Условие совпадения прямых в пространстве. Как построить прямую пространства, перпендикулярную данной? Как найти точку пересечения пространственных прямых

Если две прямые l 1 и l 2 лежат на плоскости, то возможны три различных случая их взаимного расположения: 1)пересекаются (т.е. имеют одну общую точку); 2) параллельны и не совпадают; 3) совпадают.

Выясним, как узнать, какой из этих случаев имеет место, если эти прямые заданы своими уравнениями в общем виде:

Если прямые l 1 и l 2 пересекаются в некоторой точке М(х,у), то координаты этой точки должны удовлетворять обоим уравнениям системы (12).

Следовательно, чтобы найти координаты точки пересечения прямых l 1 и l 2 , надо решить систему уравнений (12):
1) если система (12) имеет единственное решение, то прямые l 1 и l 2 пересекаются;
2) если система (12) не имеет решения, то прямые l 1 и l 2 параллельны;
3) если система (12) имеет множество решений, то прямые l 1 и l 2 совпадают.

Условием совпадения двух прямых является пропорциональность соответствующих коэффициентов их уравнений.

Пример 10. Пересекаются ли прямые 3х+4у-1=0 и 2х+3у-1=0 ?

Решение: Решим систему уравнений: система имеет единственное решение, следовательно прямые пересекаются. Точка пересечения прямых имеет координаты (-1;1).

Пример 11. Параллельны, ли прямые 2х-у+2=0 и 4х-2у-1=0?

Решение: Решим систему уравнений
Эта система не имеет решений, следовательно прямые параллельны.

Пример 12. Совпадают ли прямые х+у+1=0 и 3х+3у+3=0?

Решение: Совпадают, так как коэффициенты пропорциональны.

Пример 13. Составить уравнение прямой линии, проходящей через точку пересечения прямых х+у-1=0, х-у+2=0 и через точку (2,1).

Решение: Находим координаты точки пересечения двух данных прямых линий. Для этого решаем данные уравнения совместно. Складывая, находим: 2х+1=0, откуда
Вычитая из первого уравнения второе, получаем: 2у-3=0, откуда . Далее, остается составить уравнение прямой линии по двум точками () и (2;1)
Искомое уравнение будет , или или откуда или x+5y-7=0

Углом между двумя прямыми на плоскости называется угол между их направляющими векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до . В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя прямыми удовлетворяет условию .



Если и направляющие векторы прямых и соответственно (рис.3.23,а), то величина угла между этими прямыми вычисляется по формуле:

Угол между прямыми (3.19) можно вычислить как угол между их нормалями и :

(3.22)

Чтобы получить величину острого угла между прямыми, нужно правую часть взять по абсолютной величине:

Необходимым и достаточным условием перпендикулярности прямых (3.19) является условие ортогональности их нормалей, т.е. равенства нулю скалярного произведения их нормалей :

По формуле (3.22) получаем острый угол между прямыми (3.19), если (рис.3.23,а), и тупой в противном случае: (рис.3.23,6). Другими словами, по формуле (3.22) находится тот угол между прямыми, в котором лежат точки, принадлежащие разноименным полуплоскостям, опреляемым данными прямыми . На рис.3.23 положительные и отрицательные полуплоскости отмечены знаками плюс "+" или минус "–" соответственно.

Глава V*. Уравнения прямых и плокостей в пространстве.

§ 66. Условия совпадения и пересечения плоскостей

Если плоскости р 1 и р 2 , заданные уравнениями

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0, (1)

имеют общую точку, то ее координаты удовлетворяют каждому из уравнений (1). Поэтому для нахождения общих точек данных плоскостей нужно решить систему уравнений

т. е. систему двух уравнений с тремя неизвестными. При выполнении условия

(3)

система (2) решений не имеет. В самом деле, предположим противное.
Допустим, что (х 0 ; у 0 , z 0) - решение системы. Тогда, если

то из второго уравнения системы (2) получаем

А 2 х 0 + B 2 у 0 + C 2 z 0 = - D 2 ,

а из первого

k (А 2 х 0 + B 2 у 0 + C 2 z 0) = - D 1 ,

и, следовательно, , что противоречит уеловию (3).

Мы знаем, что условие есть условие параллельности плоскостей. Таким образом, при выполнении условия (3) плоскости р 1 и р 2 параллельны и не совпадают.

В случае, когда коэффициенты и свободные члены системы (2) удовлетворяют условию

(4)

система имеет вид

Каждое из уравнений системы определяет одну и ту же плоскость. Таким образом, условие (4) есть необходимое и достаточное условие совпадения плоскостей.

Если плоскости р 1 и р 2 не параллельны, т. е. если они пересекаются, то

В этом случае уравнения (2) являются уравнениями прямой l пересечения плоскостей р 1 и р 2 . Покажем, как можно найти канонические уравнения этой прямой. Чтобы составить канонические уравнения прямой, нужно знать координаты ее некоторой точки и координаты ее направляющего вектора а . За координаты точки M 0 можно взять любое решение системы (2). В качестве направляющего вектора а прямой l можно взять векторное произведение векторов n 1 = (A 1 ; B 1 ; С 1) и n 2 = (A 2 ; B 2 ; С 2), т. е. нормальных векторов плоскостей р 1 и р 2 .

В самом деле (рис. 203), вектор [n 1 ; n 2 ] по определению векторного произведения перпендикулярен векторам n 1 и n 2 и поэтому параллелен плоскостям р 1 и р 2 и, следовательно, коллинеарен прямой l их пересечения.

Задача 1 . Составить канонические уравнения прямой, являющейся пересечением плоскостей

х - 2у + z + 1 = 0 и 2х - у + 3z - 2 = 0.

Так как n 1 = (1; - 2; 1), n 2 = (2; -1; 3), то

Для определения координат какой-либо точки данной прямой найдем какое-либо решение системы уравнений

Положим, например, z = 0, тогда получим

откуда х = 5 / 3 , y = 4 / 3 . Следовательно, исходная система имеет решение (5 / 3 ; 4 / 3 ; 0), и поэтому данная прямая проходит через точку М (5 / 3 ; 4 / 3 ; 0).

Зная координаты точки прямой и координаты ее направляющего вектора, записываем канонические уравнения данной прямой

Заметим, что если плоскости А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0 пересекаются, то уравнение всякой плоскости, проходящей через прямую их пересечения, может быть записано в виде

α (А 1 х + B 1 y + C 1 z + D 1) + β(А 2 х + B 2 y + C 2 z + D 2) = 0,

где α и β - некоторые числа.

Задача 2. Составить уравнение плоскости, поpоходящей через прямую пересечения плоскостей 3x - 2у - z + 4 = 0 и х - 4у - 3z - 2 = 0 и точку M 0 (1; 1; - 2).

Составим уравнение плоскостей, проходящих через прямую пересечения данных плоскостей:

α (3x - 2у - z + 4) + β(х - 4у - 3z - 2) = 0.

Так как M 0 принадлежит искомой плоскости, то

α (3 1 - 2 1 + 2 + 4) + β(1- 4 1 + 6 -2) = 0,

и, следовательно,

откуда, например, α = 1, β = -7.

Искомым уравнением плоскости будет

3x - 2у - z + 4 - 7 (х - 4у - 3z - 2) = 0,

2x - 13у - 10z - 9 = 0.

Не прошло и минуты, как я создал новый вёрдовский файл и продолжил столь увлекательную тему. Нужно ловить моменты рабочего настроя, поэтому лирического вступления не будет. Будет прозаическая порка =)

Две прямые пространства могут:

1) скрещиваться;

2) пересекаться в точке ;

3) быть параллельными ;

4) совпадать.

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости . Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости .

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим две прямые пространства:

– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж:

На чертеже в качестве примера изображены скрещивающиеся прямые.

Как разобраться с этими прямыми?

Так как известны точки , то легко найти вектор .

Если прямые скрещиваются , то векторы не компланарны (см. урок Линейная (не) зависимость векторов. Базис векторов ), а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, будет отлично от нуля: .

В случаях № 2-4 наша конструкция «падает» в одну плоскость, при этом векторы компланарны , а смешанное произведение линейно зависимых векторов равняется нулю: .

Раскручиваем алгоритм дальше. Предположим, что , следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

Если направляющие векторы коллинеарны , то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение второй прямой; если координаты «подошли», то прямые совпадают, если «не подошли», то прямые параллельны.

Ход алгоритма незатейлив, но практические примеры всё равно не помешают:

Пример 11

Выяснить взаимное расположение двух прямых

Решение : как и во многих задачах геометрии, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.

Вывод: прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ :

Интересный пример для самостоятельного решения:

Пример 12

Выяснить взаимное расположение прямых

Это пример для самостоятельного решения. Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это же две различные прямые, поэтому у каждой прямой свой параметр.

И снова призываю не пропускать примеры, пороть буду предлагаемые мной задачи далеко не случайны;-)

Задачи с прямой в пространстве

В заключительной части урока я постараюсь рассмотреть максимальное количество различных задач с пространственными прямыми. При этом будет соблюдён начатый порядок повествования: сначала мы рассмотрим задачи со скрещивающимися прямыми, затем с пересекающимися прямыми, и в конце поговорим о параллельных прямых в пространстве. Однако должен сказать, что некоторые задачи данного урока можно сформулировать сразу для нескольких случаев расположения прямых, и в этой связи разбиение раздела на параграфы несколько условно. Есть более простые примеры, есть более сложные примеры, и, надеюсь, каждый найдёт то, что нужно.

Скрещивающиеся прямые

Напоминаю, что прямые скрещиваются, если не существует плоскости, в которой бы они обе лежали. Когда я продумывал практику, в голову пришла задача-монстр, и сейчас рад представить вашему вниманию дракона с четырьмя головами:

Пример 13

Даны прямые . Требуется:

а) доказать, что прямые скрещиваются;

б) найти уравнения прямой , проходящей через точку перпендикулярно данным прямым;

в) составить уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых;

г) найти расстояние между прямыми.

Решение : Дорогу осилит идущий:

а) Докажем, что прямые скрещиваются. Найдём точки и направляющие векторы данных прямых:

Найдём вектор:

Вычислим смешанное произведение векторов :

Таким образом, векторы не компланарны , а значит, прямые скрещиваются, что и требовалось доказать.

Наверное, все уже давно подметили, что для скрещивающихся прямых алгоритм проверки получается короче всего.

б) Найдём уравнения прямой , которая проходит через точку и перпендикулярна прямым . Выполним схематический чертёж:

Для разнообразия я разместил прямую ЗА прямыми , посмотрите, как она немного стёрта в точках скрещивания. Скрещивания? Да, в общем случае прямая «дэ» будет скрещиваться с исходными прямыми. Хотя данный момент нас пока не интересует, надо просто построить перпендикулярную прямую и всё.

Что известно о прямой «дэ»? Известна принадлежащая ей точка . Не хватает направляющего вектора.

По условию прямая должна быть перпендикулярна прямым , а значит, её направляющий вектор будет ортогонален направляющим векторам . Уже знакомый из Примера № 9 мотив, найдём векторное произведение:

Составим уравнения прямой «дэ» по точке и направляющему вектору :

Готово. В принципе, можно сменить знаки в знаменателях и записать ответ в виде , но необходимости в этом нет никакой.

Для проверки необходимо подставить координаты точки в полученные уравнения прямой, затем с помощью скалярного произведения векторов убедиться, что вектор действительно ортогонален направляющим векторам «пэ один» и «пэ два».

Как найти уравнения прямой, содержащей общий перпендикуляр?

в) Эта задачка посложнее будет. Чайникам рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить, дело в том, что по сложности пример надо бы поставить последним в статье, но по логике изложения он должен располагаться здесь.

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

– это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр скрещивающихся прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу…. Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО . Если точка принадлежит данной прямой, то её координатам соответствует , обозначим его через . Тогда координаты точки запишутся в виде:

Жизнь налаживается, одна неизвестная – всё-таки не три неизвестных.

2) Такое же надругательство нужно осуществить над второй точкой. Перепишем уравнения второй прямой в параметрическом виде:

Если точка принадлежит данной прямой, то при вполне конкретном значении её координаты должны удовлетворять параметрическим уравнениям:

Или:

3) Вектор , как и ранее найденный вектор , будет направляющим вектором прямой . Как составить вектор по двум точкам, рассматривалось в незапамятные времена на уроке Векторы для чайников . Сейчас отличие состоит в том, что координаты векторов записаны с неизвестными значениям параметров. Ну и что? Никто же не запрещает из координат конца вектора вычесть соответствующие координаты начала вектора.

Есть две точки: .

Находим вектор:

4) Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

Или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера . Но здесь есть возможность отделаться малой кровью, из третьего уравнения выразим «лямбду» и подставим её в первое и второе уравнение:

Таким образом: , а «лямбда» нам не потребуется. То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения в наши точки:

Направляющий вектор особо не нужен, так как уже найден его коллега .

После длинного пути всегда интересно выполнить проверку.

:

Получены верные равенства.

Подставим координаты точки в уравнения :

Получены верные равенства.

6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

Как найти расстояние между скрещивающимися прямыми?

г) Срубаем четвёртую голову дракона.

Способ первый . Даже не способ, а небольшой частный случай. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра: .

Крайние точки общего перпендикуляра найдены в предыдущем пункте, и задача элементарна:

Способ второй . На практике чаще всего концы общего перпендикуляра неизвестны, поэтому используют другой подход. Через две скрещивающиеся прямые можно провести параллельные плоскости, и расстояние между данными плоскостями равно расстоянию между данными прямыми. В частности, между этими плоскостями и торчит общий перпендикуляр.

В курсе аналитической геометрии из вышесказанных соображений выведена формула нахождения расстояния между скрещивающимися прямыми:
(вместо наших точек «эм один, два» можно взять произвольные точки прямых).

Смешанное произведение векторов уже найдено в пункте «а»: .

Векторное произведение векторов найдено в пункте «бэ»: , вычислим его длину:

Таким образом:

Гордо выложим трофеи в один ряд:

Ответ :
а) , значит, прямые скрещиваются, что и требовалось доказать;
б) ;
в) ;
г)

Что ещё можно рассказать про скрещивающиеся прямые? Между ними определён угол. Но универсальную формулу угла рассмотрим в следующем параграфе:

Пересекающиеся прямые пространства обязательно лежат в одной плоскости:

Первая мысль – всеми силами навалиться на точку пересечения . И сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Пример 14

Найти точку пересечения прямых

Решение : Перепишем уравнения прямых в параметрической форме:

Данная задача подробно рассматривалась в Примере № 7 данного урока (см. Уравнения прямой в пространстве ). А сами прямые, к слову, я взял из Примера № 12. Врать не буду, новые лень придумывать.

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными. Если прямые пересекаются (что доказано в Примере № 12), то система обязательно совместна и имеет единственное решение. Её можно решить методом Гаусса , но уж таким детсадовским фетишизмом грешить не будем, поступим проще: из первого уравнения выразим «тэ нулевое» и подставим его во второе и третье уравнение:

Последние два уравнения получились, по сути, одинаковыми, и из них следует, что . Тогда:

Подставим найденное значение параметра в уравнения:

Ответ :

Для проверки подставим найденное значение параметра в уравнения:
Получены те же самые координаты, что и требовалось проверить. Дотошные читатели могу подставить координаты точки и в исходные канонические уравнения прямых.

Кстати, можно было поступить наоборот: точку найти через «эс нулевое», а проверить – через «тэ нулевое».

Известная математический примета гласит: там, где обсуждают пересечение прямых, всегда пахнет перпендикулярами.

Как построить прямую пространства, перпендикулярную данной?

(прямые пересекаются)

Пример 15

а) Составить уравнения прямой, проходящей через точку перпендикулярно прямой (прямые пересекаются).

б) Найти расстояние от точки до прямой .

Примечание : оговорка «прямые пересекаются» – существенна . Через точку
можно провести бесконечно много перпендикулярных прямых, которые будут скрещиваться с прямой «эль». Единственное решение имеет место в случае, когда через данную точку проводится прямая, перпендикулярная двум заданным прямым (см. Пример № 13, пункт «б»).

а) Решение : Неизвестную прямую обозначим через . Выполним схематический чертёж:

Что известно о прямой ? По условию дана точка . Для того, чтобы составить уравнения прямой, необходимо найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор , им и займемся. Точнее, возьмём за шкирку неизвестный конец вектора.

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

Многие догадались, сейчас уже в третий раз за урок фокусник достанет белого лебедя из шляпы. Рассмотрим точку с неизвестными координатами. Поскольку точка , то её координаты удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра:

Или одной строкой:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, найдём точку:

И направляющий вектор:
.

4) Уравнения прямой составим по точке и направляющему вектору :

Знаменатели пропорции получились дробные, и это как раз тот случай, когда от дробей уместно избавиться. Я просто умножу их на –2:

Ответ :

Примечание : более строгая концовка решения оформляется так: составим уравнения прямой по точке и направляющему вектору . Действительно, если вектор является навправляющим вектором прямой, то коллинеарный ему вектор , естественно, тоже будет направляющим вектором данной прямой.

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки в уравнения каждой прямой, они должны «подходить» и там и там.

О типовых действиях говорилось очень много, поэтому я выполнил проверку на черновике.

Кстати, запамятовал ещё пунктик – построить точку «зю» симметричную точке «эн» относительно прямой «эль». Впрочем, есть хороший «плоский аналог», с которым можно ознакомиться в статье Простейшие задачи с прямой на плоскости . Здесь же всё отличие будет в дополнительной «зетовой» координате.

Как найти расстояние от точки до прямой в пространстве?

б) Решение : Найдём расстояние от точки до прямой .

Способ первый . Данное расстояние в точности равно длине перпендикуляра : . Решение очевидно: если известны точки , то:

Способ второй . В практических задачах основание перпендикуляра частенько тайна за семью печатями, поэтому рациональнее пользоваться готовой формулой.

Расстояние от точки до прямой выражается формулой:
, где – направляющий вектор прямой «эль», а – произвольная точка, принадлежащая данной прямой.

1) Из уравнений прямой достаём направляющий вектор и самую доступную точку .

2) Точка известна из условия, заточим вектор:

3) Найдём векторное произведение и вычислим его длину:

4) Рассчитаем длину направляющего вектора:

5) Таким образом, расстояние от точки до прямой:

Кстати, последнее неравенство как раз и говорит о непараллельности их нормальных векторов.

Если прямые параллельны, то система решения не имеет. Аналитически это будет выглядеть так:

Но если все три дроби равны, то прямые совпадают друг с другом, и поэтому система имеет бесконечное множество решений.

Угол между двумя прямыми можно найти по двум формулам.

Если прямые заданы общими уравнениями, то угол между ними совпадает с углом между их нормальными векторами. Его вычисляют по формуле (6.9) из предыдущей лекции. Для нашего случая она будет иметь вид:

. (7.7)

Условие параллельности прямых:

;

Условие перпендикулярности:

.

Если прямые заданы уравнениями с угловыми коэффициентами вида:

и ,

то тангенс угла между ними определится по формуле:

. (7.8)

Условие параллельности:

Условие перпендикулярности:

.

Пример 7.4 . Найти точку пересечения прямых и и угол между ними.

Решени е. Найдем точку пересечения прямых, решив систему уравнений методом Крамера:

, , ,

Угол между прямыми определим, как угол между их нормальными векторами (2, 5) и (5, –2). По формуле (7.7) имеем:

.

О чем говорит этот ответ? Прямые перпендикулярны, т.к. .

Пример 7.5 . При каком значении параметров a и b прямые и : а ) пересекаются, б ) параллельны, в ) совпадают?

Решени е. Две прямые пересекаются, если выполняется условие . В нашем случае

.

Прямые параллельны, если , т.е.

.

И, последнее, две прямые совпадают при условии, что , т.е. если .

Пример 7.6 . Дана точка и прямая . Написать уравнения прямых L 1 и L 2 , проходящих через точку A , причем и .

Решени е. Сделаем схематичный рисунок.

Рис. 7.6

Угловой коэффициент исходной прямой L равен k = –2. По условию , следовательно . По формуле (7.4) находим уравнение прямой L 1:

, или .

Поскольку , то . Тогда уравнение прямой L 2 будет иметь вид:

, или .

7.4. Определение кривой второго порядка

Определение 7.1. Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих координат. В общем случае это уравнение имеет вид:

где все числа А , В , С , и т.д. – действительные числа, и, кроме того, по крайней мере одно из чисел А , В , С – отлично от нуля.

До введения декартовой системы координат все кривые описывались словесно, исходя из геометрических свойств рассматриваемой кривой. Так, определение окружности читалось так:

Определение 7.2. Окружность это геометрическое место точек на плоскости, равноудаленных от данной точки, называемой центром.

Уравнение окружности , с центром в точке (а, b ) и радиусом R в декартовой системе координат, полученное вами в школе, выглядит так:

Если раскрыть скобки, то получим уравнение, схожее с уравнением (7.9), в котором отсутствует член, содержащий произведение текущих координат, и коэффициенты при старших степенях равны между собой.

Вывод всех уравнений второго порядка аналогичен выводу уравнений прямой и проходит по тому же алгоритму.

Выведем уравнение параболы, исходя из ее определения.

7.5. Каноническое уравнение параболы

Определение 7.3. Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки F , называемой фокусом , и данной прямой, называемой директрисой.

Обозначим расстояние от фокуса до директрисы через p . Эта величина называется параметром параболы.

1. Расположим ось абсцисс так, чтобы она проходила через фокус, перпендикулярно директрисе и имела положительное направление от директрисы к фокусу.

2. Начало координат поместим в середину этого перпендикуляра. Тогда координаты точки будут F (p /2, 0), а уравнение директрисы: .

3. Возьмем текущую точку на параболе М (х, у ).

4. По определению параболы, расстояние М N от точки М до директрисы равно ее расстоянию М F от фокуса: MF = MN . Как видно из чертежа (рис. 7.7), координаты точки N (–p /2, y ). Найдем эти расстояния по формуле расстояния между двумя точками из п. 1 предыдущей лекции.

, .

Приравняв правые части этих выражений и возведя обе части равенства в квадрат, получим:

,

или после сокращений

. (7.11)

Уравнение (7.11) называется каноническим уравнением параболы . Ему будут удовлетворять только точки, лежащие на кривой, а остальные – не будут. Исследуем форму ее графика по каноническому уравнению.

Поскольку y входит в четной степени, то ось ОХ будет являться осью симметрии, т.е. одному значению Х будет соответствовать два значения Y – положительное и отрицательное. Т.к. правая часть неотрицательна у , то и левая – тоже. Так как р – расстояние между фокусом и директрисой, всегда больше нуля, то и х . Если х =0, то у =0, т.е. парабола проходит через начало координат. При неограниченном возрастании x абсолютная величина у также будет неограниченно возрастать.

График параболы, определяемой уравнением (7.11) приведен на рис. 7.7.


Рис. 7.7 рис. 7.8

Ось симметрии параболы называется фокальной осью, т.к. на ней лежит фокус. Если фокальную ось параболы принять за ось ординат, то ее уравнение примет вид:

.

Ее чертеж показан на рис. 7.8. В этом случае фокус будет находиться в точке F (0, p /2), а уравнение директрисы будет иметь вид у = –р /2.

Таким образом, мы рассмотрели параболу, нашли ее уравнение и показали возможные расположения относительно начала координат.

Если вершина параболы смещена в точку , то каноническое уравнение будет выглядеть так:

.

Выводом остальных кривых второго порядка мы заниматься не будем. Желающие могут найти все выкладки в рекомендуемой литературе.

Ограничимся их определениями и уравнениями.

Если две прямые l 1 и l 2 лежат на плоскости, то возможны три различных случая их взаимного расположения: 1)пересекаются (т.е. имеют одну общую точку); 2) параллельны и не совпадают; 3) совпадают.

Выясним, как узнать, какой из этих случаев имеет место, если эти прямые заданы своими уравнениями в общем виде:

Если прямые l 1 и l 2 пересекаются в некоторой точке М(х,у), то координаты этой точки должны удовлетворять обоим уравнениям системы (12).

Следовательно, чтобы найти координаты точки пересечения прямых l 1 и l 2 , надо решить систему уравнений (12):
1) если система (12) имеет единственное решение, то прямые l 1 и l 2 пересекаются;
2) если система (12) не имеет решения, то прямые l 1 и l 2 параллельны;
3) если система (12) имеет множество решений, то прямые l 1 и l 2 совпадают.

Условием совпадения двух прямых является пропорциональность соответствующих коэффициентов их уравнений.

Пример 10. Пересекаются ли прямые 3х+4у-1=0 и 2х+3у-1=0 ?

Решение: Решим систему уравнений: система имеет единственное решение, следовательно прямые пересекаются. Точка пересечения прямых имеет координаты (-1;1).

Пример 11. Параллельны, ли прямые 2х-у+2=0 и 4х-2у-1=0?

Решение: Решим систему уравнений
Эта система не имеет решений, следовательно прямые параллельны.

Пример 12. Совпадают ли прямые х+у+1=0 и 3х+3у+3=0?

Решение: Совпадают, так как коэффициенты пропорциональны.

Пример 13. Составить уравнение прямой линии, проходящей через точку пересечения прямых х+у-1=0, х-у+2=0 и через точку (2,1).

Решение: Находим координаты точки пересечения двух данных прямых линий. Для этого решаем данные уравнения совместно. Складывая, находим: 2х+1=0, откуда
Вычитая из первого уравнения второе, получаем: 2у-3=0, откуда . Далее, остается составить уравнение прямой линии по двум точками () и (2;1)
Искомое уравнение будет , или или откуда или x+5y-7=0

Углом между двумя прямыми на плоскости называется угол между их направляющими векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до . В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя прямыми удовлетворяет условию .

Если и направляющие векторы прямых и соответственно (рис.3.23,а), то величина угла между этими прямыми вычисляется по формуле:

Угол между прямыми (3.19) можно вычислить как угол между их нормалями и :

(3.22)

Чтобы получить величину острого угла между прямыми, нужно правую часть взять по абсолютной величине:

Необходимым и достаточным условием перпендикулярности прямых (3.19) является условие ортогональности их нормалей, т.е. равенства нулю скалярного произведения их нормалей :

По формуле (3.22) получаем острый угол между прямыми (3.19), если (рис.3.23,а), и тупой в противном случае: (рис.3.23,6). Другими словами, по формуле (3.22) находится тот угол между прямыми, в котором лежат точки, принадлежащие разноименным полуплоскостям, опреляемым данными прямыми . На рис.3.23 положительные и отрицательные полуплоскости отмечены знаками плюс "+" или минус "–" соответственно.



Понравилась статья? Поделитесь с друзьями!