные костюмы начала ХХ века: неудобные, громоздкие, не дающие человеку свободы перемещения в водной среде. Да и сама система снабжения водолаза воздухом с поверхности была крайне неудобной. Инженеры разрабатывали индивидуальные комплекты, которые были, к сожалению, не очень надежными и дорогими в производстве.

Проблема пребывания человека под водой заключается в высокой плотности воды – она в 800 раз больше плотности воздуха. Когда мы ныряем, водная толща обжимает наши тела, в первую очередь легкие. Чтобы нормально дышать, воздух в легкие должен подаваться с давлением, аналогичным давлению воды на данной глубине. Каждые 10 метров глубины – на 1 атмосферу больше. Первые системы, регулирующие давление для подачи воздуха в зависимости от глубины погружения, появились еще в XIX веке, но были достаточно сложными.

В 1943 году Кусто и его коллега, инженер Эмиль Ганьян разработали до гениальности простой дыхательный автомат, с прекрасными коммерческими перспективами. В 1945 году они патентуют этот регулятор под маркой CG45, который стал продаваться под торговым названием Aqua-Lang. С начала 1950-х годов, после выхода книги Жак-Ива Кусто «В мире безмолвия», а затем одноименного фильма, в мире начался бум дайвинга. Разумеется, не только туристы и любители экстремального спорта обрадовались новому изобретению. Искатели сокровищ, инженеры-строители, геологи и биологи увидели в акваланге вожделенный ключ к морским глубинам.

Но удобство применения акваланга и легкость перемещения с ним в водной толще не избавила от роковой проблемы декомпрессии. Дело в том, что при дыхании сжатым воздухом газы активно растворяются в крови, которая начинает напоминать газировку. При резком подъеме на поверхность кровь вскипает, и пузыри перекрывают кровоток. Это состояние называется «декомпрессионная или кессонная болезнь» .

Чтобы избежать этого, надо подниматься медленно, делая остановки, чтобы газы, растворенные в крови, выходили с каждым выдохом. Этот процесс называется декомпрессия. Максимальная глубина, с которой разрешается подъем без декомпрессии , – 11 метров. Если вы опустились глубже, то вам потребуется время для промежуточных остановок, чтобы обеспечить благополучное возвращение на поверхность.

Однако газы не могут растворяться в крови до бесконечности, и спустя определенное время насыщение прекратится. Это означает, что, пробыв под водой сутки, к примеру, ты можешь пробыть еще и неделю, и месяц, и год – время декомпрессии не увеличится. Следовательно, если надо выполнять длительную работу под водой, то есть прямой смысл там и жить, и строить подводный дом.

Подводный дом и его достоинства

Подводный дом представить себе легче легкого: возьмите стакан, переверните вверх дном и опустите в ведро или лучше в аквариум. Вода не зальет его – воздух сожмется, но не даст воде заполнить пространство. То есть, обеспечив в стакане давление воздуха, равное давлению воды, ее уровень может всегда быть на уровне нижнего края.

В самом простом виде практическое развитие этой идеи называется «водолазный колокол», и его изобретение относится ко временам античности – есть предание, что еще Александр Македонский опускался в подобном приспособлении на дно моря.

Подводный дом – это логическое развитие водолазного колокола. Там уже есть отсеки, где акванавты в нормальных условиях отдыхают, спят, едят, выполняют работу, готовят снаряжение для новых выходов в воду. Жителей подводного дома от затопления избавляет давление воздуха в самом доме, поэтому им не нужны никакие люки и шлюзы, чтобы выходить из него наружу.

Это дает массу удобств. Акванавты выполняют какую-либо работу за пределами дома. Периодически они возвращаются в дом, чтобы сменить баллоны с воздухом. Окончив смену, сняв снаряжение, они идут в пресный душ, потом переодеваются и уходят в сухие отсеки, где ведут нормальную жизнь.

В 1962 году близ Марселя команда Жак-Ива Кусто начала эксперимент Precontinent-1 (в англоязычной литературе он известен как Conshelf – континентальный шельф). Из железнодорожной цистерны, перевернутой вверх дном, был сделан подводный дом на двух человек, который в шутку назвали «Диогеном». Дом установили на глубине 10 метров. Выбор глубины неслучаен – акванавты могли в случае проблем подняться на поверхность без декомпрессии. Альбер Фалько и Клод Уэсли провели в нем неделю.

Этот опыт вызвал волну восторгов во всем мире. Мечта о жизни под водой стала сбываться на глазах. Казалось, что планета Океан уже ждет своих покорителей. А Жак-Ив Кусто начал готовить новый эксперимент – Precontinent-2, который предполагал строительство целой «подводной деревни» из нескольких подводных сооружений. Место для проекта, риф Шаб-Руми в Красном море, было выбрано неслучайно – исключительная прозрачность воды и богатство и красочность местной фауны должны были помочь в съемках удивительного фильма, «Мир без солнца».

Жак-Ив Кусто и его команда в гостиной подводного дома «Звезда» проекта Precontinent-2. Красное вино и сигареты – в порядке вещей

Поскольку самый простой подводный дом не является очень уж сложным инженерным объектом, его строили не только профессионалы (американские проекты Sealab, Tektite), но и любители. Сейчас может показаться удивительным, но в 1966 году группа энтузиастов в СССР построила и установила близ мыса Тарханкут в Крыму подводный дом «Ихтиандр-66».

Пока глубина установки подводных домов не превышала двух десятков метров, все шло хорошо. Но увеличение глубины монтажа дома свыше 50 метров ставило перед строителями сложную проблему: больше нельзя было использовать для дыхания атмосферный воздух, а только специальные смеси. Себестоимость дома и его сложность сразу многократно возросли.

Проблемы + проблемы

После первых успехов подводного домостроения к акванавтам пришли промышленники, которые были готовы помогать развитию нового дела. Однако у них были свои интересы, требовавшие освоения более значительных глубин. Жак-Ив Кусто стал готовить проект Precontinent-3, который предполагал строительство одного подводного дома на глубине около ста метров.

На этой глубине дышать атмосферным воздухом, сжатым до 11 атмосфер, нельзя, азот и кислород при таких давлениях становятся ядами. Поэтому люди вынуждены существовать в атмосфере инертного газа гелия, в который добавлено чуть более 2% кислорода. Этого количества молекул кислорода при таком давлении вполне хватает для нашего организма.

Проект Precontinent-3 включал в себя и обслуживание донной буровой установки

И тут акванавты столкнулись с совершенно неожиданными проблемами. Гелий имеет гораздо большую теплопроводность, чем азот, и человек в гелиевой атмосфере мерзнет даже при 26–28ºС. При этом из-за высокой проницаемости гелия любая теплоизоляция очень скоро насыщается этим газом и теряет свои свойства. Поэтому расход электроэнергии на отопление подводного дома стремительно растет.

Температура воды на больших глубинах снижается, и акванавты мерзнут даже в изолированных скафандрах, по той же причине – всепроникаемости гелия. Но большая глубина нанесла еще один удар. Пока акванавты плавали близ поверхности и использовали обычный сжатый воздух из баллонов, выдох уходил в воду. И в этом не было большой беды. Когда же акванавты перешли на дорогую смесь гелия и кислорода – гелиокс, это становилось расточительством. Потому что чем глубже погружаешься, тем быстрее пустеют баллоны, так как каждый вдох – это увеличение объема газовой смеси. Индивидуальные системы, которые могут очищать воздух, оказались дороже космических скафандров. И акванавты вновь соединились с подводными домами пуповиной, по которой им подается гелиокс, а выдохнутый отправляется назад, для очистки. По другой трубке стали подавать горячую воду, то есть акванавт, по сути, плавал в мокром гидрокостюме, подкачанном водой. Это увеличило время работы акванавта до приемлемых величин.

Правда, обнаружилось, что гелий способен просачиваться и через корпус подводного дома. А вот посторонние газы, которые выделяет человеческий организм и электротехника, как раз в нем остаются, отравляя атмосферу. Очистка ее стала сложной задачей. И по мере того, как развивались и становились все более профессиональными подводные эксперименты, стал расти скепсис относительно необходимости создания подводных домов как промышленных зон – стоимость их создания и эксплуатации явно превышали выгоды от их применения. И к середине 70-х годов энтузиазм стал спадать. Тем более что появилось другое решение – судовые гипербарические комплексы.

Воздух, солнце и вода

В 1981 году, когда мне пришлось первый раз выйти в море в составе геологической экспедиции, вопрос о причине отсутствия в нашем научном арсенале подводных домов был одним из первых. Там же я услышал от коллег про перспективные водолазные комплексы, которые скоро должны были поступить в СССР. Они устанавливались на борту крупных буровых судов.

Костюмы глубоководных водолазов связаны с водолазным колоколом многочисленными шлангами

Судовые гипербарические комплексы представляют собой крупные барокамеры со всеми удобствами , в которых живут акванавты в течение всего времени проведения работ. Живут они под давлением, в среде гелиокса. Когда им нужно опуститься для работы на дно, к их комплексу пристыковывается водолазный колокол, в который они переходят и опускаются на место работы. Дышат они там гелиоксом, поступающим по шлангам, но на всякий случай на спине носят кассеты с баллонами, которых должно хватить на несколько минут, чтобы доплыть до водолазного колокола. По окончании смены, они закрывают люк колокола и поднимаются на поверхность, где переходят в гипербарический комплекс. По сути, подводный дом подняли на поверхность, а к месту работы акванавты ездят на лифте.

Ни о какой жизни под водой «как рыбы и дельфины» уже речь не идет. Это можно сравнить с выходом человека в космос, и, кстати, по стоимости и опасности это соизмеримая работа.

В итоге сейчас в мире существует всего несколько постоянно действующих подводных домов. Один из них – это биологическая лаборатория «Аквариус» у берегов Флориды, в которой периодически работают группы биологов и экологов. Лаборатория находится на глубине 20 метров, и этого достаточно для проведения большинства биологических наблюдений.

Кроме этого, существует подводная гостиница Jules" Undersea Lodge , сделанная из бывшей научной лаборатории. Этими двумя подводными домами все подводное домостроение и ограничивается на данный момент. Никакого массового завоевания морских глубин, с созданием больших подводных городов, не представляется целесообразным.

Подводные отели и рестораны могут стать новым трамплином для стимулирования интереса общественности к освоению и сбережению океанов

Но есть одна сфера деятельности, где перспективы подводных домов небольшого заглубления вполне оптимистичны. Это туризм. Сочетание солнца и воды всегда привлекает людей. Тем более что самая красочная подводная жизнь как раз на небольших глубинах – в пределах первых двух десятков метров, там, где можно обеспечить дыхание человека обычным свежим воздухом.

Удачно соединили все эти элементы конструкторы подводного ресторана на Мальдивских островах. Акриловая труба расположена на небольшой глубине, здесь много света, игра бликов воды и масса симпатичных морских обитателей. Своеобразный «аквариум наоборот», который создает прекрасное «подводное настроение». И, скорее всего, люди, побывавшие в такой среде, если не станут дайверами-любителями, то уж по крайней мере будут внимательнее относиться к миру безмолвия. Такие проекты имеют все шансы на развитие, они в состоянии стать коммерчески успешными, и, возможно, тогда мечта о жизни под поверхностью воды сможет-таки стать явью.

Он определенно был гением. Сначала он подарил миру акваланг, затем посвятил свою жизнь морю и возвел изучение мирового океана на новый уровень. Но Жак-Иву Кусто было мало просто плавать в морях и снимать на камеру морскую живность. Он хотел изменить весь мир и повлиять на историю человеческой цивилизации. В 1962 году Кусто запустил совершенно фантастический проект: его команда в общей сложности 3 месяца прожила в домах на дне океана. Это было сродни полету в космос - настолько удивительным и странным получилось все приключение.

Жак-Ив Кусто мечтает переселить человечество под воду

Жизнь на дне океана не обязательно должна быть полна лишений и аскетизма

Жак-Ив Кусто - изобретатель, исследователь океана и автор множества прекрасных документальных фильмов. Во время Второй мировой Кусто участвовал во французском Сопротивлении, вел подрывную деятельность и получил за это высшую награду Франции, орден Почетного легиона.

Так что свое важнейшее изобретение, акваланг, он создал в 1943 году вместе с Эмилем Ганьяном именно для морских диверсий. Когда война окончилась, открытие принесло ему довольно много денег, так что он получил возможность не только жить безбедно, но и вложить их в нечто совершенно сумасбродное.

В 1950-м Жак-Ив покупает списанное судно «Калипсо» и перестраивает его под морскую лабораторию. С этого момента и до самой смерти в 1997 году жизнь Кусто превращается в одно великое паломничество по водам океана. Его будут ждать слава, почет и три «Оскара» за великие (без всяких шуток) документальные фильмы. Но мы хотим рассказать не совсем об этом. В жизни Жака-Ива и его команды был эпизод, когда они были настолько амбициозны, что взялись за немыслимую и фантастическую по тем временам затею.

Изначальный проект ConShelf

Трижды они спустились на дно моря, разместили там дома и жили в них, попутно исследуя жизнь океана. Спасаясь от кессонной болезни, акул и скуки, они стали героями мирового масштаба. Кусто и его товарищи действительно верили в то, что им суждено начать поворот всей цивилизации и помочь ей заселить мировой океан. К огромному сожалению, все это совпало по времени с таким же громким проектом, который оказался несомненным фаворитом публики и властей.

Проект ConShelf I - первый подводный дом в истории

Установка ConShelf I

Первый раз обустроиться и выжить на дне моря удалось в 1962 году, то есть вскоре после полета Гагарина. Нетрудно догадаться, что на фоне полета в космос идея не получила и половины того внимания, которого заслуживала. И, тем не менее, это был неожиданный для всех успех.

Недалеко от французского Марселя в Средиземном море был размещен первый в истории настоящий «подводный дом». Его габариты были не так уж велики: фактически, это была металлическая бочка длиной 5 метров и 2.5 метра в диаметре. Конструкция получила негласное прозвище «Диоген» и стала прибежищем для друзей Кусто - Альбера Фалько (запомните это имя!) и Клода Уэсли.

Внутри подводного дома.

Океанавты прожили неделю на глубине 10 метров и если вы думали, что первопроходцы страдали все это время в подводном аду, то чертовски ошиблись. У Клода и Альбера были радио, телевизор, удобные койки, регулярные завтрак обед и ужин, своя библиотека и постоянный треп по рации с товарищами на «Калипсо». Кроме того, оба они по 5 часов в день плавали вблизи от нового дома, изучая морское дно и обитателей океана, после чего занимались исследовательской работой в «Диогене».

Недели на океанической базе стало достаточно, чтобы понять: жить под водой можно и это не настолько трудно, как казалось поначалу. Эксперимент требовал немедленного продолжения.

ConShelf II - первая подводная деревня

Уже в 1963 году был запущен новый проект, который на голову превосходил предыдущий. Если ConShelf I можно назвать «первым подводным домом», то ConShelf 2 был уже настоящей подводной деревней. Здесь постоянно жили 6 человек и попугай и приплывало в гости еще множество членов экипажа «Калипсо». В общем, обстановка была как в нормальном веселом общежитии, только за окном проплывали барракуды, медузы и водолазы, а для прогулки «на свежем воздухе» приходилось надевать снаряжение аквалангиста.

Для проведения нового эксперимента был выбран шельф Красного моря, недалеко от побережья Судана. ConShelf II представлял собой не единое строение, а целый комплекс из четырех конструкций. Удивительно, но для того, чтобы собрать и установить все, понадобилось не так уж много сил и средств: всего 2 корабля, 20 моряков и 5 ныряльщиков.

Изначально предполагалось, что это действительно будет полноценная океаническая деревня с невероятными (по тем временам) шлюзами, коридорами, подводными катерами и океаническими обсерваториями. В итоге пришлось сделать все намного скромнее, но даже в таком виде результаты просто поражают.

Главное здание было сделано в виде морской звезды с четырьмя «лучами» и большой комнатой в центре. Его разместили на глубине 10 метров, где океанавты могли одновременно радоваться солнечному свету и спокойно плавать по несколько часов в день, не испытывая проблем с декомпрессией.

Одной из главных целей эксперимента было как раз выяснить, смогут ли аквалангисты без проблем опускаться на большие глубины и спокойно возвращаться в подводное жилище. Как и предполагалось, это было вполне реально. На поверхности глубоководников ждала бы смерть от резкого всплытия и кессонной болезни, но подводные дома решали эту проблему.

Ангар для подводной лодки и жесткий эксперимент

Кроме «Морской звезды» здесь же располагался воздушный ангар для «ныряющего блюдца» - подводной лодки, которой пользовалась команда Кусто. Проснувшись с утра на глубине 10 метров под уровнем моря, можно было выпить кофе, отправиться в путешествие на глубину 300 метров открыть с десяток неизвестных видов животных, а уже к обеду вернуться, чтобы поесть бутерброды с тунцом и рассказывать о своих приключениях товарищам. И все это не покидая океана! Для 60-х годов такие истории звучали как фантастика на грани безумия.

Кроме этого, было и еще одно важное строение. Несмотря на свою аскетичность, «Ракета» была в чем-то даже более интересна с точки зрения всего проекта. Эта башенка располагалась на глубине 30 метров и была сделана для того, чтобы выяснить, как именно аквалангисты перенесут крайне тяжелые условия подводной работы и жизни.

В отличие от «Морской звезды», здесь был скорее не дом, а карцер: крайне мало места, постоянная духота и высокое давление, экспериментальная смесь гелия, азота и кислорода вместо воздуха, тьма и акулы вокруг. В общем, все, чтобы проверить себя в настоящей стрессовой ситуации. Единственное, что радовало двух добровольцев, которые прожили здесь неделю - гелий в смеси делал их голоса писклявыми и смешными и члены команды часто звонили в «Ракету» просто чтобы поболтать и от души похохотать всем вместе.

Этот эксперимент тоже оказался удачным и все в нем показали себя отлично: и «Ракета», и аквалангисты, и смесь для дыхания. Первое, что сделали оба подопытных, приплыв обратно после ужасающей недели и опасностей декомпрессии, - выкурили по полной трубке табака и наконец-то выспались.

Простая жизнь простых парней на дне океана

Жак-Ив Кусто курит на дне океана и размышляет о том, как переселить сюда побольше людей с суши.

В отличие от первых космонавтов, первые акванавты не испытывали особых трудностей в своей работе. То есть, само собой, прожить на дне океана месяц и по нескольку часов в день работать в акваланге - не самая тривиальная задача. Но даже состав команды говорит о том, что справиться с этой миссией было проще, чем с обязанностями астронавта. Постоянными жителями подводных домов оказались: биолог, учитель, повар, спортивный тренер, таможенник и инженер.

Жак-Ив Кусто и его команда постарались создать первооткрывателям не просто сносные, но и весьма комфортные условия. Ежедневный рацион подводных поселенцев состоял из свежих морепродуктов и овощей, а также консервов и выпечки. И даже больше: они выбирали себе меню, позвонив повару по видеосвязи на «Калипсо»!

Вентиляция с помощью труб позволяла поддерживать настолько комфортный микроклимат, что жители «Морской звезды» только и делали, что покуривали трубки и сигареты, не забывая при этом еще иногда выпить вина. Океанавтов регулярно навещал парикмахер и они ежедневно пользовались искусственными солнечными ваннами, чтобы не потерять загара и не страдать от дефицита ультрафиолетового излучения.

Акванавт плавает вокруг подводного дома со скутером

Развлекали себя акванавты беседами, чтением книг, шахматами и наблюдением за океаном. Для того чтобы предупреждать жителей о проблемах с дыхательной смесью, в «Морской звезде» поселили попугая, который тоже неплохо пережил приключение, хотя иногда сильно кашлял. Впрочем, не исключено, что это из-за табачного дыма. За месяц у жителей подводной деревни даже появились свои любимцы среди рыб. Так, например, они с радостью встречали и подкармливали привязчивую барракуду, которая постоянно ошивалась у дома. Рыбе дали прозвище «Жюль» и начали узнавать ее «в лицо».

Акванавты чистят свой дом от водорослей. Делать это приходится ежедневно.

Кроме того, благодаря жизни в таких условиях, выяснились некоторые неожиданные детали. Оказалось, что из-за повышенного давления (и, возможно, искусственной дыхательной смеси) раны на теле зарастают буквально за ночь, а бороды и усы практически перестают расти. Кроме того, табак сгорал в разы быстрее, и потому курильщикам приходилось запрашивать гораздо больше сигарет, чем предполагалось.

«Мир без Солнца» - триумф, который заслужил Жак-Ив Кусто

Проект ConShelf II подарил настоящий триумф Кусто и его команде. Они не только привлекли внимание всего мира к новой перспективе развития человечества, но и получили «Оскара» за лучший документальный фильм 1965 года. «Мир без солнца» - полуторачасовая картина, которую Кусто снимал по ходу эксперимента, и она произвела поразительный эффект.

Значительную часть информации о ConShelf II и жизни на дне Красного моря проще всего получить именно из этого фильма. Так что его стоит посмотреть даже тем, кто не любит документалки. Тем более, что снят он просто потрясающе: атмосфера жизни под водой завораживает, каждый кадр - готовый скриншот для рабочего стола, а многие моменты хочется пересмотреть именно из-за того, насколько они эстетически притягательны.

Кульминационный момент фильма - путешествие Кусто и того самого Альбера Фалько на «Блюдце» - их маленькой НЛО-образной подводной лодке. Они спускаются на 300 метров в глубины Красного моря и к удивлению зрителя находят на дне моря пейзажи и формы жизни, которые выглядят инопланетными. Здесь акванавты сталкиваются с гигантской шестиметровой рыбой, со стаями рачков, бегающих, словно антилопы и оргией крабов на несколько тысяч персон.

Ночью конструкции светятся как аэропорт

Всплытие Кусто и Фалько завершает весь фильм, и оно дает ошеломительный эффект: кажется, что это именно вы только что поднялись с морского дна после невероятного месяца жизни в подводном доме.

ConShelf III - крушение надежд

После успеха проекта ConShelf II Жак-Ив Кусто получил возможность продолжить разработки и эксперименты. Так в 1965 году был начат ConShelf III, третий и, к сожалению, последний крупный эксперимент команды в этой сфере. Он был еще более амбициозным, еще более совершенным, еще более захватывающим, но, все же, последним.

Большой купол был размещен на дне Средиземного моря между Ниццей и Монако на глубине 100 метров. Шестеро человек (среди них и сын Кусто, Филипп) на протяжении трех недель выживали в подводном доме, который был гораздо более автономным, чем предыдущие. Попутно океанавты третьего проекта занимались множеством экспериментов чисто практического свойства, которые должны были дать массу информации для нефтедобывающих компаний.

Но время подводных домов ушло. Правительства и западного и восточного блоков уже окончательно сделали ставку на космос, и океан стал им не интересен. Точно также переместилось и внимание ветреной публики. Еще один удар нанесли изначальные спонсоры проектов - нефтехимические корпорации. После наблюдения за всеми тремя «Коншельфами» они пришли к выводу о том, что проще будет использовать ныряльщиков и роботов, чем полноценные и новаторские подводные деревни рабочих.

ConShelf III в разрезе

Сам Жак-Ив Кусто и его команда окончательно ухудшили отношения со спонсорами из промышленности. Вместо того чтобы указать на то, как лучше всего добыть нефть из морских шельфов, исследователи начали привлекать внимание общественности к проблемам экологии и хрупкости баланса жизни в океане. Больше о грантах на развитие подводных поселений можно было и не мечтать.

Подводные дома после Кусто

Разумеется, помимо команды Кусто переселением человечества в океан занимались и другие исследователи. Всего в мире было запущено больше дюжины подобных проектов. Но всем им далеко не так повезло с мировой славой, хотя у многих не было проблем с финансированием.

Американские проект Tektite

К примеру, в СССР был запущен так называемый «Ихтиандр 66» - любительский проект, в ходе которого водолазам-энтузиастам удалось построить подводное жилье, ставшее их домом на трое суток. Последовавший за ним «Ихтиандр 67» был гораздо серьезнее - две недели проживания, конструкция, напоминавшая ConShelf II и эксперименты с различными животными.

«Ихтиандр 67»

Другой известный пример - три эксперимента проекта SEALAB , который был запущен на Бермудских островах в 1964 году и возобновлялся в 1965 и 1969. История базы SEALAB сама по себе достойна отдельной статьи. Интерес к подводным домам уже начал угасать, но авторы проекта смогли убедить правительство США в том, что он станет крайне полезен для космических исследований. К примеру, именно здесь тренировался будущий астронавт Скотт Карпентер , который испытывал на себе влияние изоляции и перепадов давления.

SEALAB III дала ученым массу материала для размышлений и огромный опыт для акванавтов. К сожалению, вышло это все не так, как хотелось бы организаторам. С самого начала проект преследовали проблемы, случались аварии, а фатальные неудачи шли одна за другой. Закончилось все это смертью одного из океанавтов, Берри Кэннона , который погиб во время экстренной починки подводной базы по до конца не выясненным причинам.

Кроме исследовательских проектов заселения морского дна, существует еще, как минимум, один гедонистический. Jules Undersea Lodge , переделанный из старой подводной базы, - единственный функционирующий сейчас подводный отель. За 30 лет работы его успели посетить около 10 тысяч человек, многие из которых - молодожены, решившие разнообразить медовый месяц.

Так что можно с уверенностью сказать, что одна из первых вещей, которыми занялись люди, едва оказавшись в подводном жилище - занялись сексом и вопросом размножения. Выглядит многообещающе: по крайней мере, проблем с заселением подводных городов будущего у человечества не возникнет.

А вот как выглядит то, что осталось от проекта ConShelf II сейчас. Руины первой в истории подводной общины стали местом паломничества для дайверов:

Можно сказать, что строительство гидрополисов провалилось так и не начавшись, Жак-Ив Кусто - всего лишь выживший из ума старик, а мечты о жизни на дне океана лучше оставить для фантастики и видеоигр. Но если посмотреть на все с точки зрения оптимиста, проекты, вроде ConShelf и SEALAB - это первые, хоть и слишком аккуратные шаги. На той же Луне нога человека не ступала с 1969 года, но мы все еще грезим космосом и убеждены, что через пару десятилетий колонизируем Марс. Отличие утопии Кусто только в том, что в нее мы верим меньше, хотя выглядит она, в общем-то, даже реалистичнее.

Желающим отдохнуть в Крымском ФО, на заметку. Кто будет на Тарханкуте, обратите внимание -

"Ихтиандр" - советский проект по заселению людьми подводного пространства.

Из описания понятно, жилось исследователям отлично: "Первый советский подводный дом - «Ихтиандр-66». Объем помещения - 6 кубических метров. Естественное освещение обеспечивали 4 иллюминатора из оргстекла диаметром 20 см. Внутри находились две койки, одна над другой, небольшой столик с телефоном, журнал, личные вещи, возле выхода - акваланги. Принудительная вентиляция позволяла акванавтам даже курить и эффективно освобождала помещение от вредных примесей. Электроэнергия и воздух подавались по кабелям и шлангам с берега, пресную воду также подавали с поверхности. Еду в специальных контейнерах доставляли водолазы. Санузел ничем не отличался от обычного".

В июле 1966 г. сам дом, а также все необходимое оборудование в двух железнодорожных вагонах отправили в Евпаторию, а оттуда на Тарханкут (это место выбрали из-за его пустынности). Следом из Донецка вылетели участники эксперимента. Сотня поселенцев разбила на Тарханкуте целый палаточный городок. В его центре натянули для тени купол парашюта - получилась Парашютная площадь. От нее шли две палаточные улицы - Холостяцкая и Семейная. Были еще в городке Компрессорный проспект - там трудились инженеры, и Эскулаповы выселки - там сосредоточились медики.

5 августа белый домик с надписью на боку «Ихтиандр-66» перенесли на берег моря. 19 августа его опустили на морское дно, используя в качестве балласта 5 полуторатонных бетонных блоков. Но вскоре начался шторм, ливень, бетонные блоки сорвало и разбросало по всей бухте. После непогоды, бушевавшей три дня, многие покинули лагерь, но оставшиеся смогли поднять со дна бухты балласт и продолжили работу. Дом отбуксировали к месту погружения, причем 2 часа тянули его на веслах: лодочный мотор отказал. 23 августа «Ихтиандр-66» наконец оказался на 11-метровой глубине. Первым его обитателем стал руководитель донецкого клуба хирург Александр Хаес. Сутки он прожил на дне один (а всего провел в подводном доме трое суток), затем компанию ему составил москвич Дмитрий Галактионов, а его сменил донецкий шахтер Юрий Советов. И ТАСС с гордостью сообщил всему миру о первых акванавтах СССР.

Экспериментом заинтересовались не только журналисты, но и военные, крупные ученые, сотрудники конструкторских бюро, работавших на космос. Через год, в августе 1967-го, под воду опустился «Ихтиандр-67». На этот раз подводный дом установили в бухте Ласпи на глубине 12 метров, и просуществовал он не три дня, а две недели.

«Ихтиандр-67» имел объем 28 кубических метров и был построен в виде трехлучевой звезды. В этом подводном доме было 4 помещения, и в нем могли одновременно жить пять человек, неделю прожила первая пятерка, неделю - вторая. Все две недели вместе с людьми в «Ихтиандре-67» жили подопытные животные (морские свинки, крысы, кролики).

Еще через год на дно все той же бухты Ласпи ушел «Ихтиандр-68» - он был создан специально для подводных геодезистов и бурильщиков, и эксперимент был направлен на отработку технологий в этой сфере. Предполагалось и создание «Ихтиандра-69», но по приказу сверху эти работы были свернуты и больше уже не возобновлялись.

Татьяна Шевченко, «События»

Основное подводное сооружение - подводный дом, или, как его иногда называют, жилище. В нем акванавты проводят свободное от работы на дне время (двадцать и более часов в сутки): едят, спят, отдыхают, обрабатывают свои научные наблюдения, ремонтируют водолазное снаряжение и т. д. Чтобы жизнь акванавтов была полноценной, а необычность обстановки как можно меньше сказывалась на их моральном и физическом состоянии, в доме должны быть условия, максимально приближающиеся к нормальным условиям на поверхности. Следует предусмотреть спальный отсек, камбуз и место для еды - своего рода столовую; необходимы также книги, журналы, игры, радиоприемники и телевизоры. Это кажется элементарным, не стоящим особенного внимания, однако не все так просто. Надо помнить, что давление в доме в несколько раз больше атмосферного, а газовая смесь, которой дышат акванавты - искусственная, что объем, в котором они живут, - замкнутый. Это вызывает ряд специфических трудностей. Например, любая примесь в атмосфере дома так там и останется, если ее не удалить искусственно, и при длительном воздействии на человека может стать отравляющей. К любому, даже самому простому, агрегату, который должен работать в доме, надо подходить и с этих позиций.

Как же должен быть сделан подводный дом, чтобы люди могли жить в нем удобно и безопасно?

Первое, на что обычно вы обращаете внимание, когда собираетесь переезжать на новую квартиру - это ее планировка. Планировка подводного дома - вопрос не менее важный. Пока есть два способа размещения помещений в подводном доме: американский и французский. Помещения обеих американских «морских лабораторий» были спланированы так же, как и внутренние помещения подводных лодок. Все комнаты, или «отсеки», располагались в одну линию, причем на одном конце дома был вход, а спальный отсек находился в противоположном конце. Все остальные помещения, а именно: гардероб и склад снаряжения, душевые и санузел, лаборатория, камбуз и отсек управления аппаратурой размещались между ними. Это обусловливалось тем, что дом имел вид горизонтального цилиндра. Для всех домов Кусто, исключая, конечно, «Диоген», характерна своеобразная форма. Французы избегают создавать проходные, менее удобные помещения. В жилом доме «Преконтииента II», который по форме напоминал звезду, каждое помещение располагалось в одном из лучей, и все они имели выход в центральный отсек, который служил одновременно кают-компанией и центральным постом управления аппаратурой. Дом-шар «Преконтинента III» тоже не имел проходных комнат. Его бытовые помещения (спальня, туалет и душ) находились на первом этаже, тогда как отсек с управляющей аппаратурой и кают-компания - на втором.

Неудачная планировка дома осложняет не только жизнь в нем, но и работу. Один из участников опыта «Силаб II» - Том Кларк - отметил, что «вестибюль» перед выходным люком был слишком маленьким и тесным, а поэтому очень часто срывался график выхода акванавтов в воду. Когда два человека готовятся к выходу, два собираются войти и один контролирует вход и выход, выйти или войти вне очереди невозможно. Место, отведенное для хранения снаряжения, было беспорядочно завалено, найти свой костюм стоило больших трудов. Такой отзыв Кларка о планировке дома поддержали и другие участники опыта.

Не меньшее значение, чем планировка, имеют условия отдыха в доме. Шумность отсеков, загруженность их механизмами, теснота влияют на состояние акванавтов. Каждый член экипажа должен иметь место, где бы он мог остаться наедине с самим собой. Впервые такое стремление появилось у Фалько и Весли - жильцов самого первого подводного дома. Фалько писал: «В следующем нашем подводном доме должно быть не менее двух комнат, чтобы в одной из них можно было уединиться». Это требование также принимается во внимание группой Кусто при разработке подводных домов. И хотя жилой объем, приходящийся на человека в доме «Преконтинента III» ив «Силаб I» и «Силаб II» примерно одинаков (табл. 3), создается впечатление, что жить во французских подводных домах намного удобнее, чем в американских.

Таблица 3. Характеристики обитаемости подводных домов
Показатели «Силаб I» «Силаб II» «Преконтинент I» «Преконтинент II» «Преконтинент III» «Глокэс»
дом-звезда «Ракета»
Планировка и обьем помещений - - - - - - -
форма корпуса дома Горизонтальный цилиндр Горизонтальный цилиндр Горизонтальный цилиндр Четерехлучевая звезда с центральным отсеком Вертикальный цилиндр Сфера Горизонтальный цилиндр
расположение отсеков В линию с проходными отсеками Один отсек Три отсека непроходных, один центральный, один с выходным люком Двухэтажное, два отсека Двухэтажное Два отсека в линию
общий внутренний обьем дома, м3 70 130 24 80 13 100 12
объем, приходящийся на человека, м3 17,5 13 12 16 6,5 16,7 6
Дыхательная смесь: состав, % Искусственная Воздух Искусственная
гелий 80 80 - - 50 97,5 -
азот 16 16 79 79 40 - 82
кислород 4 4 21 21 10 25 18
регулирование состава смеси способ регенерации смеси Постоянная вентиляция по замкнутому циклу Автоматическое Химический Постоянная вентиляция по разомкнутому циклу Вручную Химический Вручную Физический Вручную Химический
Климатические условия - - - - - - -
наличие кондиционирования Есть Есть Нет Есть Нет Есть Нет
относительная влажность, % - 60-90 100 - 100 90-100 100
температура смеси, °С - 27-40 - - 30 32 16
расход мощности на обогрев, квт 10 25 - Обогрева нет Обогрева нет 11 Обогрева нет

Максимально удобные, приближенные к поверхностным, условия жизни создают у акванавтов хорошее настроение, благоприятно влияют на их психику и физическое состояние, а следовательно, способствуют производительному труду.

Важное место в жизни людей занимает «кухня» - процесс приготовления и принятия пищи. Для обитателей подводного дома все имеет значение: что готовится, как и на чем. Пользование открытым огнем исключается ввиду повышенного расхода кислорода и загрязнения дыхательной смеси продуктами сгорания. Кроме того, горение иногда просто невозможно из-за малого количества кислорода в смеси. До сих пор в подводных домах использовали обычные электроплиты. Вероятно, их будут применять и в дальнейшем, по не исключено, что может появиться и другой способ приготовления пищи, например, разогрев токами высокой частоты.

Пищевой рацион акванавтов подбирался на основе двух соображений. Во-первых, учитывались их.собственные пожелания. Так. Фалько и Весли, по словам Кусто, быстро перестали соблазнять «изумительные соусы и пирожные старательного Гильберта», и акванавты попросили присылать им пищу полегче. Во-вторых, при подборе меню принимались во внимание условия жизни в замкнутом объеме. Примеси, появляющиеся в атмосфере дома во время приготовления пищи, не должны быть токсичными п должны легко удаляться из смеси. Поэтому из рациона акванавтов было исключено жареное мясо, яйца и ряд других продуктов.

В «Преконтиненте III» Кусто сделал попытку использовать стандартные готовые обеды, использующиеся на авиационных линиях. Однако блюда из этих рационов подвергались отбору. По мнению доктора Вессьера, составлявшего меню акванавтов, примерно 3500 кал, которые получали акванавты в их суточном рационе, было вполне достаточно.

Продукты хранились в глубоком холоде - при температуре до -40° и перед приготовлением размораживались в специальной камере. Температура внутри нее была + 2°.

Температурные условия играют большую роль в жизни человека, а в подводном доме, в условиях искусственной атмосферы, особенно. Опыты показали, что живущий в атмосфере с гелием человек сильно мерзнет. Гелий имеет гораздо большую теплопроводность, чем азот, и чтобы человек не ощущал холод, температура в доме должна быть от 28 до 38° С. Это достигается обогревом дома как при помощи нагревателей, уложенных в полу, так и калориферами, выполненными в виде отдельных блоков. В «Силаб I», например, было четыре блочных обогревателя. В «Силаб II», кроме того использовались нагреватели, вмонтированные в бетонный пол. Общая мощность обогревателей «Силаб II» составляла 25 кет.

Большое внимание уделяется теплообмену между домом и водой. Из-за высокого давления и необычных физических свойств искусственной атмосферы практически любая теплоизоляция быстро насыщается гелием и теряет свои свойства. С целью улучшения теплоизоляции американские инженеры увеличивали до 5 см толщину теплозащитного внутреннего покрытия корпуса. Французы видят возможный выход из положения в создании дома с двойными стенками, между которыми циркулировала бы горячая вода. Не исключено, что такая «активная» защита окажется более действенной.

В дальнейшем, когда глубина постановки подводных домов достигнет 200-300 м, требования к системам поддержания температурного режима дома будут еще более жесткими, поскольку температура воды на больших глубинах может быть близкой к 0°. Регулировка температуры в доме должна быть автоматической, как, впрочем, и всех остальных параметров его атмосферы. При средней температуре внутри «Силаб II», равной 30°, колебания были довольно значительными - от 27 до 40° С, что вряд ли допустимо.

Однако, как показал опыт, одного обогрева дома мало. Работая в холодной воде, акванавт замерзает настолько, что по возвращении в дом требуются специальные и довольно энергичные меры для его согревания. С этой целью широко используются пресные горячие души и инфракрасные печи.

Поддержание влажности внутри подводного дома в приемлемых пределах - тоже весьма серьезная задача. Опыты показали, что при «жизни в гелии» она должна быть около 60%. Система кондиционирования «Силаб II» с этой задачей не справилась: влажность в доме колебалась от 60 до 90% со средним значением 75%.

Но самое главное, конечно, - это точное регулирование состава атмосферы дома и падежная работа систем удаления примесей. В подводном доме жизнь акванавтов зависит от исправности этих систем. При выходе их из строя акванавты могут погибнуть и от кислородного отравления, и от кислородного голодания, и от отравления вредными примесями. Даже если серьезная неисправность будет вовремя обнаружена, немедленная эвакуация с помощью барокамер-лифтов (таких, как камеры «Галеацци» в «Преконти-ненте III») может оказаться невозможной из-за погодных условий на поверхности и других причин. Поэтому требование надежности регулирующей аппаратуры становится первостепенным.

Второе основное требование - автоматизация процессов регулирования состава и очистки атмосферы. Возможность автоматически поддерживать на заданном уровне количество кислорода в доме появилась у американских исследователей, по-видимому, после изобретения Аланом Красбергом датчика количества кислорода в смеси. В дальнейшем Красберг создал систему автоматического регулирования состава смеси. Эта система настолько портативна, что ее не только можно установить в виде постоянных стационарных блоков в подводных домах и декомпрсссионных камерах, но и использовать в автономных дыхательных аппаратах.

Искусственная атмосфера глубоководного дома состоит обычно из смеси двух или трех газов. Полностью гелиевая атмосфера «Преконтинента III» содержала немногим более 2% кислорода, а дыхательная смесь «Силаб I» и «Силаб II» состояла из 4% кислорода, 16% азота и 80% гелия. Это соотношение компонентов должно в точности соблюдаться.

Сложность поддержания заданного состава смеси заключается в том, что расход кислорода в доме изменяется довольно значительно в зависимости от того, сколько человек в данный момент находится в доме, работают они или отдыхают и т. д. Система должна измерять количество кислорода в смеси и пополнять его по мере необходимости. Однако, несмотря на постоянное регулирование, содержание кислорода в атмосфере «Силаб II» колебалось от 3,25% до 5,25%.

Если на данном этапе работ, когда в смеси еще довольно много кислорода - от 2 до 4 %, проблема поддержания его количества постоянным вызывает затруднения, то с увеличением глубин эти трудности неизмеримо возрастут. Так, для глубины 250 м безопасное количество кислорода составляет около 1 %. Незначительные отклонения в ту или иную сторону от данного относительного количества кислорода в смеси вызовут резкие колебания абсолютной величины его парциального давления, что может привести к очень тяжелым последствиям. Поэтому необходима аппаратура, которая могла бы точно поддерживать на нужном уровне даже такое мизерное количество кислорода.

Из дома постоянно уходит гелий. Его диффундирующие способности настолько велики, что под давлением он способен просачиваться даже сквозь стекло. Кроме того, гелий, как, впрочем, и азот растворяется в воде, с которой атмосфера дома имеет постоянный контакт. Поэтому и количество инертных газов в доме непрерывно убывает; по мере необходимости их тоже надо пополнять.

Организмы людей, которые живут в подводном доме, все время выделяют углекислый газ и другие газообразные продукты жизнедеятельности. Ряд механизмов и устройств при работе также выделяют в атмосферу дома газообразные примеси. Например, выключатели и другие контактные электроприборы являются источниками озона, а действие его под большим давлением на людей еще не изучено. Улетучивается краска, испаряются масла и т. д. В дыхательной смеси дома «Силаб I» были обнаружены примеси паров метилового и этилового спирта, ацетальдегида, фреона, этилового эфира, муравьиной кислоты, сероуглерода, угольного ангидрида и многие другие - всего около 100 видов. И это несмотря на то, что дом был полностью изолирован от поверхности и даже водолазам обеспечения категорически запрещалось входить в него - в доме находились только акванавты.

В первую очередь из атмосферы подводного дома должен удаляться углекислый газ, который поступает в нее в наибольшем количестве. Подобная задача успешно решена для автономных дыхательных аппаратов и подводных лодок. Однако для подводного дома ее пришлось решать заново: ввиду повышенного давления, в доме качество очистки атмосферы подводной лодки не удовлетворяет требованиям подводного дома. Дж. Бонд полагает, что токсичность примесей возрастает пропорционально увеличению давления и что примеси, которые допустимы в атмосфере подводной лодки, будут смертельно опасны уже при 20 ата.

Удаление углекислого газа может производиться двумя способами: химическим и физическим. В случае использования первого способа углекислый газ поглощается при пропускании смеси через поглотители - вещества, связывающие его химически. В «Силаб II», например, углекислый газ поглощался с помощью гидроокиси лития.

Физический способ удаления углекислого газа был применен в «Преконтиненте III». С помощью специально разработанного криогеыерационного устройства дыхательная смесь сжималась и охлаждалась до отвердения углекислого газа и других вредных примесей, а затем брикеты отвержденных примесей выбрасывались из дома в воду. Этот узел в сочетании с системой измерения количества кислорода в смеси и некоторыми другими устройствами был конструктивно оформлен в виде отдельного блока, который мог бы устанавливаться не только в подводных домах, но и на исследовательских подводных судах, обладающих большой автономностью.

Эксплуатация поглотителей различных типов показала: химический способ очистки мало пригоден для условий подводного дома. У американских акванавтов временами болела голова, что, как предполагалось, было вызвано плохой работой поглотителя. Кроме того, если экипаж большой и дом находится на дне длительное время, потребное количество химпоглотителя возрастает настолько, что его хранение или доставка под воду свежего превратится в сложную проблему. По-видимому, и американцы остановятся в конце концов на устройстве, подобном криогенератору «Преконтинента III».

В будущих подводных домах система регулировки состава и физических параметров атмосферы будет, вероятно, выполнена в виде отдельного блока. Эта полностью автоматическая система сможет регулировать содержание компонентов в газовой смеси, удалять из нее примеси, поддерживать в нужных пределах ее температуру и влажность. Кроме того, в доме должна быть предусмотрена контрольная система регулирования, функционирующая независимо от первой. Она будет иметь свои 71,атчики количества компонентов смеси и примесей и, может быть, даже работать от собственного автономного источника питания. Как полагают, такое стопроцентное дублирование окажется необходимым для повышения надежности работы этой системы, наиболее важной из всех систем дома.

Условия жизни под водой весьма специфичны. Вышедший из дома акванавт должен обязательно вернуться в него - путь наверх ему закрыт. Чтобы вовремя оказать помощь попавшему в беду, в подводном доме должны знать, кто, когда и с каким заданием покинул дом, какое количество дыхательной смеси было в баллонах его аппарата и т. д. С этой целью в доме должна быть установлена еще одна система - система безопасности. Эта система будет пеленговать работающих вне дома акванавтов, и дежурный, взглянув на пульт, сможет узнать, где находится каждый из них. При помощи специальных датчиков ритма дыхания система будет следить за состоянием акванавта и в случае необходимости подаст сигнал тревоги. Обеспечение связи со всеми акванавтами, находящимися в воде, также явится функцией этой системы. Важность ее создания уже подтвердилась на практике: попавший в аварию акванавт «Силаб I» Сэндерс Маннинг чудом остался жив.

Прообразом системы безопасности была система, использованная в «Преконтиненте II». На пульте в центральном посту находилось специальное табло, на котором загоралось имя вышедшего в воду акванавта и предполагаемое время его возвращения. Все разговоры центрального поста с акванавтами записывались на магнитную пленку.

Высокая степень автоматизации систем дома невозможна без использования сложных технических устройств. Однако для применения их в подводных домах в условиях гелиевой атмосферы и высоких давлений требуется проведение специальных исследований. Большие проблемы возникли при использовании электронной аппаратуры. Хотя охлаждающие способности гелия в данном случае были полезны, так как благодаря им электронные приборы работали при более выгодных температурных режимах, большая проникающая способность гелия доставила много хлопот как американским, так и французским инженерам. На третий-четвертый день работы в подводном доме телевизионные передающие камеры снижали контраст и резкость передаваемого изображения. После замены электронно-лучевых трубок нормальная работа систем телевидения восстанавливалась. Специалисты-электроиики объясняли это тем, что гелий, проникая сквозь стеклянные баллоны трубок, снижал внутри них вакуум. В «Преконтиненте III» трубки приходилось заменять через несколько дней. Американские инженеры изготовили водонепроницаемые боксы и устанот вили передающие камеры прямо в воде, напротив иллюминаторов дома, и таким образом избавились от влияния всепроникающего гелия. На полупроводниковые приборы гелий не оказывал своего воздействия.

Вахтенный у центрального поста в доме-звезде "Преконтинента II" Акванавты, рядом с именами которых на сигнальном световом табло горят лампочки (справа), находятся вне пределов дома. Все переговоры с центральным постом фиксируются магнитофоном, размещенным тут же на пульте

В подводном доме имеются также устройства и системы, предназначенные для его постановки на дно и всплытия на поверхность. Прежде всего он должен иметь систему опор, допускающих возможность регулировки его положения на грунте в довольно широких пределах. Необходимость такой регулировки отмечалась, в частности, после проведения «Силаб II». Подводный дом был установлен с некоторым наклоном, несмотря на то, что место выбиралось и готовилось заранее. Это создавало определенные неудобства. Так, по словам Карпентера, акванавтам пришлось закреплять на печке посуду.

Чтобы дом твердо стоял.на дне и течение не могло сдвинуть или опрокинуть его, он должен обладать большой отрицательной плавучестью. При установке же на грунт и при подъеме, желательна минимальная отрицательная плавучесть, а то и способность дома к самостоятельному всплытию. Для регулирования плавучести в доме предусматривается балластная система. Проблема балласта в различных экспериментах решалась по-разному. В «Преконтиненте II», например, сооружения утапливались с помощью твердого балласта. Для укладки его в их корпусах предусматривалось специальное место. Дом «Силаб II» имел собственные балластные цистерны, при помощи которых он мог самостоятельно всплыть и погрузиться. Однако эта способность была использована только отчасти. Его постановка на грунт и подъем производились с помощью лебедок и кранов судов обеспечения.

Система погружения и всплытия дома должна быть хорошо продумана, иначе это может привести к серьезным осложнениям в работе. Так, из-за неудачно спроектированной продуваемой балластной системы дважды срывался подъем подводного дома англичан. Всплывая после продувки балласта, дом выскакивал с глубины 10 м на поверхность, затем, зачерпнув воду через люки, снова шел на дно.

Способ компрессии и декомпрессии экипажа в самом доме, который применялся при проведении «Преконтинента III», обусловливает определенные требования к конструкции дома, которые обычно предъявляются к барокамерам. Во-первых, корпус дома должен быть достаточно прочным, чтобы выдержать высокое внутреннее давление, соответствующее давлению на глубине постановки, непосредственно перед началом погружения или тотчас после подъема. Во-вторых, герметичность дома в этот момент ни в коем случае не должна нарушаться. При быстром падении давления внутри дома экипаж может погибнуть от декомпрессионной болезни.

Инженерам-конструкторам подводных домов приходится решать и проблему размещения запасов. Чем выше степень автономности дома (т. е. чем меньше он зависит от снабжения с поверхности), чем больший по численности экипаж живет в нем и чем дольше длится работа на дне, тем сложнее становится эта задача. Только за одну минуту человек потребляет при дыхании около 1-2 л кислорода (приведенных к нормальному давлению), трижды в день принимает пищу. Ввиду низкой температуры забортной воды акванавт вынужден по возвращении в дом согреваться горячим душем. Поэтому расход пресной воды на одного человека может составить несколько десятков литров в день.

Громоздкие и многочисленные баллоны с компонентами газовой смеси обычно прикрепляют к корпусу дома снаружи или хранят в специальном лафете, на котором смонтировано жилое помещение. Наиболее удачным, по-видимому, следует признать способ хранения запасов пищи, который был использован в «Преконтиненте III»: в глубоком холоде, в специальном шкафу-холодильнике, смонтированном вместе с криогенной установкой. Пресная вода подавалась сверху по шлангам во все подводные дома, кроме дома «Преконтинент III». На его лафете был установлен мягкий резиновый бак объемом в несколько кубических метров. Однако вода, находившаяся в баке под большим давлением, приобретала сильный привкус резины и годилась только для бытовых целей. Для приготовления пищи и питья акванавты использовали воду, законсервированную в жестяных банках, а также соки и другие напитки.

Кроме места для размещения баллонов со сжатыми газами, запасов пресной воды и пищи, в доме должно быть предусмотрено складское помещение для хранения водолазного снаряжения, а также инструментов и материалов, необходимых при работе на дне.

Все изложенное далеко не исчерпывает требования к устройству подводного дома, однако позволяет получить некоторое представление о сложности задачи, стоящей перед его конструкторами.



Понравилась статья? Поделитесь с друзьями!