Озонатор воздуха в быту, медицине и на производстве. Озон

Из-за неблагополучного состояния окружающей среды в России ежегодно погибают более 300 тыс. человек. К традиционным, существовавшим в нашей стране много лет экологическим проблемам прибавилась еще одна - проблема тропосферного (приземного) озона.

Озон: полезен вверху, вреден внизу

Трудно найти человека, который не знал бы о существовании в стратосфере Земли озоновых дыр, лишающих нас защиты от избыточного ультрафиолета Солнца, губительного для всего живого. На фоне этой глобальной проблемы, казалось бы, совершенно невинно выглядит влияние на наше здоровье другого озона, находящегося в приземном воздухе, которым мы дышим. Люди обращают внимание на загрязнение атмосферы выбросами промышленных предприятий и выхлопами автомобилей, но мало кто знает, как опасен приземный озон для человеческого организма.

Токсичность озона (О3) проявляется в результате его действия на дыхательную систему человека и животных. Озон обладает высокой химической активностью, для проявления его токсического действия достаточно минимальных концентраций. Он является почти идеальным боевым отравляющим веществом, и только по причине трудности его

получения он не оказался в числе примененных боевых газов в период Первой мировой войны. К числу его недостатков военные относят резкий запах.

Опасность приземного озона, условия его возникновения и необходимость разработки способов защиты давно тревожат общественность и правительства промышленно развитых стран.

Существует международный термин «доиндустриальный озон». Его концентрация в воздухе составляла 10-20 мкг/м3. Развитие автотранспорта привело к значительному увеличению концентрации озона в тропосфере. Этот приземный озон американцы называют «плохим», в отличие от хорошего - стратосферного. Индустриально развитые страны столкнулись с этой бедой несколько десятилетий назад, а Россия - только в конце 1990-х годов.

Как образуется озон?

Повышенный уровень приземного озона возникает лишь при определенных метеорологических условиях - в жаркую погоду.

В приземном слое атмосферы основным источником озона являются фотохимические реакции, в которых участвуют оксиды азота, летучие углеводороды (выхлопы автотранспорта и промышленные выбросы) и ряд других веществ. Эти компоненты называются предшественниками озона. Под действием ветра они могут распространяться на сотни километров. Когда уровень солнечной радиации мал (пасмурная летняя погода, осень, зима), фотохимические реакции в приземной атмосфере отсутствуют или потекают очень вяло. Но стоит увеличиться солнечной радиации, особенно в безветренную погоду, как воздух в городе и за его пределами становится особенно ядовитым.

Жарким летом 2002 г. в традиционном курортном месте дальнего Подмосковья мы фиксировали уровни озона, превышавшие 300 мкг/м3! Что означают эти цифры?

Озон - вещество высшего класса опасности, по токсичности он превосходит синильную кислоту и хлор, которые являются боевыми отравляющими веществами. Всемирная организация здравоохранения отнесла озон к веществам безпорогового действия, т. е. любая концентрация в воздухе этого газа, сильнейшего канцерогена, опасна для человека. Предельно допустимые концентрации озона в России составляют:
- для жилых зон 30 мкг/м3 (среднее за сутки) и 160 мкг/м3 (среднее за 30 мин и не более 1% повторяемости в год);
- для промышленных зон - не более 100 мкг/м3.

В станах Европейского Союза принят стандарт 110 мкг/м3 за 8 ч светлого времени суток.

В чем опасность озона для здоровья?

Озон попадает в организм со вдыхаемым воздухом. Озон оказывает общетоксическое, раздражающее, канцерогенное, мутагенное, генотоксическое действие; вызывает усталость, головную боль, тошноту, рвоту, раздражение дыхательных путей, кашель, расстройство дыхания, хронический бронхит, эмфизему легких, приступы астмы, отек легких, гемолитическую анемию (из справочника Я.М. Глушко «Вредные неорганические соединения в промышленных выбросах в атмосферу»; Л.,: Химия, 1987).

А эта информация взята с американского правительственного экологического сайта (www.epa.gov/air now (environmental Protection Agency). Ученые США определили, что каждый третий американец обладает повышенной чувствительностью к озону. Люди этой группы могут серьезно навредить своему здоровью, если не будут следить за сообщениями о содержании озона в приземных слоях атмосферы в районах мест их проживания. Такие сведения предоставляет ЕРА (Агентство по защите окружающей среды) совместно с Правительством США. Получая ее, люди оптимизируют свои решения.

Воздействие озона на здоровье человека:
- вызывает раздражение органов дыхания, кашель, тяжесть в груди; эти симптомы могут длиться несколько часов и переходить в хроническую фазу;
- уменьшает легочную функцию;
- способствует развитию астмы и увеличивает количество ее приступов;
- провоцирует возникновение аллергических реакций;
- повреждает ткани бронхов и легких;
- способствует возникновению бесплодия у мужчин;
- значительно понижает иммунитет;
- провоцирует канцерогенные и мутогенные процессы.

Ученые выявили четыре группы людей, которые подвергаются повышенному риску негативного воздействия озона:
- дети;
- взрослые, по роду занятий много времени проводящие в активном движении на открытом воздухе;
- люди, имеющие высокую чувствительность к озону (причину ученые определить пока не могут);
- пожилые люди. К этой же группе относятся больные с хроническими заболеваниями органов дыхания и сердечно-сосудистой системы.

Как защитить себя от действия приземного озона?

Если вы узнали о его повышенной концентрации, выход один - избегать нахождения на открытом воздухе; если это невозможно, максимально ограничить пребывание вне помещения, не двигаться при этом активно; не разрешать детям выходить на улицу.

Ученые Йельского университета США опубликовали данные о негативном воздействии озона на здоровье человека. Они сопоставили данные о смертности с данными о выбросах озона в 95 городах за период 1987-2000 гг. Повышение в воздухе концентрации озона на 20 мкг/м3 приводит к увеличению смертности на следующей неделе более чем на 0,5 % общего количества смертей.

В 2005 г. несколько европейских государств подписали Протокол об ограничении выбросов загрязняющих веществ. Европейские эксперты подсчитали, что при сокращении выбросов предшественников озона (оксидов азота и летучих углеводородов) примерно на 40% уменьшится количество дней, в которые происходит интенсивное образование тропосферного озона.

При уменьшении вредных выбросов промышленности и автомобильного транспорта (соответственно и уменьшения образования приземного озона) количество лет жизни, потерянных людьми из-за хронических болезней, в 2010 году будет на 2,3 млн лет меньше, чем в 1990. Показатели смертности среди детей и подростков, спровоцированных присутствием в атмосфере этого опасного газа и микрочастиц, могут сократиться приблизительно на 47 500 случаев. Вредное воздействие повышенной концентрации озона на процесс роста растений по сравнению с 1990 г. уменьшится на 44% .

В России в 1993 г. ущерб от повышенного озонового фона только по ржи и пшенице составил 150 млн долл., а в Европе - более 2 млрд.

Анализ, проведенный в ходе переговоров о заключении Протокола, показал, что предполагаемая польза от его реализации (улучшение здоровья населения, повышение урожайности в сельском хозяйстве, ограничение ущерба для строений и памятников) значительно превышает по стоимости прогнозируемые расходы (самое малое - в 3 раза) по претворению этого документа в жизнь.

Мы проводили эксперимент по одновременному измерению озона двумя одинаковыми газоанализаторами в Москве и в курортном районе дальнего Подмосковья. Оказалось, что за период летних измерений концентрации озона в городском воздухе были меньше, чем аналогичные показатели в атмосфере курортной зоны. Парадоксальный факт удалось объяснить с помощью модели образования этого газа в пригородах мегаполисов, которую разработали зарубежные ученые. Суть метода в следующем.

С подветренной стороны мегаполиса концентрации озона начинают расти с расстояния примерно 20 км от города и достигают максимальных значений при удалении от него на 50-60 км. В городской среде постоянно действуют мощные источники оксидов азота. Они вступают в реакцию с озоном и нейтрализуют его, а за городом таких источников нет и избыток озона остается в воздухе.

Эти реакции носят циклический характер и определяют равновесие в атмосфере. Таким образом, за городом фотохимическое равновесие устанавливается в сторону высоких значений озона, а в городской среде - более низких. Но это не значит, что воздух мегаполисе безопасней. За последние годы атмосфера Москвы превратилась в химический реактор, производящий очень ядовитые соединения. В присутствии двуокиси азота (а этого газа в городском воздухе всегда много) озон становится в 20 раз более токсичным. Москвичи, спасаясь на дачах от летней жары, не представляют, какой опасности подвергают свое здоровье. Единственное спасение - холодное, пасмурное и дождливое лето! Потепление климата в Московском регионе может привести к катастрофической ситуации с уровнем приземного озона, особенно если наши власти и дальше будут считать его полезным.

Следует сказать несколько слов еще об одном популярном мифе. В художественной литературе можно встретить фразу «после грозы чудесно пахнет озоном». Практически все люди, включая министра экологии, считают, что чем больше озона в воздухе, тем полезней для здоровья, дышать нужно как можно глубже. Между тем многолетние измерения озона в курортных зонах и городах всегда показывают одну картину: - после грозы и ливня в приземной атмосфере озон исчезает.

Как решают проблему тропосферного озона в США и странах Европейского союза? В Европе насчитывается более 10 тыс. станций контроля за предшественниками озона и за ним самим. Получаемая информация используется для оповещения населения. Самый посещаемый сайт в Германии - о содержании озона в воздухе. На основе полученных данных формируется политика в области охраны окружающей среды стран - членов ЕС. США и Европе уже удалось добиться ежегодного снижения концентраций озона в атмосферном воздухе.

В России нет ни одной станции контроля озона и его предшественников, хотя есть качественная аналитическая техника, для контроля уровня озона, специалисты, предлагающие способы решения этой проблемы. У властей нет ни воли, ни желания вникать в нее.

Как же реагируют на эту острейшую ситуацию чиновники, которые формируют политику природопользования, чиновники, которые строят дворцы на самой дорогой и самой опасной земле Подмосковья?

22 августа 2004 г. принят Федеральный закон № 12 «О внесении изменений в законодательные акты Российской Федерации и признании утратившими силу некоторых законодательных актов Российской Федерации в связи с принятием федеральных законов «О внесении изменений и дополнений в Федеральный закон «Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов Российской Федерации» и «Об общих принципах организации местного самоуправления в Российской Федерации».

Название закона, казалось бы, указывает на то, что изменения должны касаться органов государственной власти и местного самоуправления. Мы же убедились в том, что этот закон внес существенные изменения в жизнь всех граждан России, причем далеко не позитивного характера. Тенденция изменений в области природоохранного законодательства не внушает оптимизма, она демонстрирует факт самоустранения органов государственной власти от выполнения обязательств перед обществом по обеспечению экологической безопасности и ликвидации правовых гарантий и практических механизмов охраны окружающей среды. Важнейшим негативным аспектом принятых изменений является лишение природоохранной деятельности государственной финансовой поддержки, а также антиконституционные изменения в части разграничения полномочий между федеральными органами власти и органами власти субъектов РФ.

Ликвидированы правовые механизмы защиты атмосферного воздуха в городах.

Федеральные власти сняли с себя ответственность за жизнь и здоровье миллионов горожан.

Федеральный закон «Об охране атмосферного воздуха»

Качество воздушной среды является одним из определяющих факторов состояния окружающей среды. Общая тенденция развития законодательства в этой области демонстрирует отход от соблюдения конституционных гарантий права граждан на благоприятную окружающую среду.

Состояние атмосферного воздуха таких городов, как Москва, Новокузнецк, Череповец, Кемерово, Челябинск, Екатеринбург, является катастрофическим. Люди, проживающие в городах, вынуждены дышать токсичными выбросами промышленных предприятий, превышающими предельно допустимые нормы в сотни раз. Последние изменения, внесенные в Федеральный закон «Об охране атмосферного воздуха», лишают их даже теоретической возможности изменить ситуацию в будущем.

Возможно, судьба значительной части населения России, обеспечивающего благосостояние страны, не волнует ни исполнительную, ни законодательную власти. Однако собственная жизнь, казалось бы, не должна быть безразлична даже власть имущим. Существует мнение, что Москва находится в особом положении и трудности, переживаемые в регионах, москвичам не знакомы, а уж правительство, президент и депутаты Государственной думы вообще живут на другой планете. Во многом такое мнение обоснованно, но только не в ситуации с воздухом. И бомж, и президент, и председатель правительства, живя в Москве, дышат одним воздухом.

В Федеральный закон «Об охране атмосферного воздуха» внесены изменения, свидетельствующие о полной ликвидации системы защиты воздушной среды.

Статья 8 (утратила силу)

«Специально уполномоченный федеральный орган исполнительной власти в области охраны атмосферного воздуха в установленном порядке осуществляет деятельность в области охраны атмосферного воздуха совместно с другими федеральными органами исполнительной власти в пределах их компетенции и взаимодействует с органами исполнительной власти субъектов Российской Федерации».

Статья 9 (утратила силу)

«1. Юридические лица, имеющие источники выбросов вредных (загрязняющих) веществ в атмосферный воздух, а также вредного физического воздействия на атмосферный воздух, разрабатывают и осуществляют в области охраны атмосферного воздуха мероприятия по охране атмосферного воздуха.

2. С учетом мероприятий по уменьшению выбросов вредных (загрязняющих) веществ, данных мониторинга атмосферного воздуха, результатов контроля выбросов вредных (загрязняющих) веществ, результатов расчетов рассеивания выбросов вредных (загрязняющих) веществ специально уполномоченный федеральный орган исполнительной власти в области охраны атмосферного воздуха, его территориальные органы разрабатывают соответствующие федеральные целевые программы, программы субъектов Российской Федерации и местные программы охраны атмосферного воздуха.

Мероприятия по охране атмосферного воздуха не должны приводить к загрязнению других объектов окружающей природной среды.

3. Проекты программ охраны атмосферного воздуха могут выноситься на обсуждение граждан и общественных объединений в целях учета их предложений при планировании и осуществлении мероприятий по улучшению качества атмосферного воздуха.

Статья 10 (утратила силу)

«Финансирование программ охраны атмосферного воздуха и мероприятий по его охране осуществляется в соответствии законодательством Российской Федерации.»

Анализируя внесенные в законодательство изменения, можно сделать следующие выводы:

1. Ликвидирован специально уполномоченный орган по охране атмосферного воздуха, фактически снята ответственность с федеральной власти за ужасающее состояние воздушной среды огромного количества российских городов с развитой промышленностью. Состояние воздуха в них представляет угрозу не только для здоровья, но и для жизни людей (ст. 8)

2. Ликвидированы программы охраны атмосферного воздуха (ст. 9).

3. С юридических лиц, имеющих источники выбросов вредных веществ, снята обязанность по охране атмосферного воздуха.

4. С федеральных органов власти и властей субъектов Российской Федерации снята обязанность по разработке и реализации программ и проведению мероприятий по охране атмосферного воздуха.

5. Ликвидирован контроль общественности и ее участие в планировании и осуществлении программ по охране атмосферного воздуха.

6. Ликвидировано финансирование программ и мероприятий по охране атмосферного воздуха (ст. 10).

Признание указанных статей утратившими силу делает бессмысленным само существование в России Закона об охране атмосферного воздуха.

Без гарантий правовой защиты оставлено население всех промышленных городов России, проживающих в условиях катастрофического загрязнения атмосферы.

А.М.Чучалин, О.А. Яковлева, В.А. Миляев, С.Н. Котельников.

Озон – это газ природного происхождения, который, находясь в стратосфере, оберегает население планеты от негативного воздействия ультрафиолетовых лучей. В медицине это вещество часто используют для стимуляции кроветворения и повышения иммунитета. В то же время при естественном образовании озона в тропосфере в результате взаимодействия прямых солнечных лучей и выхлопных газов его воздействие на человеческий организм противоположно. Вдыхание воздуха с повышенной концентрацией газа может привести не только к обострению аллергических реакций, но и к развитию неврологических нарушений.

Характеристики озона

Озон представляет собой газ, состоящий из трех атомов кислорода. В природе он образуется в результате воздействия прямых лучей солнца на атомарный кислород.

В зависимости от формы и температуры цвет озона может варьироваться от светло-голубого до темно-синего. Соединение молекул в этом газе очень неустойчиво – через несколько минут после образования вещество распадается на атомы кислорода.

Озон является сильным окислителем, благодаря чему часто используется в промышленности, ракетостроении, медицине. В условиях производства этот газ присутствует при сварочных работах, процедурах электролиза воды, изготовлении пероксида водорода.

Отвечая на вопрос ядовит озон или нет, специалисты дают утвердительный ответ. Этот газ относится к наивысшему классу токсичности, которому соответствуют многие боевые отравляющие вещества, в том числе синильная кислота.

Влияние газа на человека

В ходе многочисленных исследований ученые пришли к выводу, что влияние озона на организм человека зависит от того, какое количество газа проникает в легкие вместе с воздухом. Всемирной организацией здравоохранения были установлены следующие предельно допустимые концентрации озона:

  • в жилой зоне – до 30 мкг/м 3 ;
  • в промышленной зоне – не более 100 мкг/м 3 .

Единоразовая максимальная дозировка вещества не должна превышать 0,16 мг/м 3 .

Негативное влияние

Отрицательное воздействие озона на организм часто наблюдается у людей, которым приходится сталкиваться с этим газом в производственных условиях: специалистам ракетостроительной отрасли, работникам, использующим озонаторы и ультрафиолетовые лампы.

Длительное и регулярное воздействие озона на человека приводит к таким последствиям:

  • раздражение органов дыхательной системы;
  • развитие астмы;
  • угнетение дыхательной функции;
  • повышение риска развития аллергических реакций;
  • увеличение возможности развития мужского бесплодия;
  • снижение иммунитета;
  • рост канцерогенных клеток.

Активнее всего озон воздействует на четыре группы людей: детей, лиц с повышенной чувствительностью, спортсменов, проводящих тренировки вне помещений, и пожилых людей. Кроме того, в зону риска входят пациенты с хроническими патологиями дыхательной и сердечно-сосудистой систем.

В результате контакта в производственных условиях с жидким озоном, кристаллизация которого наступает при температуре –200 градусов Цельсия, возможно наступление глубокого обморожения.

Положительное воздействие

Максимальное количество озона находится в стратосферном слое воздушной оболочки планеты. Располагающийся там озоновый пласт способствует поглощению самый вредной части ультрафиолетовых лучей солнечного спектра.

В тщательно выверенных дозировках медицинский озон или кислородно-озоновая смесь оказывает на организм человека благоприятное воздействие, благодаря чему часто используется в лечебных целях.

Под контролем лечащего врача использование этого вещества позволяет добиться следующих результатов:

Истории наших читателей


Владимир
61 год

  • устранить кислородную недостаточность;
  • усилить окислительно-восстановительные процессы, протекающие в организме;
  • снизить последствия интоксикации за счет выведения токсинов;
  • устранить болевой синдром;
  • улучшить кровоток и обеспечить снабжение кровью всех органов;
  • восстановить правильное функционирование печени при различных ее заболеваниях, в том числе гепатите.

Помимо этого, использование в медицинской практике озонотерапии позволяет улучшить общее состояние пациента: стабилизировать сон, уменьшить нервозность, повысить иммунитет, устранить хроническую усталость.

Благодаря способности к окислению других химических элементов озон часто используется в качестве средства для дезинфекции. Это вещество позволяет эффективно бороться с грибками, вирусами и бактериями.

Применение озонаторов

Описанные положительные свойства, оказываемые озоном, привели к производству и использованию в промышленных и бытовых условиях озонаторов – приспособлений, продуцирующих трехвалентный кислород.

Использование таких приборов в промышленности позволяет осуществить следующие мероприятия:

  • продезинфицировать воздух в помещении;
  • уничтожить плесень и грибки;
  • обеззаразить воду и канализационные стоки;

В медицинских учреждениях озонаторы используются для дезинфекции помещений, стерилизации инструментария и расходных материалов.

Использование озонаторов распространено и в домашних условиях. Такие приборы часто применяются для обогащения воздуха кислородом, дезинфекции воды и устранения вирусов и бактерий с посуды или предметов быта, используемых человеком с инфекционным заболеванием.

При использовании озонатора в быту необходимо соблюдать все условия, указанные производителем прибора. Категорически запрещено находиться в помещении при включенном приспособлении, а также сразу же употреблять очищенную с его помощью воду.

Симптоматика отравления

Проникновение высокой концентрации озона в организм человека через органы дыхания либо длительное взаимодействие с этим веществом способно вызвать тяжелую интоксикацию. Симптомы отравления озоном могут проявиться как резко – при однократном вдыхании большого количества этого вещества, так и обнаруживаться постепенно – при хронической интоксикации вследствие несоблюдения условий труда или правил использования бытовых озонаторов.

Первыми обнаруживаются признаки отравления со стороны дыхательной системы:

  • першение и жжение в горле;
  • затрудненное дыхание, одышка;
  • невозможность сделать глубокий вдох;
  • появление частого и прерывистого дыхания;
  • боль в загрудинной области.

При воздействии газа на глаза может наблюдаться их слезоточивость, возникновение рези, покраснение слизистой оболочки, расширение сосудов. В некоторых случаях происходит ухудшение либо полная потеря зрения.

При систематическом контакте озон может влиять на организм человека следующим образом:

  • происходят структурные преобразования бронхов;
  • развиваются и обостряются различные заболевания дыхательных путей: пневмонии, бронхиты, астмы, эмфиземы;
  • снижение объема дыхания приводит к приступам удушья и полному прекращению дыхательной функции.

Помимо воздействия на органы дыхания, хроническое отравление озоном влечет за собой патологические процессы в функционировании других систем организма:

  • развитие неврологических нарушений – снижение уровня концентрации и внимания, появление головных болей, нарушение координации движений;
  • обострение хронических заболеваний;
  • нарушение свертываемости крови, развитие анемий, возникновение кровотечений;
  • обострение аллергических реакций;
  • нарушение в организме окислительных процессов, в результате которого происходит распространение свободных радикалов и разрушение здоровых клеток;
  • развитие атеросклероза;
  • ухудшение секреторной функциональности желудка.

Первая помощь при отравлении озоном

Острое отравление озоном может привести к тяжелым последствиям, вплоть до смертельного исхода, поэтому при возникновении подозрения на интоксикацию пострадавшему должна быть немедленно оказана доврачебная помощь. До приезда специалистов необходимо осуществить следующие мероприятия:

  1. Вынести пострадавшего из зоны поражения токсическим веществом либо обеспечить приток в помещение свежего воздуха.
  2. Расстегнуть тесную одежду, придать человеку полусидящее положение, не допуская запрокидывания головы.
  3. В случае прекращения самостоятельного дыхания и остановки сердца провести реанимационные мероприятия – искусственное дыхание изо рта в рот и непрямой массаж сердца.

При контакте озона с глазами необходимо сделать промывание при помощи большого количества проточной воды.

В случае воздействия на человека жидкого озона ни в коем случае нельзя пытаться удалить с пострадавшего одежду в месте ее соприкосновения с телом. До приезда специалистов стоит промывать пораженный участок большим количеством воды.

Помимо оказания пострадавшему первой помощи, необходимо незамедлительно доставить его в лечебное учреждение либо вызвать карету скорой помощи, поскольку дальнейшие мероприятия по интоксикации могут быть проведены только квалифицированным медицинским персоналом.

Лечение отравления

Для устранения отравления озоном в условиях медицинского стационара предпринимаются следующие мероприятия:

  • выполняют щелочные ингаляции для устранения раздражения верхних дыхательных путей;
  • назначают лекарственные препараты для прекращения кашля и восстановления функций дыхания;
  • при острой дыхательной недостаточности пациента подключают к аппарату искусственной вентиляции легких;
  • при поражении глаз назначаются сосудосуживающие и обеззараживающие препараты;
  • в случае тяжелого отравления проводится терапия по нормализации функций сердечно-сосудистой системы;
  • осуществляется антиоксидантная терапия.

Последствия

Длительное воздействие озона на организм человека при неправильных условиях труда либо нарушении правил использования озонатора приводит к хроническому отравлению. Это состояние зачастую влечет за собой развитие таких последствий:

  • Образование опухолей. Причина этого явления заключается в канцерогенном действии озона, вследствие которого происходит повреждение генома клеток и развитие их мутации.
  • Развитие мужского бесплодия. При систематичном вдыхании озона происходит нарушение сперматогенеза, по причине которого теряется возможность продолжения рода.
  • Неврологические патологии. У человека происходит нарушение внимания, ухудшение сна, общая слабость, регулярное возникновение головных болей.

Профилактика

Во избежание отравления озоном специалисты рекомендуют придерживаться следующих рекомендаций:

  • Отказаться от занятий спортом вне помещений в жаркое время суток, в особенности летом. Желательно выполнять физические упражнения в помещениях либо на местности, отдаленной от крупных промышленных предприятий и широких автомобильных дорог, в утренние и вечерние часы.
  • В жаркое время суток необходимо как можно реже находиться вне помещений, особенно в местности с повышенной загазованностью.
  • При контакте с озоном в промышленных условиях помещение должно быть оборудовано вытяжной вентиляцией. Помимо этого, во время производственного процесса необходимо использовать устройства для защиты, а также специальные датчики, отображающие уровень газа в помещении. Время непосредственного контакта с озоном должно быть максимально сокращено.

При выборе бытового озонатора важно обратить внимание на его технические характеристики и наличие соответствующего сертификата. Покупка несертифицированного прибора может привести к возникновению интоксикации трехвалентным кислородом. Перед использованием прибора необходимо ознакомиться с правилами его эксплуатации и мерами предосторожности.

Интоксикация озоном – достаточно тяжелое состояние, которое требует незамедлительного вмешательства медицинских работников. Поэтому стоит помнить, что при работе с этим газом либо применении бытовых озонаторов стоит придерживаться техники безопасности, а при малейшем подозрении на отравление – обращаться в лечебное учреждение.

Принято различать два вида озона:

- тропосферный озон , образующийся в нижних слоях атмосферы Земли ниже 8-12 км. На тропосферный озон приходится около 10% всего атмосферного озона.

- стратосферный озон , образующийся в верхних слоях атмосферы Земли выше 12 км.

Концентрация озона в атмосфере очень незначительна: до одной тысячной доли процента от общего объема атмосферы Земли (до 0,001 %).

Озоновый слой (озоносфера) – это область атмосферы Земли , в которой происходит активное образование озона. Озоносфера начинается на уровне 10-12 км от поверхности Земли и простирается до высот 50-55 км, но больше всего озона содержится на высоте около 25 км.

Однако даже в зоне наибольшей концентрации озона в атмосфере находится не более 5-10 молекул озона на миллион молекул воздуха.

Если собрать весь озон, содержащийся в вертикальном столбе атмосферы при давлении 760 мм рт. ст. и температуре 0°С, то получится слой толщиной всего 3 мм.

При различных условиях количество озона в атмосфере может меняться примерно в 2 раза, так что высота однородной атмосферы озона может составлять то 0.2, то 0.4 см.

Концентрация озона в атмосфере и распределение озонового слоя над поверхностью Земли.

Озоносфера охватывает всю планету, но распределение озонового слоя над поверхностью Земли неравномерно. Образование большей части озона происходит над экватором, а в сторону полюсов О 3 переносится воздушными течениями. Но если взглянуть на карту распределения озонового слоя по широтам Земли, мы увидим, что как раз над экваториальными широтами содержание озона в атмосфере минимально.

На планете четко выделяется тропическая область недостаточного содержания озона в зоне от 35° с. ш. до 35° ю. ш., где средняя приведенная толщина слоя О 3 около 0,26 см. К северу и югу от нее толщина слоя больше – 0,35 см. То есть толщина озонового слоя (концентрация озона в атмосфере) растет по направлению к полюсам.

Количество озона относительно велико в северных полярных широтах, далее убывает к югу, сравнительно мало в области между 35 с.ш. и 35 ю.ш., затем нарастает, и вторичный максимум приходится на 50 - 60 ю.ш. Над Антарктидой намечается новый "провал"".

Наибольшая концентрация озона в атмосфере приходится на следующие широты:

В Северном полушарии на широте 65-75°

В Южном полушарии на широте 50-60°

Почему же так происходит?

Почему над экватором озоновый слой тоньше, концентрация озона в атмосфере меньше?

Ведь, казалось бы, вполне логично предположить, что озона должно быть больше там, где он и образуется. Для объяснения этого феномена есть несколько причин. Рассмотрим их подробнее.

Причиной малой концентрации озона над экваториальными широтами является быстрый распад молекулы озона. Время жизни молекулы озона здесь составляет всего несколько часов.

Это связано, прежде всего, с высокой интенсивностью солнечного излучения в высоких слоях атмосферы экваториальных широт. Ультрафиолетовое излучение разбивает молекулы озона, также озон разрушается вследствие реакции с атомарным кислородом.

Оставшийся озон из-за большей плотности опускается в более нижние слои атмосферы и воздушными течениями переносится по направлению к полюсам Земли. Здесь время жизни молекулы озона уже значительно выше – около 100 дней.

Таким образом, концентрация озона в атмосфере над экватором получается ниже, чем над полярными широтами.

Это правило (увеличение концентрации озона от тропических к полярным областям и от более высоких слоёв к более низким) носит название принципов Дютша–Добсона и Добсона-Норманда соответственно.

2. Концентрация озона в атмосфере в зависимости от времени года.

В предыдущем пункте мы рассмотрели изменение концентрации озона в атмосфере в зависимости от географической широты. Но на концентрацию озона влияет также и время года. Особенно это заметно в полярных широтах, в средних широтах максимум (0.43 см) приходится на март, а минимум (0.27 см) - на октябрь.

Вообще, независимо от широты, максимум содержания озона в атмосфере приходится на конец зимы и весну, а минимум – на осень и начало зимы. Но с продвижением к северу и югу наступление максимума отодвигается на более поздние месяцы. Например, в Алма-Ате максимум толщины озонового слоя наблюдается в феврале, в Санкт-Петербурге – в марте, на о. Диксон – в мае.

Максимальное значение концентрации озона в атмосфере, зарегистрированное на земном шаре, составляет 0.76 см (это рекордное значение зарегистрировано на острове Кергелен 20 октября 1967 г.), а минимальное значение (в "озонных дырах"") равно 0.09 см.

3. Концентрация озона в атмосфере в зависимости от времени суток.

Концентрация озона в атмосфере может меняться более или менее случайным образом в течение суток и амплитуда этих изменений сравнима с амплитудой широтных и сезонных вариаций.

Междусуточные изменения содержания озона могут быть очень велики. Так, на озонометрической станции на острове Кергелен в 1968 году были получены следующие данные: 22 марта - 0.583 см; 23 марта - 0.749 см; 25 марта - 0.283 см.

Это была статья о концентрации озона в атмосфере Земли и границах озонового слоя. Читайте далее: Значение озонового слоя Земли – озоносферы. Воздействие ультрафиолетовых лучей Солнца на человека и другие живые организмы.

ОЗОН (О 3) — аллотропная модификация кислорода, его молекула состоит из трех атомов кислорода и может существовать во всех трех агрегатных состояниях. Молекула озона имеет угловую структуру в форме равнобедренного треугольника с вершиной 127 o . Однако замкнутого треугольника не образуется, а молекула имеет строение цепи из 3-х атомов кислорода с расстоянием между ними 0,224 нм. В соответствии с этой молекулярной структурой дипольный момент составляет 0,55 дебай. В электронной структуре молекулы озона имеются 18 электронов, которые образуют мезомерностабильную систему, существующую в различных пограничных состояниях. Пограничные ионные структуры отражают дипольный характер молекулы озона и объясняют его специфическое реакционное поведение в сравнении с кислородом, который образует радикал с двумя неспаренными электронами. Молекула озона состоит из трех атомов кислорода. Химическая формула этого газа– O 3 Реакция образования озона: 3O 2 + 68 ккал/моль (285 кДж/моль) ⇄ 2O 3 Молекулярная масса озона – 48 При комнатной температуре озон — это бесцветный газ с характерным запахом. Запах озона чувствуется при концентрации 10 -7 М. В жидком состоянии озон — это темно-синий цвет с температурой плавления -192,50 С. Твердый озон представляет собой кристаллы черного цвета с температурой кипения -111,9 гр.С. При температуре 0 гр. и 1 атм. = 101,3 кПа плотность озона составляет 2,143 г/л. В газообразном состоянии озон диамагнитен и выталкивается из магнитного поля, в жидком -слабопарамагнитен, т.е. обладает собственным магнитным полем и втягивается в магнитное поле.

Химические свойства озона

Молекула озона неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно превращается в двухатомный кислород с выделением тепла. Повышение температуры и понижение давления увеличивают скорость разложения озона. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение. Химическая активность озона очень велика, это мощный окислитель. Он окисляет почти все металлы (за исключением золота, платины и иридия) и многие неметаллы. Продуктом реакции в основном является кислород. Озон растворяется в воде лучше, чем кислород, образуя нестойкие растворы, причём скорость его разложения в растворе в 5 -8 раз выше, чем в газовой фазе, чем в газовой фазе (Разумовский С.Д., 1990). Это обусловлено, по-видимому, не спецификой конденсированной фазы, а его реакциями с примесями и ионом гидроксила, поскольку скорость распада очень чувствительна к содержанию примесей и рН. Растворимость озона в растворах хлорида натрия подчиняется закону Генри. С увеличением концентрации NaCl в водном растворе растворимость озона уменьшается (Тарунина В.Н. и соавт.,1983). Озон имеет очень высокое сродство к электрону (1,9 эВ), что и обуславливает его свойства сильного окислителя, превосходимого только фтором (Разумовский С.Д., 1990).

Биологические свойства озона и его влияние на организм человека

Высокая окисляющая способность и то, что во многих химических реакциях, протекающих с участием озона, образуются свободные радикалы кислорода, делают этот газ крайне опасным для человека. Как газообразный озон влияет на человека:
  • Раздражает и повреждает ткани органов дыхания;
  • Воздействует на холестерин в крови человека, образуя нерастворимые формы, что приводит к атеросклерозу;
  • Долгое нахождение в среде с повышенной концентрацией озона может стать причиной мужского бесплодия.
В Российской Федерации озон отнесён к первому, самому высокому классу опасности вредных веществ. Нормативы по озону:
  • Максимальная разовая предельно допустимая концентрация (ПДК м.р.) в атмосферном воздухе населённых мест 0,16 мг/м 3
  • Среднесуточная предельно допустимая концентрация (ПДК с.с.) – 0,03 мг/м 3
  • Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – 0,1 мг/м 3 (при этом, порог человеческого обоняния приближённо равен 0,01 мг/м 3).
Высокую токсичность озона, а именно – его способность эффективно убивать плесень и бактерии, используют для дезинфекции. Применение озона вместо средств дезинфекции на основе хлора позволяет существенно сократить загрязнение окружающей среды хлором, опасным, в числе прочего, и для стратосферного озона. Стратосферный озон играет роль защитного экрана для всего живого на земле, препятствуя проникновению к поверхности Землю жесткого ультрафиолетового излучения.

Вредные и полезные свойства озона

Озон присутствует в двух слоях атмосферы. Тропосферный или приземный озон, находящийся в ближайшем к поверхности Земли слое атмосферы-в тропосфере – опасен. Он вреден и для человека, и для других живых организмов. Он губительно воздействует на деревья, посевы сельскохозяйственных культур. Кроме того, тропосферный озон-один из главных „ингредиентов“ городского смога. В тоже время стратосферный озон очень полезен. Разрушение образованного им озонового слоя (озонового экрана) приводит к тому, что поток ультрафиолетового излучения на земную поверхность увеличивается. Из-за этого возрастает количество заболеваний раком кожи (в том числе наиболее опасного его вида-меланомы), случаев катаракты. Воздействие жесткого ультрафиолета ослабляет иммунитет. Избыточное УФ-излучение может также стать проблемой для сельского хозяйства, так как посевы некоторых культур чрезвычайно чувствительны к ультрафиолету. В то же время следует помнить, что озон – ядовитый газ, и на уровне земной поверхности он является вредоносным загрязнителем. Летом из-за интенсивного солнечного излучения и жары в воздухе образуется особенно много вредоносного озона.

Взаимодействие озона и кислорода друг с другом. Сходства и различия.

Озон – аллотропная форма кислорода. Аллотропия – существование одного и того же химического элемента в виде двух и более простых веществ. В данном случае и озон (O3) и кислород (O 2) образованы химическим элементом О. Получение озона из кислорода Как правило, исходным веществом для получения озона выступает молекулярный кислород (O 2), а сам процесс описывается уравнением 3O 2 → 2O 3 . Эта реакция эндотермична и легко обратима. Для смещения равновесия в сторону целевого продукта (озона) применяются определенные меры. Один из способов получения озона – использование дугового разряда. Термическая диссоциация молекул резко возрастает с ростом температуры. Так, при Т=3000К - содержание атомарного кислорода составляет ~10 %. Температуру в несколько тысяч градусов можно получить при помощи дугового разряда. Однако при высокой температуре озон разлагается быстрее молекулярного кислорода. Чтобы предотвратить это, можно сместить равновесие, сначала нагрев газ, а затем резко его охладив. Озон в данном случае-промежуточный продукт при переходе смеси O 2 +O к молекулярному кислороду. Максимальная концентрация O 3 , которую можно получить при таком способе производства, достигает 1 %. Этого достаточно для большинства промышленных целей. Окислительные свойства озона Озон - мощный окислитель, намного более реакционноспособный по сравнению с двухатомным кислородом. Окисляет почти все металлы и многие неметаллы с образованием кислорода: 2 Cu 2+ (aq) + 2 H 3 O + (aq) + O 3(g) → 2 Cu 3+ (aq) + 3 H 2 O (1) + O 2(g) Озон может участвовать в реакциях горения, температура горения при этом выше, чем при горении в атмосфере двухатомного кислорода: 3 C 4 N 2 + 4 O 3 → 12 CO + 3 N 2 Стандартный потенциал озона равен 2.07 В, поэтому молекула озона неустойчива и самопроизвольно превращается в кислород с выделением тепла. При небольших концентрациях озон разлагается медленно, при высоких — со взрывом, т.к. его молекула обладает избыточной энергией. Нагревание и контакт озона с ничтожными количествами органических веществ (гидроокиси, перекиси, металлы переменной валентности, их окислы) резко ускоряет превращение. Напротив, присутствие небольших количеств азотной кислоты стабилизирует озон, а в сосудах из стекла и некоторых пластмасс или чистых металлов озон при -78 0 C. практически разлагается. Сродство озона к электрону равняется 2 эв. Таким сильным сродством обладает только фтор и его окислы. Озон окисляет все металлы (за исключением золота и платиновых), а также большинство других элементов. Хлор участвует в реакциях с озоном с образованием гипохлора ОCL. Реакции озона с атомарным водородом являются источником образования гидроксильных радикалов. Озон имеет максимум поглощения в УФ-области при длине волны 253,7 нм с молярным коэффициентом экстинции: E = 2,900 На основании этого УФ-фотометрическое определение концентрации озона вместе с йодо-метрическим титрованием принято за международные стандарты. Кислород, в отличие от озона, в реакцию с KI не вступает.

Растворимость озона и его стабильность в водных растворах

Скорость разложения озона в растворе в 5-8 раз выше, чем в газовой фазе. Растворимость озона в воде в 10 раз выше, чем кислорода. По данным разных авторов величина коэффициента растворимости озона в воде колеблется от 0,49 до 0,64 мл озона/ мл воды. В идеальных термодинамических условиях равновесие подчиняется закону Генри, т.е. концентрация насыщенного раствора газа пропорциональна его парциальному давлению. C S = B × d × Рi где: С S — концентрация насыщенного раствора в воде; d — масса озона; Pi — парциальное давление озона; B — коэффициент растворения; Выполнение закона Генри для озона как метастабильного газа условно. Распад озона в газовой фазе зависит от парциального давления. В водной среде имеют место процессы, выходящие за область действия закона Генри. Вместо него в идеальных условиях действует закон Gibs-Dukem-Margulesdu. В практике принято выражать растворимость озона в воде через соотношение концентрации озона в жидкой среде к концентрации озона в газовой фазе: Насыщение озоном зависит от температуры и качества воды, поскольку органические и неорганические примеси изменяют рН среды. При одинаковых условиях в водопроводной воде концентрация озона составляет 13 mg/l, в бидистиллированной воде — 20mg/l. Причиной этого является значительный распад озона из-за различных ионных примесей в питьевой воде.

Распад озона и период полураспада (т 1/2)

В водной среде распад озона сильно зависит от качества воды, температуры и рН среды. Повышение рН среды ускоряет распад озона и снижает при этом концентрацию озона в воде. Аналогичные процессы происходят при повышении температуры. Период полураспада озона в бидистиллированной воде составляет 10 часов, в деминерализованной воде — 80 минут; в дистиллированной воде — 120 минут. Известно, что разложение озона в воде является сложным процессом реакций радикальных цепей: Максимальное количество озона в водном образце наблюдается в течение 8-15 минут. Через 1 час в растворе отмечаются только свободные радикалы кислорода. Среди них важнейшим является гидроксильный радикал (ОН’) (Staehelin G., 1985), и это необходимо принимать во внимание при использовании озонированной воды в терапевтических целях. Поскольку в клинической практике находят применение озонированная вода и озонированный физиологический раствор, нами проведена оценка этих озонированных жидкостей в зависимости от концентраций, используемых в отечественной медицине. Основными методами анализа явились йодометрическое титрование и интенсивность хемилюминесценции с использованием прибора биохемилюминометра БХЛ-06 (производство Нижний Новгород) (Конторщикова К. Н., Перетягин С. П., Иванова И. П. 1995). Явление хемилюминесценции связано с реакциями рекомбинации свободных радикалов, образующихся при разложении озона в воде. При обработке 500 мл би- или дистиллированной воды барботированием озоно-кислородной газовой смесью с концентрацией озона в пределах 1000-1500 мкг/л и скоростью потока газа 1 л/мин в течение 20 минут хемилюминесценция выявляется в течение 160 минут. Причем в бидистиллированной воде интенсивность свечения существенно выше, чем в дистиллированной, что объясняется наличием примесей, гасящих свечение. Растворимость озона в растворах NaCl подчиняется закону Генри, т.е. уменьшается с увеличением концентрации солей. Физиологический раствор обрабатывали озоном с концентрацией 400, 800 и 1000 мкг/л в течение 15 минут. Общая интенсивность свечения (в mv) увеличивалась с ростом концентрации озона. Продолжительность свечения составляет 20 минут. Это объясняется более быстрой рекомбинацией свободных радикалов и отсюда гашением свечения за счет наличия в физиологическом растворе примесей. Несмотря на высокий окислительный потенциал, озон обладает высокой селективностью, которая обусловлена полярным строением молекулы. Мгновенно реагируют с озоном соединения, содержащие свободные двойные связи (-С=С-). В результате чувствительными к действию озона являются ненасыщенные жирные кислоты, ароматические аминокислоты и пептиды, прежде всего содержащие SH- группы. Согласно данным Криге (1953) (цит. По Vieban R. 1994), первичным продуктом взаимодействия молекулы озона с биоорганическими субстратами является 1-3 диполярная молекула. Эта реакция является основной при взаимодействии озона с органическими субстратами при рН < 7,4. Озонолиз проходит в доли секунды. В растворах скорость этой реакции равна 105 г/моль·с. В первом акте реакции образуется пи-комплекс олефинов с озоном. Он относительно стабилен при температуре 140 0 С и затем превращается в первичный озонид (молозонид) 1,2,3-триоксалан. Другое возможное направление реакции — образование эпоксидных соединений. Первичный озонид нестабилен и распадается с образованием карбоксильного соединения и карбонилоксида. В результате взаимодействия карбонилоксида с карбонильным соединением образуется биполярный ион, который затем превращается во вторичный озонид 1,2,3 — триоксалан. Последний при восстановлении распадается с образованием смеси 2-х карбонильных соединений, с дальнейшим образованием пероксида (I) и озонида (II). Озонирование ароматических соединений протекает с образованием полимерных озонидов. Присоединение озона нарушает ароматическое сопряжение в ядре и требует затрат энергии, поэтому скорость озонирования гомологов коррелирует с энергией сопряжения. Озонирование насушенных углеводородов связано с механизмом внедрения. Озонирование серо- и азотосодержащих органических соединений протекает следующим образом: Озониды обычно плохо растворимы в воде, но хорошо в органических растворителях. При нагревании, действии переходных металлов распадаются на радикалы. Количество озонидов в органическом соединении определяется йодным числом. Йодное число — масса йода в граммах, присоединяющееся к 100 г органического вещества. В норме для жирных кислот йодное число составляет 100-400, для твердых жиров 35-85, для жидких жиров — 150-200. Впервые озон, как антисептическое средство был опробован A. Wolff еще в 1915 во время первой мировой войны. Последующие годы постепенно накапливалась информация об успешном применении озона при лечении различных заболеваний. Однако длительное время использовались лишь методы озонотерапии, связанные с прямыми контактами озона с наружными поверхностями и различными полостями тела. Интерес к озонотерапии усиливался по мере накопления данных о биологическом действии озона на организм и появления сообщений из различных клиник мира об успешном использовании озона при лечении целого ряда заболеваний. История медицинского применения озона начинается с XIX века. Пионерами клинического применения озона были западные ученые Америки и Европы, в частности, C. J. Kenworthy, B. Lust, I. Aberhart, Е. Payer, E. A. Fisch, Н. Н. Wolff и другие. В России о лечебном применении озона было известно мало. Только в 60-70 годы в отечественной литературе появилось несколько работ по ингаляционной озонотерапии и по применению озона в лечении некоторых кожных заболеваний, а с 80-х годов в нашей стране этот метод стал интенсивно разрабатываться и получать более широкое распространение. Основы для фундаментальных разработок технологий озонотерапии были во многом определены работами Института химической физики АМН СССР. Книга «Озон и его реакции с органическими веществами» (С. Д. Разумовский, Г. Е. Зайков, Москва, 1974 г.) явилась отправной точкой для обоснования механизмов лечебного действия озона у многих разработчиков. В мире широко действует Международная озоновая ассоциация (IOA), которая провела 20 международных конгрессов, а с 1991 года в работе этих конгрессов принимают участие и наши врачи и ученые. Совершенно по-новому сегодня рассматриваются проблемы прикладного использования озона, а именно в медицине. В терапевтическом диапазоне концентраций и доз озон проявляет свойства мощного биорегулятора, средства, способного во многом усилить методы традиционной медицины, а зачастую выступать в качестве средства монотерапии. Применение медицинского озона представляет качественно новое решение актуальных проблем лечения многих заболеваний. Технологии озонотерапии используются в хирургии, акушерстве и гинекологии, стоматологии, неврологии, при терапевтической патологии, инфекционных болезнях, дерматологии и венерических болезнях и целом ряде других заболеваний. Для озонотерапии характерна простота исполнения, высокая эффективность, хорошая переносимость, практическое отсутствие побочных действий, она экономически выгодна. Лечебные свойства озона при заболеваниях различной этиологии основаны на его уникальной способности воздействовать на организм. Озон в терапевтических дозах действует как иммуномодулирующее, противовоспалительное, бактерицидное, противовирусное, фунгицидное, цитостатическое, антистрессовое и аналгезирующее средство. Его способность активно коррегировать нарушенный кислородный гомеостаз организма открывает большие перспективы для восстановительной медицины. Широкий спектр методических возможностей позволяет с большой эффективностью использовать лечебные свойства озона для местной и системной терапии. В последние десятилетия на передний план вышли методы, связанные с парентеральным (внутривенным, внутримышечным, внутрисуставным, подкожным) введением терапевтических доз озона, лечебный эффект которых связан, в основном, с активизацией различных систем жизнедеятельности организма. Кислородно-озоновая газовая смесь при высоких (4000 — 8000 мкг/л) концентрациях в ней озона в эффективна при обработке сильно инфицированных, плохо заживающих ран, гангрене, пролежней, ожогов, грибковых поражениях кожи и т.п. Озон в высоких концентрациях можно также использовать как кровоостанавливающее средство. Низкие концентрации озона стимулируют репарацию, способствуют эпителизации и заживлению. В лечении колитов, проктитов, свищей и ряда других заболеваний кишечника используют ректальное введение кислородно-озоновой газовой смеси. Озон, растворенный в физиологическом растворе, успешно применяют при перитоните для санации брюшной полости, а озонированную дистиллированную воду в челюстной хирургии и др. Для внутривенного введения используется озон, растворенный в физиологическом растворе или в крови больного. Пионерами Европейской школы было высказано постулирующее положение о том, что главной целью озонотерапии является: «Стимуляция и реактивация кислородного метаболизма без нарушения окислительно-восстановительных систем»,- это значит, что при расчете дозировок на сеанс или курс, озонотерапевтическое воздействие должно находиться в пределах, в которых ферментативно выравниваются радикальные кислородные метаболиты или избыточно полученный пероксид» (З. Риллинг, Р. Фибан 1996 в кн. Практика озонотерапии). В зарубежной медицинской практике для парентерального введения озона используются, в основном, большая и малая аутогемотерапии. При проведении большой аутогемотерапии, взятая у пациента кровь тщательно смешивается с определенным объемом кислородно-озоновой газовой смеси, и сразу же капельно вводится обратно в вену того же пациента. При малой аутогемотерапии озонированная кровь вводится внутримышечно. Терапевтическая доза озона в этом случае выдерживается за счет фиксированных объемов газа и концентрации озона в нем.

Научные достижения отечественных учёных стали регулярно докладываться на международных конгрессах и симпозиумах

  • 1991 г. – Куба, Гавана,
  • 1993 г. – США Сан-Франциско,
  • 1995 г. – ФранцияЛилль,
  • 1997 г. – Япония, Киото,
  • 1998 г. – Австрия, Зальцбург,
  • 1999г. – Германия,Баден-Баден,
  • 2001 г. – Англия, Лондон,
  • 2005 г. – Франция,Страсбург,
  • 2009 г. – Япония, Киото,
  • 2010 г. — Испания, Мадрид
  • 2011 г.Турция(Стамбул),Франция (Париж),Мексика(Канкун)
  • 2012г. – Испания, Мадрид
Научными центрами разработок озонотерапии в России стали клиники городов Москвы и Нижнего Новгорода. Очень скоро к ним присоединились учёные из Воронежа, Смоленска, Кирова, Новгорода, Екатеринбурга, Саранска, Волгограда, Ижевска и других городов. Распространению технологий озонотерапии безусловно способствовало регулярное проведение Всероссийских научно-практических конференций с международным участием, организуемых по инициативе Ассоциации российских озонотерапевтов с 1992 года в г. Н. Новгород, собирающие специалистов со всех уголков страны.

Всероссийские научно-практические конференции с Международным участием по озонотерапии

I – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1992 г ., Н.Новгород II – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1995 г ., Н.Новгород III – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 1998 г ., Н.Новгород IV – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 2000 г ., Н.Новгород V – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2003 г ., Н.Новгород VI – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2005 г ., Н.Новгород «I Конференция по озонотерапии Азиатско-Европейского союза озонотерапевтов и производителей медоборудования»– 2006 г ., Большое Болдино, Нижегородская область VII – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2007 г ., Н.Новгород У111«Озон, активные формы кислорода и методы интенсивной терапии в медицине» — 2009, г.Н.Новгород К 2000 г. Российская школа озонотерапии окончательно сформировала свой, отличающийся от Европейского, подход к применению озона как лечебного средства. Главные отличия — широкое использование физиологического раствора в качестве носителя озона, применение значительно более низких концентраций и доз озона, разработанные технологии экстракорпоральной обработки больших объёмов крови (озонированное искусственное кровообращение), индивидуальный выбор доз и концентраций озона при системной озонотерапии. В стремлении большинства российских врачей использовать наименьшие из эффективных концентраций озона нашел отражение основной принцип медицины — «не навреди». Безопасность и эффективность Российских методик озонотерапии многократно обоснована и доказана применительно к различным областям медицины. В результате многолетних фундаментально-клинических исследований нижегородскими учёными была «Установлена неизвестная закономерность формирования адаптационных механизмов организма млекопитающих при системном воздействии низкими терапевтическими дозами озона, заключающаяся в том, что пусковым механизмом является влияние озона на про- и антиоксидантный баланс организма и обусловленная умеренной интенсификацией свободно-радикальных реакций, что, в свою очередь, увеличивает активность ферментативного и неферментативного звеньев антиоксидантной системы защиты» (Конторщикова К. Н., Перетягин С. П.), на которую авторы получили открытие (Диплом № 309 от 16 мая 2006 г.). В работах отечественных учёных нашли развитие новые технологии и аспекты использования озона с лечебными целями:
  • Широкое использование в качестве носителя растворенного озона физиологического раствора (0,9% раствор NaCl)
  • Применение сравнительно малых концентраций и доз озона при системном воздействии (внутрисосудистое и внутрикишечное введение)
  • Внутрикостные вливания озонированных растворов
  • Внутрикоронарное введение озонированных кардиоплегических растворов
  • Тотальная экстракорпоральная обработка озоном больших объемов крови при искусственном кровообращении
  • Низкопоточная озонокислородная терапия
  • Внутрипортальное введение озонированных растворов
  • Применение озона на театре военных действий
  • Сопровождение системной озонотерапии методами биохимического контроля
В 2005-2007 гг. впервые в мировой практике в России озонотерапия получила официальный статус на государственном уровне в виде утверждения МЗ и социального развития РФ новых медицинских технологий использования озона в дерматологии и косметологии, акушерстве и гинекологии, травматологии. В настоящее время в нашей стране ведутся активные работы по распространению и внедрению метода озонотерапии. Анализ Российского и Европейского опыта озонотерапии позволяет сделать важные выводы :
  1. Озонотерапия — немедикаментозный метод лечебного воздействия, позволяющий получать положительные результаты при патологии различного генеза.
  2. Биологическое действие парентерально введенного озона проявляется на уровне низких концентраций и доз, что сопровождается клинически выраженными позитивными лечебными эффектами, имеющими четко выраженную дозозависимость.
  3. Опыт Российской и Европейской школ озонотерапии свидетельствует о том, что использование озона в качестве лечебного средства значительно повышает эффективность лекарственной терапии, позволяет в ряде случаев заменить или уменьшить фармакологическую нагрузку на пациента. На фоне озонотерапии восстанавливаются собственные кислородзависимые реакции и процессы больного организма.
  4. Технические возможности современных медицинских озонаторов, обладающих возможностями сверхточной дозировки, позволяют применять озон в диапазоне низких терапевтических концентраций аналогично общепринятым фармакологическим средствам.


Понравилась статья? Поделитесь с друзьями!