Параллельные прямые равны или нет. Параллельные прямые

Инструкция

Перед началом доказательства убедитесь, что прямые лежат в одной плоскости и их можно изобразить на ней. Наиболее простым способом доказательства является метод измерения линейкой. Для этого при помощи линейки измерьте расстояние между прямыми в нескольких местах как можно дальше друг от друга. Если расстояние остается неизменным, данные прямые параллельны. Но такой метод недостаточно точен, поэтому лучше используйте другие способы.

Проведите третью прямую, так, чтобы она пересекала обе параллельные прямые. Она образует с ними четыре внешних и четыре внутренних угла. Рассмотрите внутренние углы. Те, которые лежат через секущую прямую называются накрестлежащими. Те, что лежат по одной стороне называются односторонними. При помощи транспортира измерьте два внутренних накрестлежащих угла. Если они равны между собой, то прямые будут параллельными. Если остались сомнения, измерьте односторонние внутренние углы и сложите получившиеся значения. Прямые будут параллельными, если сумма односторонних внутренних углов будет равна 180º.

Если нет транспортира, возьмите угольник с углом 90º. С его помощью постройте перпендикуляр к одной из прямых. После этого продолжите этот перпендикуляр таким образом, чтобы он пересек другую прямую. С помощью того же угольника проверьте, под каким углом этот перпендикуляр пересекает ее. Если этот угол тоже равен 90º, то прямые параллельны между собой.

В том случае, если прямые заданы в декартовой системе координат, найдите их направляющие или нормальные векторы. Если эти векторы, соответственно, между собой коллинеарны, то прямые параллельны. Приведите уравнение прямых к общему виду и найдите координаты нормального вектора каждой из прямых. Его координаты равны коэффициентам А и В. В том случае, если отношение соответствующих координат нормальных векторов одинаково, они коллинеарны, а прямые параллельны.

Например, прямые заданы уравнениями 4х-2у+1=0 и х/1=(у-4)/2. Первое уравнение – общего вида, второе – канонического. Приведите второе уравнение к общему виду. Используйте для этого правило преобразования пропорций, в результате получите 2х=у-4. После приведения к общему виду получите 2х-у+4=0. Поскольку уравнение общего вида для любой прямой записывается Ах+Ву+С=0, то для первой прямой: А=4, В=2, а для второй прямой А=2, В=1. Для первой прямой координаты нормального вектора (4;2), а для второй – (2;1). Найдите отношение соответствующих координат нормальных векторов 4/2=2 и 2/1=2. Эти числа равны, а значит вектора коллинеарны. Поскольку вектора коллинеарны, прямые параллельны.

Определение 1

Прямую $с$ называют секущей для прямых $а$ и $b$, если она пересекает их в двух точках.

Рассмотрим две прямые $a$ и $b$ и секущую прямую $с$.

При их пересечении возникают углы, которые обозначим цифрами от $1$ до $8$.

У каждого из этих углов есть название, которое часто приходиться употреблять в математике:

  • пары углов $3$ и $5$, $4$ и $6$ называются накрест лежащими ;
  • пары углов $1$ и $5$, $4$ и $8$, $2$ и $6$, $3$ и $7$ называют соответственными ;
  • пары углов $4$ и $5$, $5$ и $6$ называют односторонними .

Признаки параллельности прямых

Теорема 1

Равенство пары накрест лежащих углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

Доказательство .

Пусть накрест лежащие углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$.

Покажем, что $a \parallel b$.

При условии, что углы $1$ и $2$ будут прямыми, получим, что прямые $а$ и $b$ будут перпендикулярными относительно прямой $АВ$, а значит – параллельными.

При условии, что углы $1$ и $2$ не являются прямыми, проведем из точки $О$ – середины отрезка $АВ$, перпендикуляр $ОН$ к прямой $а$.

На прямой $b$ отложим отрезок $BH_1=AH$ и проведем отрезок $OH_1$. Получаем два равных треугольника $ОНА$ и $ОH_1В$ по двум сторонам и углу между ними ($∠1=∠2$, $АО=ВО$, $BH_1=AH$), поэтому $∠3=∠4$ и $∠5=∠6$. Т.к. $∠3=∠4$, то точка $H_1$ лежит на луче $ОН$, таким образом точки $Н$, $О$ и $H_1$ принадлежат одной прямой. Т.к. $∠5=∠6$, то $∠6=90^{\circ}$. Таким образом, прямые $а$ и $b$ являются перпендикулярными относительно прямой $HH_1$ являются параллельными. Теорема доказана.

Теорема 2

Равенство пары соответственных углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

если $∠1=∠2$, то $a \parallel b$.

Доказательство .

Пусть соответственные углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$. Углы $2$ и $3$ являются вертикальными, поэтому $∠2=∠3$. Значит $∠1=∠3$. Т.к. углы $1$ и $3$ – накрест лежащие, то прямые $а$ и $b$ являются параллельными. Теорема доказана.

Теорема 3

Если сумма двух односторонних углов для прямых $a$ и $b$ и секущей $с$ равна $180^{\circ}C$, то прямые $a$ и $b$ – параллельны:

если $∠1+∠4=180^{\circ}$, то $a \parallel b$.

Доказательство .

Пусть односторонние углы для прямых $а$ и $b$ и секущей $с$ в сумме дают $180^{\circ}$, например

$∠1+∠4=180^{\circ}$.

Углы $3$ и $4$ являются смежными, поэтому

$∠3+∠4=180^{\circ}$.

Из полученных равенств видно, что накрест лежащие углы $∠1=∠3$, из чего следует, что прямые $а$ и $b$ являются параллельными.

Теорема доказана.

Из рассмотренных признаков вытекает параллельность прямых.

Примеры решения задач

Пример 1

Точка пересечения делит отрезки $АВ$ и $CD$ пополам. Доказать, что $AC \parallel BD$.

Дано : $AO=OB$, $CO=OD$.

Доказать : $AC \parallel BD$.

Доказательство .

Из условия задачи $AO=OB$, $CO=OD$ и равенства вертикальных углов $∠1=∠2$ согласно I-му признаку равенства треугольников следует, что $\bigtriangleup COA=\bigtriangleup DOB$. Таким образом, $∠3=∠4$.

Углы $3$ и $4$ – накрест лежащие при двух прямых $AC$ и $BD$ и секущей $AB$. Тогда согласно I-му признаку параллельности прямых $AC \parallel BD$. Утверждение доказано.

Пример 2

Дан угол $∠2=45^{\circ}$, а $∠7$ в $3$ раза больше данного угла. Доказать, что $a \parallel b$.

Дано : $∠2=45^{\circ}$, $∠7=3∠2$.

Доказать : $a \parallel b$.

Доказательство :

  1. Найдем значение угла $7$:

$∠7=3 \cdot 45^{\circ}=135^{\circ}$.

  1. Вертикальные углы $∠5=∠7=135^{\circ}$, $∠2=∠4=45^{\circ}$.
  2. Найдем сумму внутренних углов $∠5+∠4=135^{\circ}+45^{\circ}=180^{\circ}$.

Согласно III-му признаку параллельности прямых $a \parallel b$. Утверждение доказано.

Пример 3

Дано : $\bigtriangleup ABC=\bigtriangleup ADB$.

Доказать : $AC \parallel BD$, $AD \parallel BC$.

Доказательство :

У рассматриваемых рисунков сторона $АВ$ – общая.

Т.к. треугольники $АВС$ и $ADB$ равны, то $AD=CB$, $AC=BD$, а также соответствующие углы равны $∠1=∠2$, $∠3=∠4$, $∠5=∠6$.

Пара углов $3$ и $4$ – накрест лежащие для прямых $АС$ и $BD$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AC \parallel BD$.

Пара углов $5$ и $6$ – накрест лежащие для прямых $AD$ и $BC$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AD \parallel BC$.

Класс: 2

Цель урока:

  • сформировать понятие о параллельности 2-х прямых, рассмотреть первый признак параллельности прямых;
  • выработать умение применять признак при решении задач.

Задачи:

  1. Образовательные: повторение и закрепление изученного материала, формирование понятия о параллельности 2-х прямых, доказательство 1-го признака параллельности 2-х прямых.
  2. Воспитательные: воспитывать умение аккуратно вести записи в тетради и соблюдать правила построения чертежей.
  3. Развивающие задачи: развитие логического мышления, памяти, внимания.

Оборудование урока:

  • мультимедийный проектор;
  • экран, презентации;
  • чертёжные инструменты.

Ход урока

I. Организационный момент.

Приветствие, проверка готовности к уроку.

II. Подготовка к активной УПД.

Этап 1.

На первом уроке геометрии мы рассматривали взаимное расположение 2-х прямых на плоскости.

Вопрос. Сколько общих точек могут иметь две прямые?
Ответ. Две прямые могут иметь либо одну общую точку, либо не имеют не одной общей точки.

Вопрос. Как будут расположены относительно друг друга 2-е прямые, если они имеют одну общую точку?
Ответ. Если прямые имеют одну общую точку, то они пересекаются

Вопрос. Как расположены 2-е прямые относительно друг друга, если они не имеют общих точек?
Ответ. То в этом случае данные прямые не пересекаются.

Этап 2.

На прошлом уроке Вы получили задание сделать презентацию, где мы встречаемся с непересекающимися прямыми в нашей жизни и в природе. Сейчас мы посмотрим эти презентации и выберем из них лучшие. (В жюри вошли учащиеся, которым в силу низкого интеллекта сложно создать свои презентации.)

Просмотр презентаций, выполненных учащимися: «Параллельность прямых в природе и жизни», и выбор из них лучших.

III. Активная УПД (объяснение нового материала).

Этап 1.

Рисунок 1

Определение. Две прямые на плоскости, которые не пересекаются, называются параллельными.

На данной таблице изображены различные случаи расположения 2-х параллельных прямых на плоскости.

Рассмотрим, какие отрезки будут параллельными.

Рисунок 2

1) Если прямая a параллельна b, то и отрезки AB и CD параллельны.

2) Отрезок может быть параллелен прямой. Так отрезок MN параллелен прямой a.

Рисунок 3

3) Отрезок AB параллелен лучу h. Луч h параллелен лучу k.

4) Если прямая a перпендикулярна прямой c, и прямая b перпендикулярна прямой c, то прямые a и b параллельны.

Этап 2.

Углы, образованные двумя параллельными прямыми и секущей.

Рисунок 4

Две параллельные прямые пересекаются третьей прямой в двух точках. При этом образуются восемь углов, обозначенных на рисунке числами.

Некоторые пары этих углов имеют специальные названия (см. рисунок 4).

Существует три признака, параллельности двух прямых , связанных с этими углами. На этом уроке мы рассмотрим первый признак .

Этап 3.

Повторим материал, необходимый для доказательства этого признака.

Рисунок 5

Вопрос. Как называются углы, изображённые на рисунке 5?
Ответ. Углы AOC и COB называются смежными.

Вопрос. Какие углы называются смежными? Дайте определение.
Ответ. Два угла называются смежными, если у них одна сторона является общей, а две другие являются продолжениями друг друга.

Вопрос. Каким свойством обладают смежные углы?
Ответ. Смежные углы в сумме дают 180 градусов.
AOC + COB = 180°

Вопрос. Как называются углы 1 и 2?
Ответ. Углы 1 и 2 называются вертикальными.

Вопрос. Какими свойствами обладают вертикальные углы?
Ответ. Вертикальные углы равны между собой.

Этап 4.

Доказательство первого признака параллельности.

Теорема. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Рисунок 6

Дано: а и b – прямые
AB – секущая
1 = 2
Доказать: a//b.

1-ый случай.

Рисунок 7

Если 1 и 2 прямые, то a перпендикулярен AB, и b перпендикулярен AB, то а//b.

2-ой случай.

Рисунок 8

Рассмотрим случай, когда 1 и 2 не прямые Разделим отрезок AB пополам точкой O.

Вопрос. Какими будут отрезки AO и OB по длине?
Ответ. Отрезки AO и OB равны по длине.

1) Из точки O проведём перпендикуляр к прямой а, ОН перпендикулярен a.

Вопрос. Каким будет угол 3?
Ответ. Угол 3 будет прямым.

2) От точки А на прямой b отложим циркулем отрезок АН 1 = ВН.

3) Проведём отрезок ОН 1 .

Вопрос. Какие треугольники образовались в результате доказательства?
Ответ.
Треугольник ОНВ и треугольник ОН 1 А.

Докажем, что они равны.

Вопрос. Какие углы равны по условию теоремы?
Ответ. Угол 1 равен углу 2.

Вопрос. Какие стороны равны по построению.
Ответ. АО = ОВ и АН 1 = ВН

Вопрос. По какому признаку равны треугольники?
Ответ. Треугольники равны по двум сторонам и углу между ними (первый признак равенства треугольников).

Вопрос. Каким свойством обладают равные треугольники?
Ответ. В равных треугольниках против равных сторон лежат равные углы.

Вопрос. Какие углы будут равны?
Ответ. 5 = 6, 3 = 4.

Вопрос. Как называются 5 и 6?
Ответ. Эти углы называются вертикальными.

Из этого следует, что точки: Н 1 , О, Н лежат на одной прямой.
Т.к. 3 – прямой, а 3 = 4, то 4 – прямой.

Вопрос. Как расположены прямые а и b по отношению к прямой НН 1 , если углы 3 и 4 прямые?
Ответ. Прямые а и b перпендикулярны HH 1 .

Вопрос. Что мы можем сказать о двух перпендикулярах к одной прямой?
Ответ. Два перпендикуляра одной прямой параллельны.

Итак, а//b. Теорема доказана.

Сейчас я повторю все доказательство сначала, а Вы внимательно меня послушаете постараетесь все понять запомнить.

IV. Закрепление нового материала.

Работа по группам с разным уровнем развития интеллекта, с последующей проверкой на экране и на доске. У доски работают 3 ученика (по одному из каждой группы).

№1 (для учащихся со сниженным уровнем интеллектуального развития).

Дано: а и b прямые
с – секущая
1 = 37°
7 = 143°
Доказать: а//b.

Решение.

7 = 6 (вертикальные) 6 = 143°
1 + 4 = 180° (смежные) 4 =180° – 37° = 143°
4 = 6 = 143°, а они накрест лежащие а//b 5 = 48°, 3 и 5 – накрест лежащие углы, они равны a//b.

Рисунок 11

V. Итог урока.

Итог урока проводится с использованием рисунков 1-8.

Производится оценка деятельности учащихся на уроке (каждый ученик получает соответствующий смайлик).

Домашнее задание: учить – стр. 52-53; решить №186 (б, в).


Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1) , координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых. Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых. Таким образом, прямые параллельны.

Ответ:

Заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Теорема.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и - направляющие векторы прямых a заданных прямых имеют координаты и . Так как , то . Таким образом, выполнено необходимое и достаточное условие параллельности двух прямых в пространстве. Этим доказана параллельность прямых и .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Сначала рассмотрим разницу между понятиями признак, свойство и аксиома.

Определение 1

Признаком называют некий факт, по которому можно определить истинность суждения об интересующем объекте.

Пример 1

Прямые являются параллельными, если их секущая образует равные накрест лежащие углы.

Определение 2

Свойство формулируется в том случае, когда есть уверенность в справедливости суждения.

Пример 2

При параллельных прямых их секущая образует равные накрест лежащие углы.

Определение 3

Аксиомой называют такое утверждение, которое не требует доказательства и принимается как истина без него.

Каждая наука имеет аксиомы, на которых строятся последующие суждения и их доказательства.

Аксиома параллельных прямых

Иногда аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Теорема 1

Через точку, которая не лежит на заданной прямой, на плоскости можно провести лишь одну прямую, которая будет параллельной заданной.

Аксиома доказательства не требует.

Свойства параллельных прямых

Теорема 2

Свойство1. Свойство транзитивности параллельности прямых:

Когда одна из двух параллельных прямых является параллельной третьей, то и вторая прямая будет ей параллельна.

Свойства требуют доказательств.

Доказательство:

Пусть имеются две параллельные прямые $a$ и $b$. Прямая $с$ параллельна прямой $а$. Проверим, будет ли в таком случае прямая $с$ параллельна и прямой $b$.

Для доказательства будем пользоваться противоположным суждением:

Представим, что возможен такой вариант, при котором прямая $c$ параллельна одной из прямых, например, прямой $a$, а другую – прямую $b$ – пересекает в некоторой точке $K$.

Получаем противоречие согласно аксиоме параллельных прямых. Получается ситуация, при которой в одной точке пересекаются две прямые, к тому же параллельные одной и той же прямой $a$. Такая ситуация невозможна, следовательно, прямые $b$ и $c$ пересекаться не могут.

Таким образом, доказано, что если одна из двух параллельных прямых является параллельной третьей прямой, то и вторая прямая параллельна третьей прямой.

Теорема 3

Свойство 2.

Если одна из двух параллельных прямых пересекается третьей, то ею будет пересекаться и вторая прямая.

Доказательство:

Пусть имеются две параллельные прямые $а$ и $b$. Также пусть имеется некоторая прямая $с$, которая пересекает одну из параллельных прямых, например, прямую $а$. Необходимо показать, что прямая $с$ пересекает и вторую прямую – прямую $b$.

Построим доказательство методом от противного.

Представим, что прямая $с$ не пересекает прямую $b$. Тогда через точку $К$ проходят две прямые $а$ и $с$, которые не пересекают прямую $b$, т. е. являются параллельными ей. Но такая ситуация противоречит аксиоме параллельных прямых. Значит, предположение было неверным и прямая $с$ пересечет прямую $b$.

Теорема доказана.

Свойства углов , которые образуют две параллельные прямые и секущая: накрест лежащие углы равны, соответственные углы равны, * сумма односторонних углов равна $180^{\circ}$.

Пример 3

Даны две параллельные прямые и третья прямая, перпендикулярная одно из них. Доказать, что эта прямая перпендикулярна и другой из параллельных прямых.

Доказательство .

Пусть имеем прямые $а \parallel b$ и $с \perp а$.

Поскольку прямая $с$ пересекает прямую $а$, то согласно свойству параллельных прямых она будет пересекать и прямую $b$.

Секущая $с$, пересекая параллельные прямые $а$ и $b$, образует с ними равные внутренние накрест лежащие углы.

Т.к. $с \perp а$, то углы будут по $90^{\circ}$.

Следовательно, $с \perp b$.

Доказательство завершено.



Понравилась статья? Поделитесь с друзьями!