Üstel denklemlerin ve eşitsizliklerin seçimi ve çözümü. Üstel denklem sistemlerini çözme

Üstel denklemler ve eşitsizlikler, bilinmeyenin üssün içinde yer aldığı denklemlerdir.

Üstel denklemleri çözmek genellikle a x = a b denklemini çözmekle sonuçlanır; burada a > 0, a ≠ 1, x bir bilinmeyendir. Aşağıdaki teorem doğru olduğundan bu denklemin tek bir kökü x = b vardır:

Teorem. a > 0, a ≠ 1 ve a x 1 = a x 2 ise, x 1 = x 2 olur.

Ele alınan ifadeyi kanıtlayalım.

x 1 = x 2 eşitliğinin geçerli olmadığını varsayalım, yani. x 1< х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а >1 ise üstel fonksiyon y = a x artar ve dolayısıyla a x 1 eşitsizliği karşılanmalıdır< а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 >bir x 2. Her iki durumda da a x 1 = a x 2 koşuluyla bir çelişki elde ettik.

Birkaç problemi ele alalım.

4 ∙ 2 x = 1 denklemini çözün.

Çözüm.

Denklemi 2 2 ∙ 2 x = 2 0 – 2 x+2 = 2 0 formunda yazalım, buradan x + 2 = 0 elde ederiz, yani. x = -2.

Cevap. x = -2.

Denklem 2 3x ∙ 3 x = 576'yı çözün.

Çözüm.

2 3x = (2 3) x = 8 x, 576 = 24 2 olduğundan denklem 8 x ∙ 3 x = 24 2 veya 24 x = 24 2 olarak yazılabilir.

Buradan x = 2 elde ederiz.

Cevap. x = 2.

3 x+1 – 2∙3 x - 2 = 25 denklemini çözün.

Çözüm.

Sol taraftaki parantezlerden 3 x - 2 ortak faktörünü aldığımızda, 3 x - 2 ∙ (3 3 – 2) = 25 – 3 x - 2 ∙ 25 = 25 elde ederiz,

dolayısıyla 3 x - 2 = 1, yani. x – 2 = 0, x = 2.

Cevap. x = 2.

3 x = 7 x denklemini çözün.

Çözüm.

7 x ≠ 0 olduğundan denklem 3 x /7 x = 1 olarak yazılabilir, dolayısıyla (3/7) x = 1, x = 0 olur.

Cevap. x = 0.

9 x – 4 ∙ 3 x – 45 = 0 denklemini çözün.

Çözüm.

3 x = a yerine bu denklem ikinci dereceden a 2 – 4a – 45 = 0 denklemine indirgenir.

Bu denklemi çözerek köklerini buluruz: a 1 = 9 ve 2 = -5, dolayısıyla 3 x = 9, 3 x = -5.

Üstel fonksiyon negatif değerler alamadığı için 3 x = 9 denkleminin kökü 2'dir ve 3 x = -5 denkleminin kökleri yoktur.

Cevap. x = 2.

Üstel eşitsizliklerin çözümü genellikle a x > a b veya a x eşitsizliklerinin çözümüne indirgenir< а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Bazı sorunlara bakalım.

Eşitsizliği çöz 3 x< 81.

Çözüm.

Eşitsizliği 3x şeklinde yazalım.< 3 4 . Так как 3 >1 ise y = 3 x fonksiyonu artmaktadır.

Bu nedenle x için< 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Böylece, x'te< 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3x< 81 выполняется тогда и только тогда, когда х < 4.

Cevap. X< 4.

16 x +4 x – 2 > 0 eşitsizliğini çözün.

Çözüm.

4 x = t diyelim, sonra ikinci dereceden t2 + t – 2 > 0 eşitsizliğini elde ederiz.

Bu eşitsizlik t için geçerlidir< -2 и при t > 1.

t = 4 x olduğundan iki eşitsizlik elde ederiz: 4 x< -2, 4 х > 1.

Tüm x € R için 4 x > 0 olduğundan birinci eşitsizliğin çözümü yoktur.

İkinci eşitsizliği 4 x > 4 0 biçiminde yazıyoruz, dolayısıyla x > 0 olur.

Cevap. x > 0.

(1/3) x = x – 2/3 denklemini grafiksel olarak çözün.

Çözüm.

1) y = (1/3) x ve y = x – 2/3 fonksiyonlarının grafiklerini oluşturalım.

2) Şeklimize dayanarak, dikkate alınan fonksiyonların grafiklerinin apsis x ≈ 1 noktasında kesiştiği sonucuna varabiliriz. Kontrol şunu kanıtlar:

x = 1 bu denklemin köküdür:

(1/3) 1 = 1/3 ve 1 – 2/3 = 1/3.

Başka bir deyişle denklemin köklerinden birini bulduk.

3) Başka kökler bulalım veya olmadığını kanıtlayalım. (1/3) x fonksiyonu azalıyor, y = x – 2/3 fonksiyonu artıyor. Bu nedenle, x > 1 için, ilk fonksiyonun değerleri 1/3'ten küçük, ikincisi ise 1/3'ten fazladır; x'te< 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х >1 ve x< 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Cevap. x = 1.

Bu problemin çözümünden, özellikle (1/3) x > x – 2/3 eşitsizliğinin x için karşılandığı sonucuna varıldığına dikkat edin.< 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

Konuyla ilgili ders ve sunum: "Üstel denklemler ve üstel eşitsizlikler"

Ek materyaller
Sevgili kullanıcılar, yorumlarınızı, yorumlarınızı, dileklerinizi bırakmayı unutmayın! Tüm materyaller antivirüs programı ile kontrol edilmiştir.

11. sınıf için Integral çevrimiçi mağazasında öğretim yardımcıları ve simülatörler
9-11. Sınıflar için etkileşimli el kitabı "Trigonometri"
10-11. Sınıflar için etkileşimli el kitabı "Logarithms"

Üstel Denklemlerin Tanımı

Arkadaşlar, üstel fonksiyonları inceledik, özelliklerini öğrendik ve grafikler oluşturduk, üstel fonksiyonların bulunduğu denklem örneklerini analiz ettik. Bugün üstel denklemleri ve eşitsizlikleri inceleyeceğiz.

Tanım. Şu formdaki denklemlere: $a^(f(x))=a^(g(x))$, burada $a>0$, $a≠1$ üstel denklemler olarak adlandırılır.

"Üstel Fonksiyon" konusunda incelediğimiz teoremleri hatırlayarak yeni bir teorem ortaya koyabiliriz:
Teorem. $a^(f(x))=a^(g(x))$ üstel denklemi, burada $a>0$, $a≠1$ $f(x)=g(x) denklemine eşdeğerdir $.

Üstel denklem örnekleri

Örnek.
Denklemleri çözün:
a) $3^(3x-3)=27$.
b) $((\frac(2)(3)))^(2x+0,2)=\sqrt(\frac(2)(3))$.
c) $5^(x^2-6x)=5^(-3x+18)$.
Çözüm.
a) $27=3^3$ olduğunu iyi biliyoruz.
Denklemimizi yeniden yazalım: $3^(3x-3)=3^3$.
Yukarıdaki teoremi kullanarak denklemimizin $3x-3=3$ denklemine indirgendiğini buluyoruz; bu denklemi çözerek $x=2$ elde ediyoruz.
Cevap: $x=2$.

B) $\sqrt(\frac(2)(3))=((\frac(2)(3)))^(\frac(1)(5))$.
O zaman denklemimiz yeniden yazılabilir: $((\frac(2)(3)))^(2x+0.2)=((\frac(2)(3)))^(\frac(1)(5) ) =((\frac(2)(3))))^(0,2)$.
$2х+0,2=0,2$.
$x=0$.
Cevap: $x=0$.

C) Orijinal denklem şu denklemin eşdeğeridir: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ ve $x_2=-3$.
Yanıt: $x_1=6$ ve $x_2=-3$.

Örnek.
Denklemi çözün: $\frac(((0,25))^(x-0,5))(\sqrt(4))=16*((0,0625))^(x+1)$.
Çözüm:
Sırayla bir dizi eylem gerçekleştirelim ve denklemimizin her iki tarafını da aynı tabanlara getirelim.
Sol tarafta bir dizi işlem gerçekleştirelim:
1) $((0,25))^(x-0,5)=((\frac(1)(4)))^(x-0,5)$.
2) $\sqrt(4)=4^(\frac(1)(2))$.
3) $\frac(((0,25))^(x-0,5))(\sqrt(4))=\frac(((\frac(1)(4)))^(x-0 ,5)) (4^(\frac(1)(2)))= \frac(1)(4^(x-0,5+0,5))=\frac(1)(4^x) =((\frac(1) (4)))^x$.
Sağ tarafa geçelim:
4) $16=4^2$.
5) $((0,0625))^(x+1)=\frac(1)((16)^(x+1))=\frac(1)(4^(2x+2))$.
6) $16*((0,0625))^(x+1)=\frac(4^2)(4^(2x+2))=4^(2-2x-2)=4^(-2x )= \frac(1)(4^(2x))=((\frac(1)(4)))^(2x)$.
Orijinal denklem aşağıdaki denkleme eşdeğerdir:
$((\frac(1)(4)))^x=((\frac(1)(4)))^(2x)$.
$x=2x$.
$x=0$.
Cevap: $x=0$.

Örnek.
Denklemi çözün: $9^x+3^(x+2)-36=0$.
Çözüm:
Denklemimizi yeniden yazalım: $((3^2))^x+9*3^x-36=0$.
$((3^x))^2+9*3^x-36=0$.
Değişkenlerde değişiklik yapalım, $a=3^x$ olsun.
Yeni değişkenlerde denklem şu şekli alacaktır: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ ve $a_2=3$.
Değişkenleri tersten değiştirelim: $3^x=-12$ ve $3^x=3$.
Geçen derste üstel ifadelerin yalnızca pozitif değerler alabileceğini öğrendik, grafiği hatırlayın. Bu, ilk denklemin hiçbir çözümü olmadığı, ikinci denklemin tek çözümü olduğu anlamına gelir: $x=1$.
Cevap: $x=1$.

Üstel denklemlerin nasıl çözüleceğine dair bir hatırlatma yapalım:
1. Grafik yöntemi. Denklemin her iki tarafını da fonksiyonlar şeklinde temsil edip grafiklerini oluşturuyoruz, grafiklerin kesişme noktalarını buluyoruz. (Bu yöntemi geçen derste kullanmıştık).
2. Göstergelerin eşitliği ilkesi. Prensip, aynı tabanlara sahip iki ifadenin ancak ve ancak bu tabanların derecelerinin (üslerinin) eşit olması durumunda eşit olması gerçeğine dayanmaktadır. $a^(f(x))=a^(g(x))$ $f(x)=g(x)$.
3. Değişken değiştirme yöntemi. Bu yöntem, değişkenleri değiştirirken denklem formunu basitleştiriyorsa ve çözülmesi çok daha kolaysa kullanılmalıdır.

Örnek.
Denklem sistemini çözün: $\begin (cases) (27)^y*3^x=1, \\ 4^(x+y)-2^(x+y)=12. \end (durumlar)$.
Çözüm.
Sistemin her iki denklemini ayrı ayrı ele alalım:
27$^y*3^x=1$.
$3^(3y)*3^x=3^0$.
$3^(3y+x)=3^0$.
$x+3y=0$.
İkinci denklemi düşünün:
$4^(x+y)-2^(x+y)=12$.
$2^(2(x+y))-2^(x+y)=12$.
Değişken değiştirme yöntemini kullanalım, $y=2^(x+y)$ olsun.
O zaman denklem şu şekli alacaktır:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ ve $y_2=-3$.
İlk değişkenlere geçelim, ilk denklemden $x+y=2$ elde ederiz. İkinci denklemin çözümü yoktur. O halde başlangıçtaki denklem sistemimiz şu sisteme eşdeğerdir: $\begin (cases) x+3y=0, \\ x+y=2. \end (durumlar)$.
İkinciyi ilk denklemden çıkardığımızda şunu elde ederiz: $\begin (cases) 2y=-2, \\ x+y=2. \end (durumlar)$.
$\begin (durumlar) y=-1, \\ x=3. \end (durumlar)$.
Cevap: $(3;-1)$.

Üstel eşitsizlikler

Gelelim eşitsizliklere. Eşitsizlikleri çözerken derece esasına dikkat etmek gerekir. Eşitsizliklerin çözümünde olayların gelişimi için iki olası senaryo vardır.

Teorem. Eğer $a>1$ ise, bu durumda $a^(f(x))>a^(g(x))$ üstel eşitsizliği $f(x)>g(x)$ eşitsizliğine eşdeğerdir.
0$ ise a^(g(x))$, $f(x) eşitsizliğine eşdeğerdir

Örnek.
Eşitsizlikleri çözün:
a) $3^(2x+3)>81$.
b) $((\frac(1)(4))))^(2x-4) c) $(0,3)^(x^2+6x)≤(0,3)^(4x+15)$ .
Çözüm.
a) $3^(2x+3)>81$.
$3^(2x+3)>3^4$.
Eşitsizliğimiz eşitsizliğe eşdeğerdir:
$2x+3>4$.
$2x>1$.
$x>0,5$.

B) $((\frac(1)(4))))^(2x-4) $((\frac(1)(4)))^(2x-4) Denklemimizde taban, derecenin ne zaman olduğudur. 1'den küçükse, bir eşitsizliği eşdeğeriyle değiştirirken işareti değiştirmek gerekir.
$2x-4>2$.
$x>3$.

C) Eşitsizliğimiz eşitsizliğe eşdeğerdir:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Aralıklı çözüm yöntemini kullanalım:
Cevap: $(-∞;-5]U \ \

Cevap: $(-4,6)$.

Örnek 2

Denklem sistemini çözme

Figür 3.

Çözüm.

Bu sistem şu sisteme eşdeğerdir

Şekil 4.

Denklem çözmenin dördüncü yöntemini uygulayalım. $2^x=u\ (u >0)$ ve $3^y=v\ (v >0)$ olsun, şunu elde ederiz:

Şekil 5.

Ortaya çıkan sistemi toplama yöntemini kullanarak çözelim. Denklemleri toplayalım:

\ \

Sonra ikinci denklemden şunu elde ederiz:

Değiştirmeye dönersek, yeni bir üstel denklem sistemi aldım:

Şekil 6.

Şunu elde ederiz:

Şekil 7.

Cevap: $(0,1)$.

Üstel eşitsizlik sistemleri

Tanım 2

Üstel denklemlerden oluşan eşitsizlik sistemlerine üstel eşitsizlik sistemleri denir.

Üstel eşitsizlik sistemlerini örnekler kullanarak çözmeyi ele alacağız.

Örnek 3

Eşitsizlik sistemini çözün

Şekil 8.

Çözüm:

Bu eşitsizlik sistemi şu sisteme eşdeğerdir:

Şekil 9.

İlk eşitsizliği çözmek için üstel eşitsizliklerin denkliğine ilişkin aşağıdaki teoremi hatırlayın:

Teorem 1.$a^(f(x)) >a^(\varphi (x)) $ eşitsizliği, burada $a >0,a\ne 1$ iki sistemin toplamına eşdeğerdir

\}

Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!