Negatif bir sayının tek kökünün belirlenmesi. Güç fonksiyonu iv

Giriş seviyesi

Kök ve özellikleri. Örneklerle ayrıntılı teori (2019)

Bu “kök”ün nasıl bir kavram olduğunu ve “neyle yenildiğini” anlamaya çalışalım. Bunu yapmak için, sınıfta daha önce karşılaştığınız örneklere bakalım (peki, ya da bununla karşılaşmak üzeresiniz).

Mesela bir denklemimiz var. Bu denklemin çözümü nedir? Hangi sayıların karesi alınıp elde edilebilir? Çarpım tablosunu hatırlayarak cevabı kolayca verebilirsiniz: ve (sonuçta, iki negatif sayı çarpıldığında pozitif bir sayı elde edilir)! Basitleştirmek için matematikçiler özel karekök kavramını ortaya attılar ve ona özel bir sembol atadılar.

Aritmetik karekökü tanımlayalım.

Sayının neden negatif olmaması gerekiyor? Örneğin neye eşittir? Peki, birini seçmeye çalışalım. Belki üç? Kontrol edelim: , değil. Belki, ? Tekrar kontrol ediyoruz: . Peki uymuyor mu? Bu beklenen bir durumdur; çünkü karesi alındığında negatif sayı veren hiçbir sayı yoktur!
Hatırlamanız gerekenler: kök işaretinin altındaki sayı veya ifade negatif olmamalıdır!

Bununla birlikte, en dikkatli olanlar muhtemelen tanımın "bir sayının karekökünün çözümünün buna denir" dediğini fark etmişlerdir. negatif olmayan karesi "'ye eşit olan sayı. Bazılarınız, en başta bir örneğe baktığımızı, karesi alınabilen seçilmiş sayıların cevabının ve olduğunu söyleyecektir, ancak burada bir tür "negatif olmayan sayıdan" bahsediyoruz! Bu açıklama oldukça yerinde. Burada ikinci dereceden denklem kavramlarını ve bir sayının aritmetik karekökünü birbirinden ayırmanız yeterlidir. Örneğin ifadesine eşdeğer değildir.

Şunu takip eder, yani veya. ("Konuyu okuyun")

Ve bunu takip ediyor.

Tabii ki, bu çok kafa karıştırıcı, ancak işaretlerin denklem çözmenin sonucu olduğunu hatırlamak gerekir, çünkü denklemi çözerken tüm X'leri yazmamız gerekir, bu da orijinal denklemde yerine konulduğunda şu sonucu verir: doğru sonuç. Her ikisi de ikinci dereceden denklemimize uyuyor.

Ancak eğer sadece karekökünü al bir şeyden, o zaman her zaman negatif olmayan bir sonuç elde ederiz.

Şimdi bu denklemi çözmeye çalışın. Artık her şey o kadar basit ve pürüzsüz değil, değil mi? Rakamları gözden geçirmeyi deneyin, belki bir şeyler yoluna girer? En baştan başlayalım - sıfırdan: - uymuyor, devam edelim - üçten az, ayrıca kenara süpürelim, ya olursa. Şunu kontrol edelim: - aynı zamanda uygun değil, çünkü... bu üçten fazla. Negatif sayılarla aynı hikaye. Peki şimdi ne yapmalıyız? Arama bize gerçekten hiçbir şey vermedi mi? Hiç de değil, artık cevabın hem ile arasında hem de ile arasında bir sayı olacağından eminiz. Ayrıca, açıkçası çözümler tamsayı olmayacak. Üstelik rasyonel de değiller. Peki sırada ne var? Fonksiyonun grafiğini çizelim ve çözümleri üzerinde işaretleyelim.

Sistemi kandırmaya çalışalım ve hesap makinesini kullanarak cevabı bulalım! Hadi bunun kökünü çıkaralım! Oh-oh-oh, öyle görünüyor. Bu sayı hiç bitmiyor. Sınavda hesap makinesi olmayacağına göre bunu nasıl hatırlayabilirsin!? Her şey çok basit, hatırlamanıza gerek yok, sadece yaklaşık değeri hatırlamanız (veya hızlı bir şekilde tahmin edebilmeniz) gerekiyor. ve cevapların kendisi. Bu tür sayılara irrasyonel denir; bu tür sayıların yazılmasını kolaylaştırmak için karekök kavramı ortaya atılmıştır.

Bunu pekiştirmek için başka bir örneğe bakalım. Şimdi şu probleme bakalım: Kenarı çapraz km olan kare bir alandan geçmeniz gerekiyor, kaç km gitmeniz gerekiyor?

Burada en belirgin olanı üçgeni ayrı ayrı ele alıp Pisagor teoremini kullanmaktır: . Böylece, . Peki burada gerekli mesafe nedir? Açıkçası mesafe negatif olamaz, bunu anlıyoruz. İkinin kökü yaklaşık olarak eşittir, ancak daha önce de belirttiğimiz gibi - zaten tam bir cevaptır.

Köklü örnekleri sorun yaşamadan çözmek için onları görmeniz ve tanımanız gerekir. Bunu yapmak için en azından ile arasındaki sayıların karelerini bilmeniz ve bunları tanıyabilmeniz gerekir. Örneğin, neyin kareye eşit olduğunu ve tam tersine neyin kareye eşit olduğunu bilmeniz gerekir.

Karekökün ne olduğunu anladınız mı? Daha sonra birkaç örnek çözün.

Örnekler.

Peki nasıl oldu? Şimdi bu örneklere bakalım:

Cevaplar:

Küp kökü

Evet, karekök kavramını çözmüş gibiyiz, şimdi küp kökün ne olduğunu ve aralarındaki farkın ne olduğunu bulmaya çalışalım.

Bir sayının küp kökü, küpü kendisine eşit olan sayıdır. Burada her şeyin çok daha basit olduğunu fark ettiniz mi? Hem küp kök işaretinin altındaki değerin hem de çıkarılan sayının olası değerleri konusunda herhangi bir kısıtlama yoktur. Yani küp kökü herhangi bir sayıdan çıkarılabilir: .

Küp kökünün ne olduğunu ve nasıl çıkarılacağını anlıyor musunuz? Daha sonra devam edin ve örnekleri çözün.

Örnekler.

Cevaplar:

Kök - ah derece

Artık kare ve küp kök kavramlarını anladık. Şimdi kavramla edinilen bilgileri özetleyelim 1. kök.

1. kök Bir sayının kuvveti eşit olan bir sayıdır, yani.

eş değer.

Eğer - hatta, O:

  • negatif ile, ifade mantıklı değil (negatif sayıların çiftinci kökleri kaldırılamaz!);
  • negatif olmayanlar için() ifadesinin negatif olmayan bir kökü vardır.

- tek ise, ifadenin herhangi biri için benzersiz bir kökü vardır.

Paniğe kapılmayın, kare ve küp köklerde olduğu gibi aynı prensipler burada da geçerlidir. Yani karekökleri ele alırken uyguladığımız prensipler çift dereceli tüm köklere genişletilir.

Kübik kök için kullanılan özellikler tek dereceli kökler için de geçerlidir.

Peki, daha netleşti mi? Örneklere bakalım:

Burada her şey az çok açık: ilk önce bakıyoruz - evet, derece çift, kökün altındaki sayı pozitif, bu da bizim görevimizin bize dördüncü gücünü verecek bir sayı bulmak olduğu anlamına geliyor. Peki tahminin var mı? Belki, ? Kesinlikle!

Yani derece eşittir - tek, kökün altındaki sayı negatiftir. Görevimiz, bir kuvvete yükseltildiğinde üreten bir sayı bulmaktır. Kökü hemen fark etmek oldukça zordur. Ancak aramanızı hemen daraltabilirsiniz, değil mi? Birincisi, gerekli sayı kesinlikle negatiftir ve ikincisi, bunun tek olduğu ve dolayısıyla istenen sayının tek olduğu fark edilebilir. Kökünü bulmaya çalışın. Tabii ki, güvenle reddedebilirsiniz. Belki, ?

Evet, aradığımız şey buydu! Hesaplamayı basitleştirmek için derecelerin özelliklerini kullandığımızı unutmayın: .

Köklerin temel özellikleri

Apaçık? Değilse, örneklere baktıktan sonra her şey yerine oturmalıdır.

Köklerin çoğaltılması

Kökler nasıl çoğaltılır? En basit ve en temel özellik bu soruyu yanıtlamaya yardımcı olur:

Basit bir şeyle başlayalım:

Ortaya çıkan sayıların kökleri tam olarak çıkarılmamış mı? Sorun değil; işte bazı örnekler:

Ya iki değil de daha fazla çarpan varsa? Aynısı! Kökleri çarpma formülü herhangi bir sayıda faktörle çalışır:

Bununla ne yapabiliriz? Tabii ki, üçün karekökü olduğunu hatırlayarak üçü kökün altına saklayın!

Buna neden ihtiyacımız var? Evet, örnekleri çözerken yeteneklerimizi genişletmek için:

Köklerin bu özelliğini nasıl buldunuz? Hayatı çok kolaylaştırıyor mu? Benim için bu kesinlikle doğru! Sadece şunu hatırlaman gerekiyor Pozitif sayıları yalnızca çift dereceli kök işaretinin altına girebiliriz.

Bunun başka nerede yararlı olabileceğini görelim. Örneğin, problem iki sayının karşılaştırılmasını gerektiriyor:

Dahası:

Hemen söyleyemezsin. Peki, kök işaretinin altına bir sayı girmenin demonte özelliğini kullanalım mı? O halde devam edin:

Kök işaretinin altındaki sayı ne kadar büyük olursa, kökün kendisi de o kadar büyük olur! Onlar. eğer öyleyse, . Bundan kesin olarak şu sonuca varıyoruz. Ve kimse bizi aksi yönde ikna edemeyecek!

Bundan önce kök işaretinin altına bir çarpan girmiştik ama onu nasıl kaldıracağız? Sadece onu faktörlere ayırmanız ve çıkardığınız şeyi çıkarmanız gerekiyor!

Farklı bir yol izlemek ve diğer faktörlere doğru genişlemek mümkündü:

Fena değil, değil mi? Bu yaklaşımlardan herhangi biri doğrudur, nasıl karar verirseniz verin.

Örneğin, burada bir ifade var:

Bu örnekte derece çifttir, peki ya tekse? Tekrar, kuvvetlerin özelliklerini uygulayın ve her şeyi çarpanlara ayırın:

Bununla her şey açık görünüyor, ancak bir sayının kökü bir kuvvete nasıl çıkarılır? Örneğin burada şu var:

Oldukça basit, değil mi? Derece ikiden fazlaysa ne olur? Derecelerin özelliklerini kullanarak aynı mantığı izliyoruz:

Peki her şey açık mı? O zaman işte bir örnek:

Bunlar onlarla ilgili tuzaklar her zaman hatırlamaya değer. Bu aslında özellik örneklerine de yansıyor:

garip için:
çift ​​ve:

Apaçık? Örneklerle pekiştirin:

Evet, kökün çift kuvvette olduğunu görüyoruz, kökün altındaki negatif sayının da çift kuvvette olduğunu görüyoruz. Peki aynı şekilde mi sonuçlanıyor? İşte şu:

İşte bu! Şimdi işte bazı örnekler:

Anladım? Daha sonra devam edin ve örnekleri çözün.

Örnekler.

Cevaplar.

Cevap aldıysanız gönül rahatlığıyla yolunuza devam edebilirsiniz. Değilse, şu örnekleri anlayalım:

Köklerin diğer iki özelliğine bakalım:

Bu özelliklerin örneklerde incelenmesi gerekir. Peki, şunu yapalım mı?

Anladım? Güvenliğini sağlayalım.

Örnekler.

Cevaplar.

KÖKLER VE ÖZELLİKLERİ. ORTA SEVİYE

Aritmetik karekök

Denklemin iki çözümü vardır: ve. Bunlar kareleri eşit olan sayılardır.

Denklemi düşünün. Grafiksel olarak çözelim. Fonksiyonun grafiğini ve düzeyde bir çizgi çizelim. Bu doğruların kesişme noktaları çözüm olacaktır. Bu denklemin de biri pozitif, diğeri negatif olmak üzere iki çözümü olduğunu görüyoruz:

Ancak bu durumda çözümler tam sayı değildir. Üstelik rasyonel de değiller. Bu irrasyonel kararları yazmak için özel bir karekök sembolü sunuyoruz.

Aritmetik karekök karesi eşit olan negatif olmayan bir sayıdır. İfade tanımlanmadığında, çünkü Karesi negatif bir sayıya eşit olan bir sayı yoktur.

Karekök: .

Örneğin, . Ve bunu takip ediyor veya.

Bir kez daha dikkatinizi çekeyim, şu çok önemli: Karekök her zaman negatif olmayan bir sayıdır: !

Küp kökü Bir sayının küpü kendisine eşit olan sayıdır. Küp kökü herkes için tanımlanır. Herhangi bir sayıdan çıkarılabilir: . Görüldüğü gibi negatif değerler de alabilmektedir.

Bir sayının inci kökü, kuvveti eşit olan bir sayıdır, yani.

Eğer eşitse, o zaman:

  • eğer öyleyse a'nın inci kökü tanımsızdır.
  • ise denklemin negatif olmayan köküne derecenin aritmetik kökü denir ve gösterilir.

- tek ise, denklemin herhangi biri için benzersiz bir kökü vardır.

Kök işaretinin solunda derecesini yazdığımızı fark ettiniz mi? Ama karekök için değil! Derecesiz bir kök görürseniz, bu onun kare (derece) olduğu anlamına gelir.

Örnekler.

Köklerin temel özellikleri

KÖKLER VE ÖZELLİKLERİ. ANA ŞEYLER HAKKINDA KISACA

Karekök (aritmetik karekök) Negatif olmayan bir sayıdan buna denir karesi olan negatif olmayan sayı

Köklerin özellikleri:

Formüller ve köklerin özellikleri de dahil olmak üzere kuvvet fonksiyonunun temel özellikleri verilmiştir. Bir kuvvet fonksiyonunun türevi, integrali, kuvvet serisi açılımı ve karmaşık sayı gösterimi sunulmaktadır.

Tanım

Tanım
p üssüyle kuvvet fonksiyonu f fonksiyonu (x) = xp x noktasındaki değeri, p noktasındaki x tabanlı üstel fonksiyonun değerine eşittir.
Ayrıca, f (0) = 0 p = 0 p için > 0 .

Üssün doğal değerleri için güç fonksiyonu, x'e eşit n sayıların çarpımıdır:
.
Geçerli olanların tümü için tanımlanır.

Üssün pozitif rasyonel değerleri için güç fonksiyonu, x sayısının m derecesinin n köklerinin çarpımıdır:
.
Tek m için, tüm gerçek x'ler için tanımlanır.

Hatta m için, negatif olmayanlar için güç fonksiyonu tanımlanır.
.
Negatif için güç fonksiyonu aşağıdaki formülle belirlenir:

Bu nedenle noktada tanımlanmamıştır.
,
Üs p'nin irrasyonel değerleri için güç fonksiyonu aşağıdaki formülle belirlenir:
Ne zaman için tanımlanır.
Ne zaman, güç fonksiyonu için tanımlanır.

Süreklilik. Bir güç fonksiyonu tanım alanında süreklidir.

x ≥ 0 için kuvvet fonksiyonlarının özellikleri ve formülleri

Burada x argümanının negatif olmayan değerleri için güç fonksiyonunun özelliklerini ele alacağız.

Yukarıda belirtildiği gibi p üssünün bazı değerleri için, x'in negatif değerleri için de kuvvet fonksiyonu tanımlanır.
(1.1) Bu durumda özellikleri çift veya tek kullanılarak ’nin özelliklerinden elde edilebilir. Bu durumlar "" sayfasında ayrıntılı olarak tartışılmakta ve gösterilmektedir.
p üssüne sahip bir kuvvet fonksiyonu, y = x p, aşağıdaki özelliklere sahiptir:
sette tanımlanmış ve sürekli
(1.2) ,
p üssüne sahip bir kuvvet fonksiyonu, y = x p, aşağıdaki özelliklere sahiptir:
sette tanımlanmış ve sürekli
(1.3) ;
birçok anlamı var
(1.4) sette tanımlanmış ve sürekli
sette tanımlanmış ve sürekli
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

kesinlikle ile artar,

kesinlikle şu şekilde azalır;

Tanım
Özelliklerin kanıtı “Güç fonksiyonu (sürekliliğin ve özelliklerin kanıtı)” sayfasında verilmiştir. Kökler - tanım, formüller, özellikler
.
N dereceli bir x sayısının kökü 2, 3, 4, ... n üssüne yükseltildiğinde x'i veren sayıdır:

burada n =
.
- birden büyük bir doğal sayı.

Ayrıca n dereceli bir x sayısının kökünün denklemin kökü (yani çözümü) olduğunu da söyleyebilirsiniz. Fonksiyonun fonksiyonun tersi olduğuna dikkat edin.

x'in karekökü derece 2'nin bir köküdür: .

x'in küp kökü

3. derecenin bir köküdür: . Çift derece Eşit kuvvetler için n = 0 2 m
.
, kök x ≥ için tanımlanır
.

.

Sıklıkla kullanılan bir formül hem pozitif hem de negatif x için geçerlidir:

Karekök için:
;
.

Burada işlemlerin gerçekleştirilme sırası önemlidir - yani önce negatif olmayan bir sayı elde edilecek şekilde kare gerçekleştirilir ve ardından bundan kök alınır (negatif olmayan bir sayıdan karekök alınabilir) ). Eğer sırayı değiştirirsek: negatif x için kök tanımsız olur ve bununla birlikte tüm ifade de tanımsız olur.

Tek derece
.
Tek kuvvetler için kök, tüm x için tanımlanır: 0 Köklerin özellikleri ve formülleri
;
;
, ;
.

X'in kökü bir kuvvet fonksiyonudur:

x ≥ olduğunda

aşağıdaki formüller geçerlidir:
Bu formüller değişkenlerin negatif değerleri için de uygulanabilir.
Sadece eşit güçlerin radikal ifadesinin olumsuz olmadığından emin olmanız gerekir.
Özel değerler

0'ın kökü 0: .

Kök 1, 1'e eşittir: .
.
0'ın karekökü 0: .
.
Şimdi orijinal kökü dönüştürelim:
.
Bu yüzden,
.

p üssünün farklı değerleri için y = x p.

İşte x argümanının negatif olmayan değerleri için fonksiyonun grafikleri.

X'in negatif değerleri için tanımlanan bir güç fonksiyonunun grafikleri “Güç fonksiyonu, özellikleri ve grafikleri” sayfasında verilmiştir.

Ters fonksiyon

Üssü p olan bir kuvvet fonksiyonunun tersi, üssü 1/p olan bir kuvvet fonksiyonudur.

Eğer öyleyse.

Bir güç fonksiyonunun türevi
;

N'inci dereceden türev:

Formüllerin türetilmesi > > >

Bir güç fonksiyonunun integrali 1 ;
.

P ≠ -

Kuvvet serisi genişletmesi 1 < x < 1 -

aşağıdaki ayrışma gerçekleşir:

Karmaşık sayılar kullanan ifadeler
Karmaşık z değişkeninin fonksiyonunu düşünün: F.
(z) = zt
Karmaşık değişken z'yi r modülü ve φ (r = |z|) argümanı cinsinden ifade edelim:
z = r e ben φ .
Karmaşık sayı t'yi gerçek ve sanal kısımlar biçiminde temsil ediyoruz:
t = p + ben q.

Sahibiz:
,

Daha sonra, φ argümanının benzersiz bir şekilde tanımlanmadığını dikkate alıyoruz: 0 q = olduğu durumu ele alalım.
.

yani üs bir gerçel sayıdır, t = p.
.
Daha sonra

Eğer p bir tam sayı ise kp de bir tam sayıdır. Daha sonra trigonometrik fonksiyonların periyodikliği nedeniyle: Yani, belirli bir z için tamsayı üssü olan üstel fonksiyonun yalnızca bir değeri vardır ve bu nedenle belirsizdir. Eğer p irrasyonelse, herhangi bir k için kp çarpımları bir tamsayı üretmez. k sonsuz bir değer dizisinden geçtiği için k = 0, 1, 2, 3, ... ise z p fonksiyonunun sonsuz sayıda değeri vardır. z argümanı her artırıldığında


(bir tur), fonksiyonun yeni bir dalına geçiyoruz. Eğer p rasyonel ise şu şekilde temsil edilebilir:, Nerede
.
m, n - ortak bölenler içermeyen tam sayılar. Daha sonraİlk n değerleri, k = k ile
.
0 = 0, 1, 2, ... n-1 , kp'nin n farklı değerini verin: Ancak sonraki değerler öncekilerden bir tam sayı farklılık gösteren değerler verir. Örneğin, k = k olduğunda
.
0+n sahibiz: Bağımsız değişkenleri katları kadar farklı olan trigonometrik fonksiyonlar - ortak bölenler içermeyen tam sayılar. Daha sonra.

sahibiz:, eşit değerlere sahiptir. Bu nedenle, k'de daha fazla bir artışla, k = k ile aynı z p değerlerini elde ederiz.

Özellikle, n dereceli bir kökün n değeri vardır. Örnek olarak, z = x gerçek pozitif sayısının n'inci kökünü düşünün. Bu durumda φ, .
.
0 = 0 , z = r = |z| = x 2 ,
.
Yani karekök için n = Hatta k için,(- 1 ) k = 1 ..
Tek k için,

(- 1 ) k = - 1
Yani karekökün iki anlamı vardır: + ve -.

Kullanılan literatür:

İÇİNDE. Bronstein, K.A. Semendyaev, Mühendisler ve üniversite öğrencileri için matematik el kitabı, “Lan”, 2009.

Tebrikler: Bugün 8. sınıfın en akıllara durgunluk veren konularından biri olan köklere bakacağız :)

Pek çok insanın kökler konusunda kafası karışır, bunun nedeni köklerin karmaşık olması değil (bunun nesi bu kadar karmaşıktır - birkaç tanım ve birkaç özellik daha), çoğu okul ders kitabında kökler öyle bir orman yoluyla tanımlanır ki, yalnızca ders kitabının yazarları bunu yapabilir. bu yazıyı kendileri anlayabilirler. Ve o zaman bile sadece bir şişe iyi viskiyle :)

Bu nedenle, şimdi kökün en doğru ve en yetkin tanımını vereceğim - gerçekten hatırlamanız gereken tek tanım. Sonra açıklayacağım: tüm bunlara neden ihtiyaç duyuluyor ve pratikte nasıl uygulanıyor.

Ancak öncelikle, birçok ders kitabı derleyicisinin bazı nedenlerden dolayı “unuttuğu” önemli bir noktayı hatırlayın:

Kökler çift dereceli (en sevdiğimiz $\sqrt(a)$, ayrıca her türlü $\sqrt(a)$ ve hatta $\sqrt(a)$) ve tek dereceli (her türlü $\sqrt) olabilir (a)$, $\ sqrt(a)$, vb.). Ve tek dereceli bir kökün tanımı çift olandan biraz farklıdır. Muhtemelen köklerle ilgili tüm hataların ve yanlış anlamaların% 95'i bu kahrolası "biraz farklı" da gizlidir. O halde terminolojiyi kesin olarak açıklığa kavuşturalım: Tanım. Çift kök negatif olmayan N

$a$ sayısından herhangi biri

$b$ sayısı öyledir ki $((b)^(n))=a$. Ve aynı $a$ sayısının tek kökü genellikle aynı eşitliğin geçerli olduğu herhangi bir $b$ sayısıdır: $((b)^(n))=a$.

Her durumda kök şu şekilde gösterilir:

\(A)\]

Böyle bir gösterimdeki $n$ sayısına kök üssü denir ve $a$ sayısına da köklü ifade denir. Özellikle, $n=2$ için "favori" karekökümüzü alıyoruz (bu arada, bu çift dereceli bir kök) ve $n=3$ için kübik kökü (tek dereceli) alıyoruz; problemlerde ve denklemlerde de sıklıkla bulunur.

Örnekler. Klasik karekök örnekleri:

\[\begin(align) & \sqrt(4)=2; \\ & \sqrt(81)=9; \\ & \sqrt(256)=16. \\ \end(hizala)\]

\[\begin(align) & \sqrt(27)=3; \\ & \sqrt(-64)=-4; \\ & \sqrt(343)=7. \\ \end(hizala)\]

Birkaç “egzotik örnek”:

\[\begin(align) & \sqrt(81)=3; \\ & \sqrt(-32)=-2. \\ \end(hizala)\]

Çift derece ile tek derece arasındaki farkın ne olduğunu anlamıyorsanız tanımı tekrar okuyun. Bu çok önemli!

Bu arada köklerin hoş olmayan bir özelliğini ele alacağız, bu nedenle çift ve tek üslü sayılar için ayrı bir tanım yapmamız gerekti.

Neden köklere ihtiyaç var?

Tanımı okuduktan sonra birçok öğrenci şu soruyu soracaktır: "Matematikçiler bunu bulduklarında ne içiyordu?" Ve gerçekten: neden tüm bu köklere ihtiyaç var?

Bu soruyu cevaplamak için bir anlığına ilkokula dönelim. Unutmayın: Ağaçların daha yeşil, köftelerin daha lezzetli olduğu o uzak zamanlarda asıl derdimiz sayıları doğru çarpmaktı. "Beş'e beş - yirmi beş" gibi bir şey, hepsi bu. Ancak sayıları çiftler halinde değil, üçüzler, dörtlüler ve genel olarak tam kümeler halinde çarpabilirsiniz:

\[\begin(align) & 5\cdot 5=25; \\ & 5\cdot 5\cdot 5=125; \\ & 5\cdot 5\cdot 5\cdot 5=625; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5=3125; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end(align)\]

Ancak konu bu değil. İşin püf noktası farklı: Matematikçiler tembel insanlardır, bu yüzden on beşin çarpımını şu şekilde yazmakta zorlanırlar:

Bu yüzden dereceler buldular. Neden faktör sayısını uzun bir dize yerine üst simge olarak yazmıyorsunuz? Bunun gibi bir şey:

Çok uygun! Tüm hesaplamalar önemli ölçüde azaltıldı ve 5.183 kadarını yazmak için bir sürü parşömen ve defter yaprağı harcamanıza gerek yok. Bu kayıt, bir sayının kuvvetleri olarak adlandırıldı; içinde bir dizi özellik bulundu, ancak mutluluğun kısa ömürlü olduğu ortaya çıktı.

Sadece derecelerin "keşfi" için düzenlenen görkemli bir içki partisinden sonra, özellikle inatçı bir matematikçi aniden şunu sordu: "Ya bir sayının derecesini biliyorsak ama sayının kendisi bilinmiyorsa?" Şimdi, gerçekten de, eğer $b$ sayısının diyelim ki 5'inci kuvvetinin 243 olduğunu biliyorsak, o zaman $b$ sayısının kendisinin neye eşit olduğunu nasıl tahmin edebiliriz?

Bu sorunun ilk bakışta göründüğünden çok daha küresel olduğu ortaya çıktı. Çünkü çoğu "hazır" güç için böyle bir "başlangıç" rakamının olmadığı ortaya çıktı. Kendiniz karar verin:

\[\begin(align) & ((b)^(3))=27\Rightarrow b=3\cdot 3\cdot 3\Rightarrow b=3; \\ & ((b)^(3))=64\Rightarrow b=4\cdot 4\cdot 4\Rightarrow b=4. \\ \end(hizala)\]

Ya $((b)^(3))=50$ ise? Kendiyle üç kez çarpıldığında bize 50 verecek belli bir sayı bulmamız gerektiği ortaya çıktı. Peki bu sayı nedir? 3 3 = 27 olduğundan açıkça 3'ten büyüktür.< 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 >50. Yani bu sayı üç ile dört arasında bir yerde ama neye eşit olduğunu anlayamazsınız.

Matematikçilerin $n$'ıncı kökleri bulmalarının nedeni tam olarak budur. $\sqrt(*)$ radikal simgesinin tanıtılmasının nedeni tam olarak budur. Belirtilen dereceye kadar bize önceden bilinen bir değeri verecek olan $b$ sayısını belirtmek için

\[\sqrt[n](a)=b\Rightarrow ((b)^(n))=a\]

Tartışmıyorum: çoğu zaman bu kökler kolayca hesaplanır - yukarıda bu tür birkaç örnek gördük. Ancak yine de çoğu durumda, eğer rastgele bir sayı düşünürseniz ve ondan rastgele bir derecenin kökünü çıkarmaya çalışırsanız, korkunç bir serseri ile karşı karşıya kalırsınız.

Orada ne var! En basit ve en tanıdık $\sqrt(2)$ bile her zamanki biçimimizle (tamsayı veya kesir olarak) temsil edilemez. Ve bu sayıyı hesap makinesine girerseniz şunu göreceksiniz:

\[\sqrt(2)=1.414213562...\]

Gördüğünüz gibi virgülden sonra hiçbir mantığa uymayan sonsuz bir sayı dizisi var. Elbette diğer sayılarla hızlı bir şekilde karşılaştırmak için bu sayıyı yuvarlayabilirsiniz. Örneğin:

\[\sqrt(2)=1,4142...\yaklaşık 1,4 \lt 1,5\]

Veya işte başka bir örnek:

\[\sqrt(3)=1,73205...\yaklaşık 1,7 \gt 1,5\]

Ancak tüm bu yuvarlamalar öncelikle oldukça kaba; ve ikincisi, yaklaşık değerlerle de çalışabilmeniz gerekir, aksi takdirde bir dizi bariz olmayan hata yakalayabilirsiniz (bu arada, Birleşik Devlet Sınavı profilinde karşılaştırma ve yuvarlama becerisinin kontrol edilmesi gerekir).

Bu nedenle, ciddi matematikte kökler olmadan yapamazsınız - bunlar, bize uzun zamandır aşina olduğumuz kesirler ve tamsayılar gibi, $\mathbb(R)$ tüm gerçek sayılar kümesinin aynı eşit temsilcileridir.

Bir kökü $\frac(p)(q)$ biçiminde kesir olarak temsil edememek, bu kökün rasyonel bir sayı olmadığı anlamına gelir. Bu tür sayılara irrasyonel denir ve bir radikalin veya bunun için özel olarak tasarlanmış diğer yapıların (logaritmalar, güçler, sınırlar vb.) yardımı olmadan doğru bir şekilde temsil edilemezler. Ama bunun hakkında daha fazlasını başka zaman anlatacağım.

Tüm hesaplamalardan sonra irrasyonel sayıların hala cevapta kalacağı birkaç örneğe bakalım.

\[\begin(align) & \sqrt(2+\sqrt(27))=\sqrt(2+3)=\sqrt(5)\approx 2,236... \\ & \sqrt(\sqrt(-32) ))=\sqrt(-2)\yaklaşık -1,2599... \\ \end(align)\]

Doğal olarak kökün görünümünden virgülden sonra hangi sayıların geleceğini tahmin etmek neredeyse imkansızdır. Ancak bir hesap makinesine güvenebilirsiniz, ancak en gelişmiş tarih hesaplayıcı bile bize irrasyonel bir sayının yalnızca ilk birkaç rakamını verir. Bu nedenle cevapları $\sqrt(5)$ ve $\sqrt(-2)$ şeklinde yazmak çok daha doğrudur.

İşte tam da bu yüzden icat edildiler. Cevapları rahatça kaydetmek için.

Neden iki tanıma ihtiyaç var?

Dikkatli okuyucu muhtemelen örneklerde verilen tüm kareköklerin pozitif sayılardan alındığını fark etmiştir. En azından sıfırdan. Ancak küp kökler, ister pozitif ister negatif olsun, kesinlikle herhangi bir sayıdan sakin bir şekilde çıkarılabilir.

Bu neden oluyor? $y=((x)^(2))$ fonksiyonunun grafiğine bir göz atın:

İkinci dereceden bir fonksiyonun grafiği iki kök verir: pozitif ve negatif

Bu grafiği kullanarak $\sqrt(4)$ değerini hesaplamaya çalışalım. Bunu yapmak için, grafik üzerinde parabol ile iki noktada kesişen yatay bir $y=4$ çizgisi çizilir (kırmızıyla işaretlenmiştir): $((x)_(1))=2$ ve $((x) )_(2)) =-2$. Bu oldukça mantıklı çünkü

İlk sayıyla ilgili her şey açık - pozitif, yani kök:

Peki o zaman ikinci noktayla ne yapmalı? Sanki dördünün aynı anda iki kökü var mı? Sonuçta, eğer −2 sayısının karesini alırsak, aynı zamanda 4 elde ederiz. O halde neden $\sqrt(4)=-2$ yazmıyoruz? Peki öğretmenler neden bu tür paylaşımlara sizi yemek istiyormuş gibi bakıyorlar :)

Sorun şu ki, eğer herhangi bir ek koşul dayatmazsanız, o zaman dörtlünün pozitif ve negatif olmak üzere iki karekökü olacaktır. Ve herhangi bir pozitif sayıda da bunlardan iki tane olacaktır. Ancak negatif sayıların hiçbir kökü olmayacaktır; bu aynı grafikten de görülebilir, çünkü parabol hiçbir zaman eksenin altına düşmez. sen yani negatif değerleri kabul etmez.

Çift üslü tüm kökler için benzer bir sorun ortaya çıkar:

  1. Açıkça konuşursak, her pozitif sayının $n$ üssü çift olan iki kökü olacaktır;
  2. Negatif sayılardan $n$ çift olan kök hiçbir şekilde çıkarılmaz.

Bu nedenle $n$'ın çift kökü tanımı, cevabın negatif olmayan bir sayı olması gerektiğini özellikle şart koşar. Belirsizlikten bu şekilde kurtuluruz.

Ancak tek $n$ için böyle bir sorun yoktur. Bunu görmek için $y=((x)^(3))$ fonksiyonunun grafiğine bakalım:

Bir küp parabol herhangi bir değeri alabilir, dolayısıyla küp kökü herhangi bir sayıdan alınabilir

Bu grafikten iki sonuç çıkarılabilir:

  1. Kübik bir parabolün dalları, normal olanın aksine, hem yukarı hem de aşağı olmak üzere her iki yönde de sonsuza gider. Dolayısıyla hangi yükseklikte yatay bir çizgi çizersek çizelim, bu çizgi mutlaka grafiğimizle kesişecektir. Sonuç olarak, küp kökü her zaman kesinlikle herhangi bir sayıdan alınabilir;
  2. Ek olarak, böyle bir kesişim her zaman benzersiz olacaktır, bu nedenle hangi sayının "doğru" kök olarak kabul edildiğini ve hangisini göz ardı edeceğinizi düşünmenize gerek yoktur. Bu nedenle tek derece için kökleri belirlemek çift derece için olduğundan daha basittir (negatif olmama şartı yoktur).

Bu basit şeylerin çoğu ders kitabında açıklanmaması üzücü. Bunun yerine beynimiz her türlü aritmetik kök ve özellikleriyle uçmaya başlar.

Evet, tartışmıyorum: aritmetik kökün ne olduğunu da bilmeniz gerekiyor. Ve bundan ayrı bir derste detaylı olarak bahsedeceğim. Bugün bunun hakkında da konuşacağız, çünkü o olmasaydı $n$'ıncı çokluğun kökleri hakkındaki düşünceler eksik olurdu.

Ama önce yukarıda verdiğim tanımı net bir şekilde anlamalısınız. Aksi takdirde terimlerin çokluğundan dolayı kafanızda öyle bir karmaşa başlayacak ki sonunda hiçbir şey anlayamayacaksınız.

Tek yapmanız gereken çift ve tek göstergeler arasındaki farkı anlamaktır. Bu nedenle kökler hakkında gerçekten bilmeniz gereken her şeyi bir kez daha toplayalım:

  1. Çift dereceli bir kök yalnızca negatif olmayan bir sayıdan oluşur ve kendisi de her zaman negatif olmayan bir sayıdır. Negatif sayılar için böyle bir kök tanımsızdır.
  2. Ancak tek derecenin kökü herhangi bir sayıdan oluşur ve kendisi herhangi bir sayı olabilir: pozitif sayılar için pozitiftir ve negatif sayılar için, başlığın ima ettiği gibi, negatiftir.

Zor mu? Hayır, zor değil. Apaçık? Evet, tamamen açık! Şimdi hesaplamalarla biraz pratik yapacağız.

Temel özellikler ve sınırlamalar

Köklerin birçok garip özelliği ve sınırlaması vardır; bu ayrı bir derste tartışılacaktır. Bu nedenle, şimdi yalnızca çift indeksli kökler için geçerli olan en önemli "numara" yı ele alacağız. Bu özelliği formül olarak yazalım:

\[\sqrt(((x)^(2n))))=\left| x\sağ|\]

Yani bir sayıyı çift kuvvete yükseltip sonra aynı kuvvetin kökünü çıkarırsak orijinal sayıyı değil modülünü elde ederiz. Bu, kolayca kanıtlanabilen basit bir teoremdir (negatif olmayan $x$'ı ayrı ayrı, ardından negatif olanları ayrı ayrı düşünmek yeterlidir). Öğretmenler sürekli bunun hakkında konuşuyor, her okul ders kitabında veriliyor. Ancak sıra irrasyonel denklemleri (yani kök işareti içeren denklemleri) çözmeye gelince, öğrenciler oybirliğiyle bu formülü unutuyorlar.

Konuyu detaylı anlamak için bir dakikalığına tüm formülleri unutalım ve doğrudan iki sayıyı hesaplamaya çalışalım:

\[\sqrt(((3)^(4)))=?\quad \sqrt(((\left(-3 \right))^(4))))=?\]

Bunlar çok basit örnekler. Çoğu kişi ilk örneği çözecektir ancak birçok kişi ikincide takılıp kalacaktır. Bu tür saçmalıkları sorunsuz bir şekilde çözmek için her zaman aşağıdaki prosedürü göz önünde bulundurun:

  1. İlk olarak sayının dördüncü kuvvetine yükseltilir. Aslında bu biraz kolay. Çarpım tablosunda bile bulunabilecek yeni bir sayı elde edeceksiniz;
  2. Ve şimdi bu yeni sayıdan dördüncü kökü çıkarmak gerekiyor. Onlar. Köklerde ve güçlerde "azalma" meydana gelmez - bunlar sıralı eylemlerdir.

İlk ifadeye bakalım: $\sqrt(((3)^(4)))$. Açıkçası, öncelikle kökün altındaki ifadeyi hesaplamanız gerekir:

\[(((3)^(4))=3\cdot 3\cdot 3\cdot 3=81\]

Daha sonra 81 sayısının dördüncü kökünü çıkarıyoruz:

Şimdi aynı işlemi ikinci ifade için de yapalım. İlk olarak, −3 sayısını dördüncü kuvvetine yükseltiriz, bu da sayının 4 kez kendisiyle çarpılmasını gerektirir:

\[((\left(-3 \right))^(4))=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \ left(-3 \right)=81\]

Pozitif bir sayı elde ettik, çünkü çarpımdaki toplam eksi sayısı 4 ve hepsi birbirini götürecek (sonuçta eksiye eksi artı verir). Sonra kökü tekrar çıkarıyoruz:

Prensipte bu satır yazılamazdı çünkü cevabın aynı olması hiç de akıllıca değil. Onlar. aynı çift gücün eşit kökü eksileri “yakar” ve bu anlamda sonuç normal bir modülden ayırt edilemez:

\[\begin(align) & \sqrt(((3)^(4))))=\left| 3 \sağ|=3; \\ & \sqrt(((\left(-3 \right))^(4)))=\left| -3 \sağ|=3. \\ \end(hizala)\]

Bu hesaplamalar, çift dereceli bir kökün tanımıyla iyi bir uyum içindedir: sonuç her zaman negatif değildir ve kök işareti de her zaman negatif olmayan bir sayı içerir. Aksi takdirde kök tanımsızdır.

Prosedürle ilgili not

  1. $\sqrt(((a)^(2))))$ gösterimi, önce $a$ sayısının karesini aldığımız ve ardından elde edilen değerin karekökünü aldığımız anlamına gelir. Bu nedenle, her durumda $((a)^(2))\ge 0$ olduğundan, kök işaretinin altında her zaman negatif olmayan bir sayı olduğundan emin olabiliriz;
  2. Ancak $((\left(\sqrt(a) \right))^(2))$ gösterimi, tam tersine, önce belirli bir $a$ sayısının kökünü aldığımız ve ancak ondan sonra sonucun karesini aldığımız anlamına gelir. Bu nedenle, $a$ sayısı hiçbir durumda negatif olamaz; bu, tanımda yer alan zorunlu bir gerekliliktir.

Bu nedenle, hiçbir durumda kökler ve dereceler düşüncesizce azaltılmamalı, böylece orijinal ifadenin "basitleştirildiği" iddia edilmemelidir. Çünkü eğer kök negatif bir sayıya sahipse ve üssü çift ise bir sürü problemle karşı karşıya kalırız.

Ancak tüm bu sorunlar yalnızca çift göstergelerle ilgilidir.

Kök işaretinin altındaki eksi işaretini kaldırma

Doğal olarak, tek üslü köklerin de kendi özellikleri vardır ve bu, prensip olarak çift üslerde mevcut değildir. Yani:

\[\sqrt(-a)=-\sqrt(a)\]

Kısacası tek dereceli köklerin işaretinin altındaki eksiyi kaldırabilirsiniz. Bu, tüm dezavantajları "ortadan kaldırmanıza" olanak tanıyan çok kullanışlı bir özelliktir:

\[\begin(align) & \sqrt(-8)=-\sqrt(8)=-2; \\ & \sqrt(-27)\cdot \sqrt(-32)=-\sqrt(27)\cdot \left(-\sqrt(32) \right)= \\ & =\sqrt(27)\cdot \sqrt(32)= \\ & =3\cdot 2=6. \end(hizala)\]

Bu basit özellik birçok hesaplamayı büyük ölçüde basitleştirir. Artık endişelenmenize gerek yok: Ya olumsuz bir ifade kökün altında gizlenmişse, ancak kökteki derecenin eşit olduğu ortaya çıkarsa? Köklerin dışındaki tüm eksileri "atmak" yeterlidir, daha sonra birbirleriyle çarpılabilir, bölünebilir ve genel olarak pek çok şüpheli şey yapılabilir, bu da "klasik" kökler durumunda bizi garanti altına alır. bir hata.

Ve burada başka bir tanım sahneye çıkıyor; çoğu okulda irrasyonel ifadeler üzerinde çalışmaya başlarken kullandıkları tanımın aynısı. Ve bu olmadan akıl yürütmemiz eksik olurdu. Tanışmak!

Aritmetik kök

Bir an için kök işaretinin altında yalnızca pozitif sayıların veya aşırı durumlarda sıfırın olabileceğini varsayalım. Çift/tek göstergeleri unutalım, yukarıda verilen tüm tanımları unutalım; yalnızca negatif olmayan sayılarla çalışacağız. Peki ne olacak?

Ve sonra bir aritmetik kök elde edeceğiz - bu, "standart" tanımlarımızla kısmen örtüşüyor, ancak yine de onlardan farklı.

Tanım. Negatif olmayan bir sayı olan $a$'ın $n$'ıncı derecesinin aritmetik kökü, $((b)^(n))=a$ olacak şekilde negatif olmayan bir $b$ sayısıdır.

Gördüğümüz gibi artık pariteyle ilgilenmiyoruz. Bunun yerine yeni bir kısıtlama ortaya çıktı: Radikal ifade artık her zaman negatif değildir ve kökün kendisi de negatif değildir.

Aritmetik kökün normalden ne kadar farklı olduğunu daha iyi anlamak için, zaten aşina olduğumuz kare ve kübik parabol grafiklerine bir göz atın:

Aritmetik kök arama alanı - negatif olmayan sayılar

Gördüğünüz gibi, bundan sonra yalnızca ilk koordinat çeyreğinde yer alan grafik parçalarıyla ilgileniyoruz - burada $x$ ve $y$ koordinatları pozitif (veya en azından sıfır). Kökün altına negatif bir sayı koyma hakkımız olup olmadığını anlamak için artık göstergeye bakmanıza gerek yok. Çünkü negatif sayılar artık prensipte dikkate alınmıyor.

Şunu sorabilirsiniz: “Peki, neden bu kadar kısırlaştırılmış bir tanıma ihtiyacımız var?” Veya: "Yukarıda verilen standart tanımı neden yapamıyoruz?"

Yeni tanımın uygun olmasını sağlayacak tek bir özellik vereceğim. Örneğin, üs alma kuralı:

\[\sqrt[n](a)=\sqrt(((a)^(k))))\]

Lütfen unutmayın: Radikal ifadeyi herhangi bir kuvvete yükseltebilir ve aynı zamanda kök üssü aynı kuvvetle çarpabiliriz - sonuç aynı sayı olacaktır! İşte örnekler:

\[\begin(align) & \sqrt(5)=\sqrt(((5)^(2)))=\sqrt(25) \\ & \sqrt(2)=\sqrt(((2)^) (4))))=\sqrt(16)\\ \end(align)\]

Peki önemli olan ne? Bunu neden daha önce yapamadık? İşte nedeni. Basit bir ifadeyi ele alalım: $\sqrt(-2)$ - bu sayı klasik anlayışımıza göre oldukça normaldir, ancak aritmetik kök açısından kesinlikle kabul edilemez. Bunu dönüştürmeye çalışalım:

$\begin(align) & \sqrt(-2)=-\sqrt(2)=-\sqrt(((2)^(2)))=-\sqrt(4) \lt 0; \\ & \sqrt(-2)=\sqrt(((\left(-2 \right))^(2)))=\sqrt(4) \gt 0. \\ \end(align)$

Gördüğünüz gibi, ilk durumda radikalin altındaki eksiyi kaldırdık (üs tek olduğu için her hakkımız var) ve ikinci durumda yukarıdaki formülü kullandık. Onlar. Matematiksel açıdan bakıldığında her şey kurallara göre yapılır.

Ne oldu? Aynı sayı nasıl hem pozitif hem de negatif olabilir? Mümkün değil. Pozitif sayılar ve sıfır için harika çalışan üs alma formülü, negatif sayılar söz konusu olduğunda tam bir sapkınlık üretmeye başlıyor.

Aritmetik kökler bu tür belirsizliklerden kurtulmak için icat edildi. Tüm özelliklerini ayrıntılı olarak ele aldığımız onlara ayrı bir büyük ders ayrılmıştır. Bu yüzden şimdi bunların üzerinde durmayacağız - ders zaten çok uzun oldu.

Cebirsel kök: daha fazlasını öğrenmek isteyenler için

Uzun süre bu konuyu ayrı bir paragrafa koysam mı, koymasam mı diye düşündüm. En sonunda onu burada bırakmaya karar verdim. Bu materyal, kökleri daha da iyi anlamak isteyenler için tasarlanmıştır - artık ortalama "okul" seviyesinde değil, Olimpiyat seviyesine yakın bir seviyede.

Yani: bir sayının $n$th kökünün "klasik" tanımına ve bununla ilişkili çift ve tek üslere bölünmeye ek olarak, pariteye ve diğer inceliklere hiç bağlı olmayan daha "yetişkinlere uygun" bir tanım vardır. Buna cebirsel kök denir.

Tanım. Herhangi bir $a$'ın cebirsel $n$'inci kökü, $((b)^(n))=a$ olacak şekilde tüm $b$ sayıları kümesidir. Bu tür kökler için yerleşik bir tanım yoktur, bu nedenle en üste bir çizgi koyacağız:

\[\overline(\sqrt[n](a))=\left\( b\left| b\in \mathbb(R);((b)^(n))=a \right. \right\) \]

Dersin başında verilen standart tanımdan temel farkı, cebirsel kökün belirli bir sayı değil, bir küme olmasıdır. Gerçek sayılarla çalıştığımız için bu küme yalnızca üç türde gelir:

  1. Boş set. Negatif bir sayıdan çift dereceli cebirsel bir kök bulmanız gerektiğinde ortaya çıkar;
  2. Tek bir elemandan oluşan küme. Tek kuvvetlerin tüm kökleri ve sıfırın çift kuvvetlerinin kökleri bu kategoriye girer;
  3. Son olarak, küme iki sayı içerebilir - yukarıda gördüğümüz $((x)_(1))$ ve $((x)_(2))=-((x)_(1))$ ile aynı ikinci dereceden grafik fonksiyonu. Buna göre böyle bir düzenleme ancak pozitif bir sayıdan çift dereceli kökün çıkarılmasıyla mümkündür.

Son durum daha ayrıntılı bir değerlendirmeyi hak ediyor. Farkı anlamak için birkaç örnek sayalım.

Örnek. İfadeleri değerlendirin:

\[\overline(\sqrt(4));\quad \overline(\sqrt(-27));\quad \overline(\sqrt(-16)).\]

Çözüm. İlk ifade basittir:

\[\overline(\sqrt(4))=\left\( 2;-2 \right\)\]

Kümenin parçası olan iki sayıdır. Çünkü her birinin karesi dört verir.

\[\overline(\sqrt(-27))=\left\( -3 \right\)\]

Burada tek sayıdan oluşan bir küme görüyoruz. Kök üssü tek olduğundan bu oldukça mantıklıdır.

Son olarak son ifade:

\[\overline(\sqrt(-16))=\varnothing \]

Boş bir set aldık. Çünkü dördüncü (yani çift!) üssüne yükseltildiğinde bize -16 negatif sayısını verecek tek bir gerçek sayı yoktur.

Son not. Lütfen unutmayın: Gerçek sayılarla çalıştığımızı her yerde belirtmem tesadüf değildi. Çünkü karmaşık sayılar da var - orada $\sqrt(-16)$ ve diğer birçok tuhaf şeyi hesaplamak oldukça mümkün.

Ancak karmaşık sayılara modern okul matematik derslerinde neredeyse hiç yer verilmez. Yetkililerimiz konunun "anlaşılmasının çok zor" olduğunu düşündüğü için çoğu ders kitabından çıkarıldılar.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!