Свойства неравенств с одной переменной. Линейные неравенства, примеры, решения

УРОК: «РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ»

Предмет: Алгебра
Тема: Решение неравенств с одной переменной

Цели урока:

Образовательные:

организовать деятельность учащихся по восприятию, осмыслению и первичному закреплению таких понятий как решение неравенств с одной переменной, равносильное неравенство, решить неравенство; проверить умение учащихся применять полученные знания и навыки на прошлых уроках для решения поставленных задач на данном уроке.

Воспитательные:

развивать интерес к математике путем использования в практике ИКТ; воспитывать познавательные потребности учащихся; формировать такие личные качества как ответственность, настойчивость в достижении цели, самостоятельность.

Ход урока

I. Организационный момент

II. Проверка домашнего задания (Актуализация опорных знаний)

1. Используя координатную прямую, найдите пересечение промежутков: а) (1;8) и (5;10); б) (-4;4) и [-6;6]; в) (5;+∞) и [-∞;4]

Ответ: а) (1;5); б) (-4;4); в) пересечений нет

2. Запишите промежутки, изображенные на рисунке:

2)

3)

Ответ: 1) (2; 6); б) (-1;7]; в) .

Пример3 , решим неравенство 3(х-1)<-4+3х.

Раскроем скобки в левой части неравенства: 3х-3<-4+3х.

Перенесем с противоположными знаками слагаемое 3х из правой части в левую, а слагаемое -3 из левой части в правую и приведем подобные члены: 3х-3х<-4+3,

Как видим, данное числовое неравенство не является верным ни при каких значениях х. Значит, наше неравенство с одной переменной не имеет решения.

Тренажер

Решите неравенство и отметьте его решение:

f) 7x-2,4<0,4;

h) 6b-1<12-7b;

i) 16x-44>x+1;

k) 5(x-1)+7≤1-3(x+2);

l) 6y-(y+8)-3(2-y)>2.

Ответ: a) (-8; +∞); b) [-1,5; +∞); c) (5; +∞); d) (-∞; 3); e) (-∞; -0,25); f) (-∞; 0,4); g) [-5; +∞); h) (-∞; 1); i) (3; +∞); j) ; l) (2; +∞).

IV. Выводы

Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство. Решить неравенство – значит найти все его решения или доказать, что решений нет. Неравенства, имеющие одни и те же решения, называются равносильными. Неравенства, не имеющие решений, также считаются равносильными. Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный. В остальных случаях он остается прежний.

V. Итоговое тестирование

1) Решением неравенства с одной переменной называется…

а) значение переменной, которое обращает его в верное неравенство;

б) значение переменной, которое обращает его в верное числовое

неравенство;

в) переменная, которая обращает его в верное числовое неравенство.

2) Какие из чисел являются решением неравенства 8+5у>21+6у:

а) 2 и 5 б) -1 и 8 в) -12 и 1 г) -15 и -30 ?

3) Укажите множество решений неравенства 4(х+1)>20:

а) (- ∞; 4); б) (4; +∞); в) " title="Rendered by QuickLaTeX.com">

можно изобразить так:

1) Неизвестные переносим в одну сторону, известные — в другую с противоположными знаками:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

2) Если число перед иксом не равно нулю (a-c≠0), обе части неравенства делим на a-c.

Если a-c>0, знак неравенства не изменяется:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Если a-c<0, знак неравенства изменяется на противоположный:

Title="Rendered by QuickLaTeX.com">

Если a-c=0, то это — частный случай. Частные случаи решения линейных неравенств рассмотрим отдельно.

Title="Rendered by QuickLaTeX.com">

Это — линейное неравенство. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Обе части неравенства делим на число, стоящее перед иксом. Так как -2<0, знак неравенства изменяется на противоположный:

Title="Rendered by QuickLaTeX.com">

Так как , 10 на числовой прямой отмечаем выколотой точкой. , на минус бесконечность.

Так как неравенство строгое и точка выколотая, 10 записываем в ответ с круглой скобкой.

Это — линейное неравенство. Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

Обе части неравенства делим на число, стоящее перед иксом. Так как 10>

Title="Rendered by QuickLaTeX.com">

Так как неравенство нестрогое, -2,3 на числовой прямой отмечаем закрашенной точкой. Штриховка от -2,3 идёт вправо, на плюс бесконечность.

Так как неравенство строгое и точка закрашенная, -2,3 в ответ записываем с квадратной скобкой.

Это — линейное неравенство. Неизвестные — в одну сторону, известные — в другую с противоположным знаком.

Обе части неравенства делим на число, стоящее перед иксом. Поскольку 3>0, знак неравенства при этом не изменяется:

Title="Rendered by QuickLaTeX.com">

Так как неравенство строгое, x=2/3 на числовой прямой изображаем выколотой точкой.

Так как неравенство строгое и точка выколотая, в ответ 2/3 записываем с круглой скобкой.

х и областью определения Х . Тогда неравенство вида f (x ) > g (x ) или f (x ) < g (x ) называется неравенством с одной переменной . Множество Х называется областью его определения.

Значение переменной х из множества Х , при котором неравенство обращается в истинное числовое неравенство, называется его решением. Решить неравенство - это значит найти множество его решений.


В основе решения неравенств с одной переменной лежит понятие равносильности.


Два неравенства называются равносильными, если их множества решений равны.


Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.


Теорема 1. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x ) - выражение, определенное на том же множестве. Тогда неравенства f (x ) > g (x ) и f (x ) + h (x ) > g (x ) + h (x ) равносильны на множестве Х .


Из этой теоремы вытекают следствия, которые часто используют при решении неравенств:


1) Если к обеим частям неравенства f (x ) > g (x ) прибавить одно и то же число d , то получим неравенство f (x ) + d > g (x ) + d , равносильное исходному.


2) Если какое-либо слагаемое ( или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.


Теорема 2. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x х из множества Х выражение h (x ) принимает положительные значения. Тогда неравенства f (x ) > g (x ) и f (x ) × h (x ) > g (x ) × h (x ) равносильны на множествеХ .


Из этой теоремы вытекает следствие: если обе части неравенства f (x ) > g (x ) умножить на одно и то же положительное число d , то получим неравенство f (x ) × d > g (x ) × d , равносильное данному.


Теорема 3. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x ) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h (x ) принимает отрицательные значения. Тогда неравенства f (x ) > g (x ) и f (x ) × h (x ) < g (x ) × h (x ) равносильны на множестве Х .


Из этой теоремы вытекает следствие: если обе части неравенства f (x ) > g (x ) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f (x ) × d < g (x ) × d , равносильное данному.


Задача. Является ли число х = 5 решением неравенства 2х + 7 > 10 - х, х Î R ? Найти множество решений этого неравенства.


Решение. Число х = 5 является решением неравенства
2х + 7 > 10 - х , так как 2×5 + 7 > 10 - 5 - истинное числовое неравенство. А множество его решений - это промежуток (1; ¥), который находят, выполняя преобразование неравенства 2х + 7 > 10 - х Þ 3х > 3 Þ х > 1.


Задача. Решить неравенство 5х - 5 < 2х + 16 и обосновать все преобразования, которые будут выполняться в процессе решения.


Решение.



















Преобразования



Обоснование преобразований



1. Перенесем выражение 2х в левую часть, а число -5 в правую, поменяв их знаки на противоположные: 5х - 2х < 16 + 5.



Воспользовались следствием 2 из теоремы 3, получили неравенство, равносильное исходному.



2. Приведем подобные члены в левой и правой частях неравенства: 3х < 21.



Выполнили тождественные преобразования выражений в левой и правой частях неравенства - они не нарушили равносильности неравенств: данного и исходного.



3. Разделим обе части неравенства на 3: х < 7.



Воспользовались следствием из теоремы 4, получили неравенство, равносильное исходному.

Уравнения с одной переменной. Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

Теоремы о равносильности уравнений. Первые три теоремы - «спокойные», они гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение,равносильное данному.

Теорема 3. Показательное уравнение

Следующие три теоремы - «беспокойные», они работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.

Областью определения уравнения f(х) = g(х) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(х) и g(х).

Теорема 4. Если обе части уравнения f(х)=g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(х) = g(х);

б) нигде в этой области не обращается в 0 - то получится уравнение f(х) h(х) = g(х) h(х), равносильное данному.



Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень п получится уравнение, равносильное данному: f(х)n = g (x)n .

Теорема 6. Если f(х) > 0 и g (х) > 0, то логарифмическое уравнение

Равносильно уравнению f(х) = g(x).

Линейные неравенства с одной переменной. Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

Такие замены осуществляются на основе следующих утверждений.

Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.



Понравилась статья? Поделитесь с друзьями!