Площадь боковой прямой призмы формула. Защита персональной информации

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Это самые распространенные объемные фигуры среди остальных подобных, которые встречаются в быту и природе. Изучением их свойств занимается стереометрия, или пространственная геометрия. В данной статье раскроем вопрос о том, как можно найти площадь боковой поверхности правильной треугольной призмы, а также четырехугольной и шестиугольной.

Что собой представляет призма?

Перед тем как рассчитывать площадь боковой поверхности правильной треугольной призмы и других видов этой фигуры, следует разобраться, что они собой представляют. Затем научимся определять интересующие величины.

Призмой, с точки зрения геометрии, называется объемное тело, которое ограничено двумя произвольными одинаковыми многоугольниками и n параллелограммами, где n - это число сторон одного многоугольника. Нарисовать такую фигуру легко, для этого следует изобразить какой-нибудь многоугольник. Потом провести из каждой его вершины отрезок, который будет равен по длине и параллелен всем остальным. Затем требуется соединить концы этих линий между собой так, чтобы получился еще один многоугольник, равный исходному.

Выше видно, что фигура ограничена двумя пятиугольниками (они называются нижним и верхним основаниями фигуры) и пятью параллелограммами, которые на рисунке соответствуют прямоугольникам.

Все призмы отличаются друг от друга двумя главными параметрами:

  • типом многоугольника, лежащего в основании фигуры;
  • углами между параллелограммами и основаниями.

Количество сторон прямоугольника дает название призме. Отсюда получаем выше упомянутые треугольную, шестиугольную и четырехугольную фигуры.

Также они различаются по величине наклона. Что касается отмеченных углов, то если они равны 90 o , тогда такую призму называют прямой, или прямоугольной (угол наклона равен нулю). Если некоторые из углов прямыми не являются, то фигура зовется косоугольной. Различие между ними видно с первого взгляда. Рисунок ниже демонстрирует эти разновидности.

Как видно, высота h совпадает с длиной ее бокового ребра. В случае косоугольной этот параметр всегда меньше.

Какая призма называется правильной?

Поскольку мы должны ответить на вопрос о том, как найти площадь боковой поверхности правильной призмы (треугольной, четырехугольной и так далее), то нужно дать определение этому типу объемной фигуры. Разберем материал подробнее.

Правильная призма - это прямоугольная фигура, у которой правильный многоугольник образует идентичные основания. Этой фигурой может быть треугольник равносторонний, квадрат и другие. Любой n-угольник, все длины сторон и углы которого одинаковые, будет правильным.

Ряд таких призм показан схематически на рисунке ниже.

Боковая поверхность призмы

Как было сказано в эта фигура состоит из n + 2 плоскостей, которые, пересекаясь, образуют n + 2 грани. Две из них принадлежат основаниям, остальные образованы параллелограммами. Площадь всей поверхности состоит из суммы площадей указанных граней. Если в нее не включать значения двух оснований, тогда мы получаем ответ на вопрос о том, как найти площадь боковой поверхности призмы. Так, можно определить ее значение и оснований отдельно друг от друга.

Ниже приводится для которой боковая поверхность образована тремя четырехугольниками.

Рассмотрим процесс вычислений далее. Очевидно, что площадь боковой поверхности призмы равна сумме n площадей соответствующих параллелограммов. Здесь n - это число сторон многоугольника, образующего основание фигуры. Площадь каждого параллелограмма можно найти, если умножить длину его стороны на опущенную на нее высоту. Это касаемо общего случая.

Если изучаемая призма является прямой, тогда процедура определения площади ее боковой поверхности S b значительно облегчается, поскольку такая поверхность состоит из прямоугольников. В этом случае можно воспользоваться следующей формулой:

Где h - высоты фигуры, P o - периметр ее основания

Правильная призма и ее боковая поверхность

Приведенная в пункте выше формула в случае такой фигуры принимает вполне конкретный вид. Поскольку периметр n-угольника равен произведению числа его сторон на длину одной, то получается следующая формула:

Где a - длина стороны соответствующего n-угольника.

Площадь боковой поверхности четырехугольной и шестиугольной

Воспользуемся формулой выше, чтобы определить необходимые значения для отмеченных трех типов фигур. Расчеты будут выглядеть следующим образом.

Для треугольной формула примет вид:

Например, сторона треугольника равна 10 см, а высота фигуры - 7 см, тогда:

S 3 b = 3*10*7 = 210 см 2

В случае четырехугольной призмы искомое выражение принимает форму:

Если взять те же значения длин, что и в предыдущем примере, тогда получаем:

S 4 b = 4*10*7 = 280 см 2

Площадь боковой поверхности шестиугольной призмы рассчитывается по формуле:

Подставляя те же числа, что и в предыдущих случаях, имеем:

S 6 b = 6*10*7 = 420 см 2

Заметим, что в случае правильной призмы любого типа ее боковая поверхность образована одинаковыми прямоугольниками. В примерах выше площадь каждого из них составляла a*h = 70 см 2 .

Расчет для косоугольной призмы

Определение значения площади боковой поверхности для данной фигуры выполнить несколько сложнее, чем для прямоугольной. Тем не менее приведенная выше формула остается той же самой, только вместо периметра основания следует взять периметр перпендикулярного среза, а вместо высоты - длину бокового ребра.

Рисунок выше демонстрирует четырехугольную косоугольную призму. Заштрихованный параллелограмм - это и есть тот перпендикулярный срез, периметр которого P sr необходимо рассчитать. Длина бокового ребра на рисунке обозначена буквой C. Тогда получаем формулу:

Периметр среза можно найти, если известны углы параллелограммов, образующих боковую поверхность.

В пространственной геометрии при решении задач с призмами часто возникает проблема с расчетом площади сторон или граней, которые образуют эти объемные фигуры. Данная статья посвящена вопросу определения площади основания призмы и ее боковой поверхности.

Фигура призма

Перед тем как переходить к рассмотрению формул для площади основания и поверхности призмы того или иного вида, следует разобраться, о какой фигуре идет речь.

Призма в геометрии представляет собой пространственную фигуру, состоящую из двух параллельных многоугольников, которые равны между собой, и нескольких четырехугольников или параллелограммов. Количество последних всегда равно числу вершин одного многоугольника. Например, если фигура образована двумя параллельными n-угольниками, тогда количество параллелограммов будет равно n.

Соединяющие n-угольники параллелограммы называются боковыми сторонами призмы, а их суммарная площадь - это площадь боковой поверхности фигуры. Сами же n-угольники называются основаниями.

Выше рисунок демонстрирует пример призмы, изготовленной из бумаги. Желтый прямоугольник является ее верхним основанием. На втором таком же основании фигура стоит. Красный и зеленый прямоугольники - это боковые грани.

Какие призмы бывают?

Существует несколько типов призм. Все они отличаются друг от друга всего двумя параметрами:

  • видом n-угольника, образующего основания;
  • углом между n-угольником и боковыми гранями.

Например, если основания являются треугольниками, тогда и призма называется треугольной, если четырехугольниками, как на предыдущем рисунке, тогда фигура называется четырехугольной призмой, и так далее. Кроме этого, n-угольник может быть выпуклым или вогнутым, тогда к названию призмы тоже добавляется это свойство.

Угол между боковыми гранями и основанием может быть либо прямой, либо острый или тупой. В первом случае говорят о прямоугольной призме, во втором - о наклонной или косоугольной.

В особый тип фигур выделяют правильные призмы. Они обладают самой высокой симметрией среди остальных призм. Правильной она будет только в том случае, если является прямоугольной и ее основание - это правильный n-угольник. Рисунок ниже демонстрирует набор правильных призм, у которых число сторон n-угольника изменяется от трех до восьми.

Поверхность призмы

Под поверхностью рассматриваемой фигуры произвольного типа понимают совокупность всех точек, которые принадлежат граням призмы. Поверхность призмы удобно изучать, рассматривая ее развертку. Ниже дан пример такой развертки для треугольной призмы.

Видно, что вся поверхность образована двумя треугольниками и тремя прямоугольниками.

В случае призмы общего типа ее поверхность будет состоять из двух n-угольных оснований и n четырехугольников.

Рассмотрим подробнее вопрос вычисления площади поверхности призм разных типов.

Площадь основания призмы правильной

Пожалуй, самой простой задачей при работе с призмами является проблема нахождения площади основания правильной фигуры. Поскольку оно образовано n-угольником, у которого все углы и длины сторон являются одинаковыми, то всегда можно разделить его на одинаковые треугольники, у которых известны углы и стороны. Суммарная площадь треугольников будет площадью n-угольника.

Еще один способ определить часть площади поверхности призмы (основание) заключается в использовании известной формулы. Она имеет следующий вид:

S n = n/4*a 2 *ctg(pi/n)

То есть площадь S n n-угольника однозначно определяется исходя из знания длины его стороны a. Некоторую сложность при расчете по формуле может составить вычисление котангенса, особенно когда n>4 (для n≤4 значения котангенса - это табличные данные). Для определения этой тригонометрической функции рекомендуется воспользоваться калькулятором.

При постановке геометрической задачи следует быть внимательным, поскольку может потребоваться найти площадь оснований призмы. Тогда полученное по формуле значение следует умножить на два.

Площадь основания треугольной призмы

На примере треугольной призмы рассмотрим, как можно найти площадь основания этой фигуры.

Сначала рассмотрим простой случай - правильную призму. Площадь основания вычисляется по приведенной в пункте выше формуле, нужно подставить в нее n=3. Получаем:

S 3 = 3/4*a 2 *ctg(pi/3) = 3/4*a 2 *1/√3 = √3/4*a 2

Остается подставить в выражение конкретные значения длины стороны a равностороннего треугольника, чтобы получить площадь одного основания.

Теперь предположим, что имеется призма, основание которой представляет собой произвольный треугольник. Известны две его стороны a и b и угол между ними α. Эта фигура изображена ниже.

Как в этом случае найти площадь основания призмы треугольной? Необходимо вспомнить, что площадь любого треугольника равна половине произведения стороны и высоты, опущенной на эту сторону. На рисунке проведена высота h к стороне b. Длина h соответствует произведению синуса угла альфа на длину стороны a. Тогда площадь всего треугольника равна:

S = 1/2*b*h = 1/2*b*a*sin(α)

Это и есть площадь основания изображенной треугольной призмы.

Боковая поверхность

Мы разобрали, как найти площадь основания призмы. Боковая поверхность этой фигуры всегда состоит из параллелограммов. Для прямых призм параллелограммы становятся прямоугольниками, поэтому суммарную их площадь вычислить легко:

S = ∑ i=1 n (a i *b)

Здесь b - длина бокового ребра, a i - длина стороны i-го прямоугольника, которая совпадает с длиной стороны n-угольника. В случае правильной n-угольной призмы получаем простое выражение:

Если призма является наклонной, тогда для определения площади ее боковой поверхности следует сделать перпендикулярный срез, рассчитать его периметр P sr и умножить его на длину бокового ребра.

Рисунок выше показывает, как следует делать этот срез для наклонной пятиугольной призмы.

Площадь боковой поверхности призмы. Здравствуйте! В этой публикации мы с вами разберём группу задач по стереометрии. Рассмотрим комбинацию тел – призмы и цилиндра. На данный момент эта статья завершает всю серию статей связанных с рассмотрением типов заданий по стереометрии.

Если в банке заданий будут появляться новые, то, конечно же, будут и дополнения на блоге в будущем. Но и того что уже есть вполне достаточно, чтобы вы могли научиться решать все задачи с кратким ответом в составе экзамена. Материала хватит на годы вперёд (программа по математике статична).

Представленные задания связаны с вычислением площади призмы. Отмечу, что ниже рассматривается прямая призма (и соответственно прямой цилиндр).

Без знания всяких формул, мы понимаем, что боковая поверхность призмы это все её боковые грани. У прямой призмы боковые грани это прямоугольники.

Площадь боковой поверхности такой призмы равна сумме площадей всех её боковых граней (то есть прямоугольников). Если речь идёт о правильной призме, в которую вписан цилиндр, то понятно, что все грани этой призмы являются РАВНЫМИ прямоугольниками.

Формально площадь боковой поверхности правильной призмы можно отразить так:


27064. Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Боковая поверхность данной призмы состоит из четырёх равных по площади прямоугольников. Высота грани равна 1, ребро основания призмы равно 2 (это два радиуса цилиндра), следовательно площадь боковой грани равна:

Площадь боковой поверхности:

73023. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √0,12, а высота равна 3.

Площадь боковой поверхности данной призмы равна сумме площадей трёх боковых граней (прямоугольников). Для нахождения площади боковой грани необходимо знать её высоту и длину ребра основания. Высота равна трём. Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный треугольник в который вписана окружность с радиусом √0,12. Из прямоугольного треугольника АОС можем найти АС. А затем и AD (AD=2АС). По определению тангенса:

Значит AD=2АС=1,2.Таким образом, площадь боковой поверхности равна:

27066. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен √75, а высота равна 1.

Искомая площадь равна сумме площадей всех боковых граней. У правильной шестиугольной призмы боковые грани это равные прямоугольники.

Для нахождения площади грани необходимо знать её высоту и длину ребра основания. Высота известна, она равна 1.

Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный шестиугольник, в который вписана окружность радиуса √75.

Рассмотрим прямоугольный треугольник АВО. Нам известен катет ОВ (это радиус цилиндра). ещё можем определить угол АОВ, он равен 300 (треугольник АОС равносторонний, ОВ –биссектриса).

Воспользуемся определением тангенса в прямоугольном треугольнике:

АС=2АВ, так как ОВ является медианой, то есть делит АС пополам, значит АС=10.

Таким образом, площадь боковой грани равна 1∙10=10 и площадь боковой поверхности:

76485. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 8√3, а высота равна 6.

Площадь боковой поверхности указанной призмы из трёх равных по площади граней (прямоугольников). Чтобы найти площадь требуется знать длину ребра основания призмы (высота нам известна). Если рассматривать проекцию (вид сверху), то имеем правильный треугольник вписанный в окружность. Сторона этого треугольника выражается через радиус как:

Подробности этой взаимосвязи . Значит она будет равна

Тогда площадь боковой грани равна: 24∙6=144. А искомая площадь:

245354. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.



Понравилась статья? Поделитесь с друзьями!