Ters fonksiyonun türevi nedir?

Türev bulma işlemine farklılaşma denir.

Türevi, argümanın artışına oranının limiti olarak tanımlayarak en basit (ve çok basit olmayan) fonksiyonların türevlerini bulma problemlerinin çözülmesinin bir sonucu olarak, bir türev tablosu ve kesin olarak tanımlanmış farklılaşma kuralları ortaya çıktı. . Türev bulma alanında ilk çalışmalar yapanlar Isaac Newton (1643-1727) ve Gottfried Wilhelm Leibniz (1646-1716) olmuştur.

Bu nedenle günümüzde herhangi bir fonksiyonun türevini bulmak için yukarıda belirtilen fonksiyonun artımının argümanın artımına oranının limitini hesaplamanıza gerek yoktur, yalnızca tabloyu kullanmanız gerekir. türevler ve türev alma kuralları. Aşağıdaki algoritma türevi bulmak için uygundur.

Türevi bulmak için, asal işaretin altında bir ifadeye ihtiyacınız var basit işlevleri bileşenlere ayırın ve hangi eylemlerin gerçekleştirileceğini belirleyin (çarpım, toplam, bölüm) bu işlevler birbiriyle ilişkilidir. Daha sonra, türev tablosunda temel fonksiyonların türevlerini ve türev kurallarında ürünün, toplamın ve bölümün türevlerinin formüllerini buluyoruz. Türev tablosu ve türev kuralları ilk iki örnekten sonra verilmiştir.

Örnek 1. Bir fonksiyonun türevini bulun

Çözüm. Türev alma kurallarından, bir fonksiyon toplamının türevinin, fonksiyonların türevlerinin toplamı olduğunu öğreniyoruz;

Türev tablosundan “X” türevinin bire, sinüs türevinin kosinüse eşit olduğunu öğreniyoruz. Bu değerleri türevlerin toplamına koyarız ve problemin koşulunun gerektirdiği türevi buluruz:

Örnek 2. Bir fonksiyonun türevini bulun

Çözüm. İkinci terimin sabit bir faktöre sahip olduğu bir toplamın türevi olarak türevini alırız; bu, türev işaretinden çıkarılabilir:

Bir şeyin nereden geldiğine dair hâlâ sorular ortaya çıkıyorsa, bunlar genellikle türev tablosuna ve türev almanın en basit kurallarına aşina olduktan sonra açıklığa kavuşturulur. Şu anda onlara doğru ilerliyoruz.

Basit fonksiyonların türevleri tablosu

1. Bir sabitin (sayı) türevi. İşlev ifadesindeki herhangi bir sayı (1, 2, 5, 200...). Her zaman sıfıra eşittir. Bunu hatırlamak çok önemlidir, çünkü çok sık ihtiyaç duyulur.
2. Bağımsız değişkenin türevi. Çoğu zaman "X". Her zaman bire eşittir. Bunu uzun süre hatırlamak da önemlidir
3. Derecenin türevi. Problem çözerken karekök olmayanları kuvvetlere dönüştürmeniz gerekir.
4. Bir değişkenin -1 kuvvetine göre türevi
5. Karekökün türevi
6. Sinüs türevi
7. Kosinüs Türevi
8. Teğetin türevi
9. Kotanjantın Türevi
10. Arsinüsün türevi
11. Arkosinin türevi
12. Arktanjantın türevi
13. Ark kotanjantının türevi
14. Doğal logaritmanın türevi
15. Logaritmik fonksiyonun türevi
16. Üssün türevi
17. Üstel bir fonksiyonun türevi

Farklılaşma kuralları

1. Bir toplamın veya farkın türevi
2. Ürünün türevi
2a. Bir ifadenin sabit bir faktörle çarpılmasının türevi
3. Bölümün türevi
4. Karmaşık bir fonksiyonun türevi

Kural 1.Eğer işlevler

Bir noktada türevlenebilirse fonksiyonlar aynı noktada türevlenebilirdir

Ve

onlar. cebirsel fonksiyon toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir.

Sonuçlar. İki türevlenebilir fonksiyonun farkı sabit bir terim ise türevleri eşittir yani

Kural 2.Eğer işlevler

Bir noktada türevlenebilirse çarpımları aynı noktada türevlenebilirdir

Ve

onlar. İki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımları ile diğerinin türevinin toplamına eşittir.

Sonuç 1. Sabit faktör türevin işaretinden çıkarılabilir:

Sonuç 2. Çeşitli türevlenebilir fonksiyonların çarpımının türevi, her faktörün ve diğerlerinin türevinin çarpımlarının toplamına eşittir.

Örneğin üç çarpan için:

Kural 3.Eğer işlevler

bir noktada farklılaşabilir Ve , o zaman bu noktada onların bölümü de türevlenebiliru/v ve

onlar. iki fonksiyonun bölümünün türevi, pay, paydanın çarpımları ile payın türevi ile pay ve paydanın türevi arasındaki fark olan bir kesire eşittir ve payda, karesidir. eski pay.

Diğer sayfalardaki şeyleri nerede arayabilirim?

Gerçek problemlerde bir çarpımın ve bölümün türevini bulurken her zaman birkaç türev alma kuralını aynı anda uygulamak gerekir, bu nedenle makalede bu türevlerle ilgili daha fazla örnek vardır."Çarpının türevi ve fonksiyonların bölümü".

Yorum. Bir sabiti (yani bir sayıyı) toplamdaki bir terim ve sabit bir faktör olarak karıştırmamalısınız! Bir terim olması durumunda türevi sıfıra eşit olur ve sabit bir faktör olması durumunda türevlerin işareti dışına çıkarılır. Bu, türevleri çalışmanın ilk aşamasında meydana gelen tipik bir hatadır, ancak ortalama bir öğrenci birkaç bir ve iki parçalı örnekleri çözdükçe artık bu hatayı yapmaz.

Ve eğer bir ürünü veya bölümü farklılaştırırken bir teriminiz varsa sen"v, hangisinde sen- bir sayı, örneğin 2 veya 5, yani bir sabit, o zaman bu sayının türevi sıfıra eşit olacaktır ve dolayısıyla tüm terim sıfıra eşit olacaktır (bu durum örnek 10'da tartışılmıştır).

Diğer bir yaygın hata, karmaşık bir fonksiyonun türevini basit bir fonksiyonun türevi olarak mekanik olarak çözmektir. Bu yüzden karmaşık bir fonksiyonun türevi ayrı bir makale ayrılmıştır. Ama önce basit fonksiyonların türevlerini bulmayı öğreneceğiz.

Yol boyunca ifadeleri dönüştürmeden yapamazsınız. Bunu yapmak için kılavuzu yeni pencerelerde açmanız gerekebilir. Güçleri ve kökleri olan eylemler Ve Kesirlerle işlemler .

Kesirlerin kuvvetleri ve kökleri olan türevlerine çözüm arıyorsanız, yani fonksiyon aşağıdaki gibi göründüğünde , ardından “Küsleri ve kökleri olan kesirlerin toplamlarının türevi” dersini takip edin.

gibi bir göreviniz varsa , daha sonra “Basit trigonometrik fonksiyonların türevleri” dersini alacaksınız.

Adım adım örnekler - türev nasıl bulunur

Örnek 3. Bir fonksiyonun türevini bulun

Çözüm. Fonksiyon ifadesinin bölümlerini tanımlarız: ifadenin tamamı bir çarpımı temsil eder ve faktörleri toplamlardır; ikincisinde terimlerden biri sabit bir faktör içerir. Çarpım farklılaşma kuralını uyguluyoruz: iki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımlarının diğerinin türevine göre toplamına eşittir:

Daha sonra, toplamın türev alma kuralını uyguluyoruz: Cebirsel fonksiyonlar toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir. Bizim durumumuzda, her toplamın ikinci teriminde bir eksi işareti vardır. Her toplamda hem türevi bire eşit olan bağımsız bir değişken hem de türevi sıfıra eşit olan bir sabit (sayı) görüyoruz. Yani “X” bire, eksi 5 ise sıfıra dönüşüyor. İkinci ifadede "x" 2 ile çarpıldığından ikiyi "x"in türeviyle aynı birim ile çarpıyoruz. Aşağıdaki türev değerlerini elde ederiz:

Bulunan türevleri çarpımların toplamına koyarız ve problemin koşulunun gerektirdiği tüm fonksiyonun türevini elde ederiz:

Örnek 4. Bir fonksiyonun türevini bulun

Çözüm. Bölümün türevini bulmamız gerekiyor. Bölümün türevini almak için formülü uyguluyoruz: iki fonksiyonun bölümünün türevi, payı paydanın çarpımları ile payın türevi ile pay ve payın türevi arasındaki fark olan bir kesire eşittir. payda ve payda önceki payın karesidir. Şunu elde ederiz:

Örnek 2'de paydaki faktörlerin türevini zaten bulduk. Mevcut örnekte payda ikinci faktör olan çarpımın eksi işaretiyle alındığını da unutmayalım:

Bir fonksiyonun türevini bulmanız gereken, sürekli bir kök ve kuvvet yığınının olduğu sorunlara çözüm arıyorsanız, örneğin, , o zaman sınıfa hoş geldiniz "Kuvvetleri ve kökleri olan kesirlerin toplamlarının türevi" .

Sinüs, kosinüs, teğet ve diğer trigonometrik fonksiyonların türevleri hakkında daha fazla bilgi edinmek istiyorsanız, yani fonksiyon şuna benzer: o zaman sana bir ders "Basit trigonometrik fonksiyonların türevleri" .

Örnek 5. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, türev tablosunda türevine aşina olduğumuz, faktörlerinden biri bağımsız değişkenin karekökü olan bir çarpım görüyoruz. Çarpımı ve karekök türevinin tablo değerini farklılaştırma kuralını kullanarak şunu elde ederiz:

Örnek 6. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, payı bağımsız değişkenin karekökü olan bir bölüm görüyoruz. Örnek 4'te tekrarladığımız ve uyguladığımız bölümlerin farklılaşma kuralını ve karekök türevinin tablolaştırılmış değerini kullanarak şunu elde ederiz:

Paydaki kesirden kurtulmak için pay ve paydayı ile çarpın.

Bir güç fonksiyonunun türevinin formülünün türetilmesi (x üzeri a). X'in köklerinden türevler dikkate alınır. Daha yüksek dereceli bir güç fonksiyonunun türevinin formülü. Türev hesaplama örnekleri.

x üzeri a'nın türevi eşittir a çarpı x üzeri a eksi bir:
(1) .

X'in n'inci kökünün m'inci kuvvetinin türevi:
(2) .

Bir güç fonksiyonunun türevinin formülünün türetilmesi

Durum x > 0

x değişkeninin a üssüne sahip bir kuvvet fonksiyonunu düşünün:
(3) .
Burada a keyfi bir gerçek sayıdır. Öncelikle olayı ele alalım.

Fonksiyon (3)'ün türevini bulmak için bir kuvvet fonksiyonunun özelliklerini kullanırız ve onu aşağıdaki forma dönüştürürüz:
.

Şimdi türevi şunu kullanarak buluyoruz:
;
.
Burada .

Formül (1) kanıtlanmıştır.

Derece n'nin kökünün m derecesine kadar türevi için formülün türetilmesi

Şimdi aşağıdaki formun kökü olan bir fonksiyonu düşünün:
(4) .

Türevi bulmak için kökü bir kuvvet fonksiyonuna dönüştürürüz:
.
Formül (3) ile karşılaştırdığımızda şunu görüyoruz:
.
Daha sonra
.

Formül (1)'i kullanarak türevi buluyoruz:
(1) ;
;
(2) .

Pratikte formül (2)'yi ezberlemeye gerek yoktur. İlk önce kökleri kuvvet fonksiyonlarına dönüştürmek ve daha sonra formül (1)'i kullanarak türevlerini bulmak çok daha uygundur (sayfanın sonundaki örneklere bakın).

Durum x = 0

Eğer ise x = değişkeninin değeri için kuvvet fonksiyonu tanımlanır. 0 . 0 Fonksiyon (3)'ün türevini x ='de bulalım.
.

. 0 :
.
Bunu yapmak için türevin tanımını kullanırız:

x = yerine koyalım
.
Bu durumda türev derken sağ taraftaki limiti kastediyoruz.
Böylece şunu bulduk:
Böylece şunu bulduk:
Buradan şunu açıkça görüyoruz ki , .
(1) .
, tarihinde. 0 .

Bu sonuç aynı zamanda formül (1)'den de elde edilir:< 0

Dolayısıyla formül (1) x = için de geçerlidir.
(3) .
Durum x
,
Fonksiyon (3)'ü tekrar düşünün:

A sabitinin belirli değerleri için, x değişkeninin negatif değerleri için de tanımlanır. 3 Yani a rasyonel bir sayı olsun. O zaman indirgenemez bir kesir olarak temsil edilebilir: 1 burada m ve n ortak böleni olmayan tam sayılardır.
.
Eğer n tek ise, o zaman x değişkeninin negatif değerleri için güç fonksiyonu da tanımlanır.

Örneğin, n =
.
ve m =
.
x'in küp köküne sahibiz:

.
Ayrıca x değişkeninin negatif değerleri için de tanımlanır.
.
Tanımlandığı a sabitinin rasyonel değerleri için ve rasyonel değerleri için güç fonksiyonunun (3) türevini bulalım. Bunu yapmak için x'i aşağıdaki biçimde hayal edin:
.
Daha sonra
.
Daha sonra ,
(1) .

Türevi, sabiti türevin işaretinin dışına yerleştirerek ve karmaşık bir fonksiyonun türevini alma kuralını uygulayarak buluruz:

Burada . Ancak
(3) .
O zamandan beri
.

Yani formül (1) aşağıdakiler için de geçerlidir:
.
Yüksek dereceli türevler
;

.

Şimdi kuvvet fonksiyonunun yüksek mertebeden türevlerini bulalım Birinci dereceden türevi zaten bulduk: Türevin işareti dışındaki a sabitini alarak ikinci dereceden türevi buluruz:
.

Benzer şekilde üçüncü ve dördüncü mertebeden türevleri de buluruz: Bundan açıkça görülüyor ki keyfi n'inci dereceden türev
.
aşağıdaki forma sahiptir:
,
Dikkat

a bir doğal sayı ise

, bu durumda n'inci türev sabittir:

O zaman sonraki tüm türevler sıfıra eşittir:
.

.

Türev hesaplama örnekleri
;
.
Örnek
.

Fonksiyonun türevini bulun:
;
.
Çözüm
.

Kökleri güçlere dönüştürelim:\(y = f(x)\) fonksiyonunun, içinde \(x_0\) noktasını içeren belirli bir aralıkta tanımlandığını varsayalım. Argümana bu aralığı terk etmeyecek şekilde \(\Delta x \) bir artış verelim. \(\Delta y \) fonksiyonunun karşılık gelen artışını bulalım (\(x_0 \) noktasından \(x_0 + \Delta x \) noktasına giderken) ve \(\frac(\Delta) ilişkisini oluşturalım y)(\Delta x) \). Bu oranın \(\Delta x \rightarrow 0\'da) bir sınırı varsa, belirtilen sınıra denir. bir fonksiyonun türevi\(y=f(x) \) \(x_0 \) noktasındadır ve \(f"(x_0) \)'yi gösterir.

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Y sembolü genellikle türevi belirtmek için kullanılır. y" = f(x)'in yeni bir fonksiyon olduğunu, ancak doğal olarak yukarıdaki limitin mevcut olduğu tüm x noktalarında tanımlanan y = f(x) fonksiyonuyla ilişkili olduğunu unutmayın. Bu fonksiyon şu şekilde çağrılır: y = f(x) fonksiyonunun türevi.

Türevin geometrik anlamı aşağıdaki gibidir. y = f(x) fonksiyonunun grafiğine apsis x=a olan ve y eksenine paralel olmayan bir noktada bir teğet çizmek mümkünse f(a) teğetin eğimini ifade eder :
\(k = f"(a)\)

\(k = tg(a) \) olduğundan, \(f"(a) = tan(a) \) eşitliği doğrudur.

Şimdi türevin tanımını yaklaşık eşitlikler açısından yorumlayalım. \(y = f(x)\) fonksiyonunun belirli bir \(x\) noktasında türevi olsun:
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Bu, x noktası yakınında yaklaşık eşitliğin \(\frac(\Delta y)(\Delta x) \approx f"(x)\), yani \(\Delta y \approx f"(x) \cdot\ olduğu anlamına gelir. Delta x\). Ortaya çıkan yaklaşık eşitliğin anlamlı anlamı şu şekildedir: Fonksiyonun artışı argümanın artışıyla “neredeyse orantılıdır” ve orantı katsayısı belirli bir x noktasında türevin değeridir. Örneğin, \(y = x^2\) fonksiyonu için yaklaşık eşitlik \(\Delta y \approx 2x \cdot \Delta x \) geçerlidir. Bir türevin tanımını dikkatlice analiz edersek, onu bulmak için bir algoritma içerdiğini görürüz.

Formüle edelim.

y = f(x) fonksiyonunun türevi nasıl bulunur?

1. \(x\) değerini sabitleyin, \(f(x)\)'i bulun
2. \(x\) argümanına bir artış \(\Delta x\) verin, yeni bir \(x+ \Delta x \) noktasına gidin, \(f(x+ \Delta x) \)'yi bulun
3. Fonksiyonun artışını bulun: \(\Delta y = f(x + \Delta x) - f(x) \)
4. \(\frac(\Delta y)(\Delta x) \) ilişkisini oluşturun
5. $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$'ı hesaplayın
Bu limit fonksiyonun x noktasındaki türevidir.

Bir y = f(x) fonksiyonunun x noktasında türevi varsa, bu fonksiyona x noktasında türevlenebilir denir. y = f(x) fonksiyonunun türevini bulma prosedürüne denir farklılaşma fonksiyonlar y = f(x).

Şu soruyu tartışalım: Bir fonksiyonun bir noktadaki sürekliliği ve türevlenebilirliği birbiriyle nasıl ilişkilidir?

y = f(x) fonksiyonunun x noktasında türevi olsun. Daha sonra fonksiyonun grafiğine M(x; f(x)) noktasında bir teğet çizilebilir ve hatırlayın, teğetin açısal katsayısı f "(x)'e eşittir. Böyle bir grafik "kırılamaz" M noktasında, yani fonksiyon x noktasında sürekli olmalıdır.

Bunlar “uygulamalı” argümanlardı. Daha kesin bir gerekçe sunalım. Eğer y = f(x) fonksiyonu x noktasında türevlenebilirse, o zaman yaklaşık eşitlik \(\Delta y \approx f"(x) \cdot \Delta x\) sağlanır. Bu eşitlikte ise \(\Delta x \) sıfıra yönelirse \(\Delta y \) sıfıra yönelecektir ve bu, fonksiyonun bir noktadaki sürekliliğinin koşuludur.

Bu yüzden, Bir fonksiyon x noktasında türevlenebilirse o noktada süreklidir.

Tersi ifade doğru değildir. Örneğin: fonksiyon y = |x| her yerde süreklidir, özellikle x = 0 noktasında, ancak fonksiyonun grafiğine “birleşim noktasında” (0; 0) teğet mevcut değildir. Bir fonksiyonun grafiğine bir noktada teğet çizilemiyorsa o noktada türev mevcut değildir.

Başka bir örnek. \(y=\sqrt(x)\) fonksiyonu, x = 0 noktası da dahil olmak üzere tüm sayı doğrusu üzerinde süreklidir. Ve fonksiyonun grafiğine teğet, x = 0 noktası da dahil olmak üzere herhangi bir noktada mevcuttur. Ancak bu noktada teğet y eksenine denk gelir, yani apsis eksenine diktir, denklemi x = 0 şeklindedir. Böyle bir düz çizginin açı katsayısı yoktur, bu da \(f) anlamına gelir. "(0)\) mevcut değil.

Böylece bir fonksiyonun yeni bir özelliği olan türevlenebilirlik ile tanıştık. Bir fonksiyonun grafiğinden onun türevlenebilir olduğu sonucuna nasıl varılabilir?

Bunun cevabı aslında yukarıda verilmiştir. Bir noktada apsis eksenine dik olmayan bir fonksiyonun grafiğine teğet çizmek mümkünse, o zaman bu noktada fonksiyon türevlenebilirdir. Bir fonksiyonun grafiğine bir noktada teğet yoksa veya apsis eksenine dikse, bu noktada fonksiyon türevlenebilir değildir.

Farklılaşma kuralları

Türev bulma işlemine denir farklılaşma. Bu işlemi gerçekleştirirken çoğu zaman bölümler, toplamlar, fonksiyonların çarpımları ve ayrıca "fonksiyonların fonksiyonları" yani karmaşık fonksiyonlarla çalışmak zorunda kalırsınız. Türevin tanımından yola çıkarak bu işi kolaylaştıracak türev kurallarını türetebiliriz. Eğer C sabit bir sayıysa ve f=f(x), g=g(x) bazı türevlenebilir fonksiyonlarsa, aşağıdakiler doğrudur farklılaşma kuralları:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Karmaşık bir fonksiyonun türevi:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Bazı fonksiyonların türevleri tablosu

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Türev bilgisi ve onu hesaplama yöntemleri olmadan fiziksel problemleri veya matematikteki örnekleri çözmek tamamen imkansızdır. Türev matematiksel analizdeki en önemli kavramlardan biridir. Bugünkü makalemizi bu temel konuya ayırmaya karar verdik. Türev nedir, fiziksel ve geometrik anlamı nedir, bir fonksiyonun türevi nasıl hesaplanır? Tüm bu sorular tek bir soruda birleştirilebilir: Türev nasıl anlaşılır?

Türevin geometrik ve fiziksel anlamı

Bir fonksiyon olsun f(x) , belirli bir aralıkta belirtilir (a, b) . x ve x0 noktaları bu aralığa aittir. X değiştiğinde fonksiyonun kendisi de değişir. Argümanı değiştirme - değerlerindeki fark x-x0 . Bu fark şu şekilde yazılır: delta x ve argüman artışı olarak adlandırılır. Bir fonksiyonun değişmesi veya artması, bir fonksiyonun iki noktadaki değerleri arasındaki farktır. Türevin tanımı:

Bir fonksiyonun bir noktadaki türevi, fonksiyonun belirli bir noktadaki artışının, argümanın sıfıra yaklaştığı durumdaki artışına oranının limitidir.

Aksi takdirde şu şekilde yazılabilir:

Böyle bir sınır bulmanın amacı nedir? Ve işte şu:

Bir fonksiyonun bir noktadaki türevi, OX ekseni arasındaki açının belirli bir noktadaki fonksiyonun grafiğine olan teğetine eşittir.


Türevin fiziksel anlamı: yolun zamana göre türevi doğrusal hareketin hızına eşittir.

Aslında okul günlerinden beri herkes hızın belirli bir yol olduğunu biliyor x=f(t) ve zaman T . Belirli bir süredeki ortalama hız:

Belirli bir andaki hareketin hızını bulmak için t0 limiti hesaplamanız gerekir:

Birinci kural: bir sabit belirleyin

Sabit türev işaretinden çıkarılabilir. Üstelik bunun yapılması gerekiyor. Matematikteki örnekleri çözerken bunu kural olarak alın - Bir ifadeyi basitleştirebiliyorsanız, onu basitleştirdiğinizden emin olun. .

Örnek. Türevini hesaplayalım:

İkinci kural: Fonksiyonların toplamının türevi

İki fonksiyonun toplamının türevi, bu fonksiyonların türevlerinin toplamına eşittir. Aynı durum fonksiyonların farkının türevi için de geçerlidir.

Bu teoremin kanıtını vermeyeceğiz, bunun yerine pratik bir örnek ele alacağız.

Fonksiyonun türevini bulun:

Üçüncü kural: Fonksiyonların çarpımının türevi

İki türevlenebilir fonksiyonun çarpımının türevi aşağıdaki formülle hesaplanır:

Örnek: Bir fonksiyonun türevini bulun:

Çözüm:

Burada karmaşık fonksiyonların türevlerinin hesaplanmasından bahsetmek önemlidir. Karmaşık bir fonksiyonun türevi, bu fonksiyonun ara argümana göre türevinin ve ara argümanın bağımsız değişkene göre türevinin çarpımına eşittir.

Yukarıdaki örnekte şu ifadeyle karşılaşıyoruz:

Bu durumda ara argüman 8x üzeri beşinci kuvvettir. Böyle bir ifadenin türevini hesaplamak için önce dış fonksiyonun ara argümana göre türevini hesaplarız ve ardından ara argümanın bağımsız değişkene göre türevini çarparız.

Kural dört: iki fonksiyonun bölümünün türevi

İki fonksiyonun bölümünün türevini belirlemek için formül:

Sıfırdan aptallar için türevler hakkında konuşmaya çalıştık. Bu konu göründüğü kadar basit değil, bu yüzden dikkatli olun: örneklerde sıklıkla tuzaklar bulunur, bu nedenle türevleri hesaplarken dikkatli olun.

Bu ve diğer konularla ilgili sorularınız için öğrenci hizmetleriyle iletişime geçebilirsiniz. Kısa sürede, daha önce hiç türev hesaplama yapmamış olsanız bile, en zor testi çözmenize ve görevleri anlamanıza yardımcı olacağız.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!