Вычисление хи квадрат. Вопросы для самопроверки студентов

). Конкретная формулировка проверяемой гипотезы от случая к случаю будет варьировать.

В этом сообщении я опишу принцип работы критерия \(\chi^2\) на (гипотетическом) примере из иммунологии . Представим, что мы выполнили эксперимент по установлению эффективности подавления развития микробного заболевания при введении в организм соответствующих антител . Всего в эксперименте было задействовано 111 мышей, которых мы разделили на две группы, включающие 57 и 54 животных соответственно. Первой группе мышей сделали инъекции патогенных бактерий с последующим введением сыворотки крови, содержащей антитела против этих бактерий. Животные из второй группы служили контролем – им сделали только бактериальные инъекции. После некоторого времени инкубации оказалось, что 38 мышей погибли, а 73 выжили. Из погибших 13 принадлежали первой группе, а 25 – ко второй (контрольной). Проверяемую в этом эксперименте нулевую гипотезу можно сформулировать так: введение сыворотки с антителами не оказывает никакого влияния на выживаемость мышей. Иными словами, мы утверждаем, что наблюдаемые различия в выживаемости мышей (77.2% в первой группе против 53.7% во второй группе) совершенно случайны и не связаны с действием антител.

Полученные в эксперименте данные можно представить в виде таблицы:

Всего

Бактерии + сыворотка

Только бактерии

Всего

Таблицы, подобные приведенной, называют таблицами сопряженности . В рассматриваемом примере таблица имеет размерность 2х2: есть два класса объектов («Бактерии + сыворотка» и «Только бактерии»), которые исследуются по двум признакам ("Погибло" и "Выжило"). Это простейший случай таблицы сопряженности: безусловно, и количество исследуемых классов, и количество признаков может быть бóльшим.

Для проверки сформулированной выше нулевой гипотезы нам необходимо знать, какова была бы ситуация, если бы антитела действительно не оказывали никакого действия на выживаемость мышей. Другими словами, нужно рассчитать ожидаемые частоты для соответствующих ячеек таблицы сопряженности. Как это сделать? В эксперименте всего погибло 38 мышей, что составляет 34.2% от общего числа задействованных животных. Если введение антител не влияет на выживаемость мышей, в обеих экспериментальных группах должен наблюдаться одинаковый процент смертности, а именно 34.2%. Рассчитав, сколько составляет 34.2% от 57 и 54, получим 19.5 и 18.5. Это и есть ожидаемые величины смертности в наших экспериментальных группах. Аналогичным образом рассчитываются и ожидаемые величины выживаемости: поскольку всего выжили 73 мыши, или 65.8% от общего их числа, то ожидаемые частоты выживаемости составят 37.5 и 35.5. Составим новую таблицу сопряженности, теперь уже с ожидаемыми частотами:

Погибшие

Выжившие

Всего

Бактерии + сыворотка

Только бактерии

Всего

Как видим, ожидаемые частоты довольно сильно отличаются от наблюдаемых, т.е. введение антител, похоже, все-таки оказывает влияние на выживаемость мышей, зараженных патогенным микроорганизмом. Это впечатление мы можем выразить количественно при помощи критерия согласия Пирсона \(\chi^2\):

\[\chi^2 = \sum_{}\frac{(f_o - f_e)^2}{f_e},\]


где \(f_o\) и \(f_e\) - наблюдаемые и ожидаемые частоты соответственно. Суммирование производится по всем ячейкам таблицы. Так, для рассматриваемого примера имеем

\[\chi^2 = (13 – 19.5)^2/19.5 + (44 – 37.5)^2/37.5 + (25 – 18.5)^2/18.5 + (29 – 35.5)^2/35.5 = \]

Достаточно ли велико полученное значение \(\chi^2\), чтобы отклонить нулевую гипотезу? Для ответа на этот вопрос необходимо найти соответствующее критическое значение критерия. Число степеней свободы для \(\chi^2\) рассчитывается как \(df = (R - 1)(C - 1)\), где \(R\) и \(C\) - количество строк и столбцов в таблице сопряженности. В нашем случае \(df = (2 -1)(2 - 1) = 1\). Зная число степеней свободы, мы теперь легко можем узнать критическое значение \(\chi^2\) при помощи стандартной R-функции qchisq() :


Таким образом, при одной степени свободы только в 5% случаев величина критерия \(\chi^2\) превышает 3.841. Полученное нами значение 6.79 значительно превышает это критического значение, что дает нам право отвергнуть нулевую гипотезу об отсутствии связи между введением антител и выживаемостью зараженных мышей. Отвергая эту гипотезу, мы рискуем ошибиться с вероятностью менее 5%.

Следует отметить, что приведенная выше формула для критерия \(\chi^2\) дает несколько завышенные значения при работе с таблицами сопряженности размером 2х2. Причина заключается в том, что распределение самого критерия \(\chi^2\) является непрерывным, тогда как частоты бинарных признаков ("погибло" / "выжило") по определению дискретны. В связи с этим при расчете критерия принято вводить т.н. поправку на непрерывность , или поправку Йетса :

\[\chi^2_Y = \sum_{}\frac{(|f_o - f_e| - 0.5)^2}{f_e}.\]

"s Chi-squared test with Yates" continuity correction data : mice X-squared = 5.7923 , df = 1 , p-value = 0.0161


Как видим, R автоматически применяет поправку Йетса на непрерывность (Pearson"s Chi-squared test with Yates" continuity correction ). Рассчитанное программой значение \(\chi^2\) составило 5.79213. Мы можем отклонить нулевую гипотезу об отсутствии эффекта антител, рискуя ошибиться с вероятностью чуть более 1% (p-value = 0.0161 ).

Критерий независимости хи-квадрат используется для определения связи между двумя категориальными переменными. Примерами пар категориальных переменных являются: Семейное положение vs. Уровень занятости респондента; Порода собак vs. Профессия хозяина, Уровень з/п vs. Специализация инженера и др. При вычислении критерия независимости проверяется гипотеза о том, что между переменными связи нет. Вычисления будем производить с помощью функции MS EXCEL 2010 ХИ2.ТЕСТ() и обычными формулами.

Предположим у нас есть выборка данных, представляющая результат опроса 500 человек. Людям задавалось 2 вопроса: про их семейное положение (женаты, гражданский брак, не состоят в отношениях) и их уровень занятости (полный рабочий день, частичная занятость, временно не работает, на домохозяйстве, на пенсии, учеба). Все ответы поместили в таблицу:

Данная таблица называется таблицей сопряжённости признаков (или факторной таблицей, англ. Contingency table). Элементы на пересечении строк и столбцов таблицы обычно обозначают O ij (от англ. Observed, т.е. наблюденные, фактические частоты).

Нас интересует вопрос «Влияет ли Семейное положение на Занятость?», т.е. существует ли зависимость между двумя методами классификации выборки ?

При проверке гипотез такого вида обычно принимают, что нулевая гипотеза утверждает об отсутствии зависимости способов классификации.

Рассмотрим предельные случаи. Примером полной зависимости двух категориальных переменных является вот такой результат опроса:

В этом случае семейное положение однозначно определяет занятость (см. файл примера лист Пояснение ). И наоборот, примером полной независимости является другой результат опроса:

Обратите внимание, что процент занятости в этом случае не зависит от семейного положения (одинаков для женатых и не женатых). Это как раз совпадает с формулировкой нулевой гипотезы . Если нулевая гипотеза справедлива, то результаты опроса должны были бы так распределиться в таблице, что процент занятых был бы одинаковым независимо от семейного положения. Используя это, вычислим результаты опроса, которые соответствуют нулевой гипотезе (см. файл примера лист Пример ).

Сначала вычислим оценку вероятности, того, что элемент выборки будет иметь определенную занятость (см. столбец u i):

где с – количество столбцов (columns), равное количеству уровней переменной «Семейное положение».

Затем вычислим оценку вероятности, того, что элемент выборки будет иметь определенное семейное положение (см. строку v j).

где r – количество строк (rows), равное количеству уровней переменной «Занятость».

Теоретическая частота для каждой ячейки E ij (от англ. Expected, т.е. ожидаемая частота) в случае независимости переменных вычисляется по формуле:
E ij =n* u i * v j

Известно, что статистика Х 2 0 при больших n имеет приблизительно с (r-1)(c-1) степенями свободы (df – degrees of freedom):

Если вычисленное на основе выборки значение этой статистики «слишком большое» (больше порогового), то нулевая гипотеза отвергается. Пороговое значение вычисляется на основании , например с помощью формулы =ХИ2.ОБР.ПХ(0,05; df) .

Примечание : Уровень значимости обычно принимается равным 0,1; 0,05; 0,01.

При проверке гипотезы также удобно вычислять , которое мы сравниваем с уровнем значимости . p -значение рассчитывается с использованием с (r-1)*(c-1)=df степеней свободы.

Если вероятность, того что случайная величина имеющая с (r-1)(c-1) степенями свободы примет значение больше вычисленной статистики Х 2 0 , т.е. P{Х 2 (r-1)*(c-1) >Х 2 0 }, меньше уровня значимости , то нулевая гипотеза отклоняется.

В MS EXCEL p-значение можно вычислить с помощью формулы =ХИ2.РАСП.ПХ(Х 2 0 ;df) , конечно, вычислив непосредственно перед этим значение статистики Х 2 0 (это сделано в файле примера ). Однако, удобнее всего воспользоваться функцией ХИ2.ТЕСТ() . В качестве аргументов этой функции указываются ссылки на диапазоны содержащие фактические (Observed) и вычисленные теоретические частоты (Expected).

Если уровень значимости > p -значения , то означает это фактические и теоретические частоты, вычисленные из предположения справедливости нулевой гипотезы , серьезно отличаются. Поэтому, нулевую гипотезу нужно отклонить.

Использование функции ХИ2.ТЕСТ() позволяет ускорить процедуру проверки гипотез , т.к. не нужно вычислять значение статистики . Теперь достаточно сравнить результат функции ХИ2.ТЕСТ() с заданным уровнем значимости .

Примечание : Функция ХИ2.ТЕСТ() , английское название CHISQ.TEST, появилась в MS EXCEL 2010. Ее более ранняя версия ХИ2ТЕСТ() , доступная в MS EXCEL 2007 имеет тот же функционал. Но, как и для ХИ2.ТЕСТ() , теоретические частоты нужно вычислить самостоятельно.

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F (x ) и эмпирическим распределением F * п (x ) , которая приближенно подчиняется закону распределения χ 2 . Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.

Итак, пусть выборка представлена статистическим рядом с количеством разрядов M . Наблюдаемая частота попаданий в i - й разряд n i . В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет F i . Разность между наблюдаемой и ожидаемой частотой составит величину (n i F i ). Для нахождения общей степени расхождения между F (x ) и F * п (x ) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда

Величина χ 2 при неограниченном увеличении n имеет χ 2 -распределение (асимптотически распределена как χ 2). Это распределение зависит от числа степеней свободы k , т.е. количества независимых значений слагаемых в выражении (3.7). Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся M –1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются S параметров распределения, то число степеней свободы составит k = M S –1.

Область принятия гипотезы Н 0 определяется условием χ 2 < χ 2 (k ; a ) , где χ 2 (k ; a ) – критическая точка χ2-распределения с уровнем значимости a . Вероятность ошибки первого рода равна a , вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n >200, допускается применение при n >40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).

Алгоритм проверки по критерию

1. Построить гистограмму равновероятностным способом.

2. По виду гистограммы выдвинуть гипотезу

H 0: f (x ) = f 0 (x ),

H 1: f (x ) ¹ f 0 (x ),

где f 0 (x ) - плотность вероятности гипотетического закона распределения (например, равномерного, экспоненциального, нормального).

Замечание . Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.

3. Вычислить значение критерия по формуле

,

где
частота попадания вi -тый интервал;

p i - теоретическая вероятность попадания случайной величины вi - тый интервал при условии, что гипотезаH 0 верна.

Формулы для расчета p i в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

. (3.8)

При этом A 1 = 0, B m = +¥.

Равномерный закон

Нормальный закон

. (3.10)

При этом A 1 = -¥, B M = +¥.

Замечания . После вычисления всех вероятностей p i проверить, выполня­ется ли контрольное соотношение

Функция Ф(х )- нечетная. Ф(+¥) = 1.

4. Из таблицы " Хи-квадрат" Приложения выбирается значение
, гдеa - заданный уровень значимости (a = 0,05 или a = 0,01), а k - число степеней свободы, определяемое по формуле

k = M - 1 - S .

Здесь S - число параметров, от которых зависит выбранный гипотезой H 0 закон распределения. Значения S для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если
, то гипотезаH 0 отклоняется. В противном случае нет оснований ее отклонить: с вероятностью 1 - b она верна, а с вероятностью - b неверна, но величина b неизвестна.

Пример3 . 1. С помощью критерия c 2 выдвинуть и проверить гипотезу о законе распределения случайной величины X , вариационный ряд, интерваль­ные таблицы и гистограммы распределения которой приведены в примере 1.2. Уровень значимости a равен 0,05.

Решение . По виду гистограмм выдви­гаем гипотезу о том, что случайная величина X распределена по нормальному закону:

H 0: f (x ) = N (m , s);

H 1: f (x ) ¹ N (m , s).

Значение критерия вычисляем по формуле:

(3.11)

Как отмечалось выше, при проверке гипотезы предпочтительнее использовать равновероятностную гистограмму. В этом случае

Теоретические вероятности p i рассчитываем по формуле (3.10). При этом полагаем, что

p 1 = 0,5(Ф((-4,5245+1,7)/1,98)-Ф((-¥+1,7)/1,98)) = 0,5(Ф(-1,427)-Ф(-¥)) =

0,5(-0,845+1) = 0,078.

p 2 = 0,5(Ф((-3,8865+1,7)/1,98)-Ф((-4,5245+1,7)/1,98)) =

0,5(Ф(-1,104)+0,845) = 0,5(-0,729+0,845) = 0,058.

p 3 = 0,094; p 4 = 0,135; p 5 = 0,118; p 6 = 0,097; p 7 = 0,073; p 8 = 0,059; p 9 = 0,174;

p 10 = 0,5(Ф((+¥+1,7)/1,98)-Ф((0,6932+1,7)/1,98)) = 0,114.

После этого проверяем выполнение контрольного соотношения

100 × (0,0062 + 0,0304 + 0,0004 + 0,0091 + 0,0028 + 0,0001 + 0,0100 +

0,0285 + 0,0315 + 0,0017) = 100 × 0,1207 = 12,07.

После этого из таблицы "Хи - квадрат" выбираем критическое значение

.

Так как
то гипотезаH 0 принимается (нет основания ее отклонить).

Хи-квадрат критерий – универсальный метод проверки согласия результатов эксперимента и используемой статистической модели.

Расстояние Пирсона X 2

Пятницкий А.М.

Российский Государственный Медицинский Университет

В 1900 году Карл Пирсон предложил простой, универсальный и эффективный способ проверки согласия между предсказаниями модели и опытными данными. Предложенный им “хи-квадрат критерий” – это самый важный и наиболее часто используемыйстатистический критерий. Большинство задач, связанных с оценкой неизвестных параметров модели и проверки согласия модели и опытных данных, можно решить с его помощью.

Пусть имеется априорная (“до опытная”) модельизучаемого объекта или процесса (в статистике говорят о “нулевой гипотезе” H 0), и результаты опыта с этим объектом. Следует решить, адекватна ли модель (соответствует ли она реальности)? Не противоречат ли результаты опыта нашим представлениям о том, как устроена реальность, или иными словами - следует ли отвергнуть H 0 ? Часто эту задачу можно свести к сравнению наблюдаемых (O i = Observed )и ожидаемых согласно модели (E i =Expected ) средних частот появления неких событий. Считается, что наблюдаемые частоты получены в серии N независимых (!) наблюдений, производимых в постоянных (!) условиях. В результате каждого наблюдения регистрируется одно из M событий. Эти события не могут происходить одновременно (попарно несовместны) и одно из них обязательно происходит (их объединение образует достоверное событие). Совокупность всех наблюдений сводится к таблице (вектору) частот {O i }=(O 1 ,… O M ), которая полностью описывает результаты опыта. Значение O 2 =4 означает, что событие номер 2 произошло 4 раза. Сумма частот O 1 +… O M =N . Важно различать два случая: N – фиксировано, неслучайно, N – случайная величина. При фиксированном общем числе опытов N частоты имеют полиномиальное распределение. Поясним эту общую схему простым примером.

Применение хи-квадрат критерия для проверки простых гипотез.

Пусть модель (нулевая гипотеза H 0) заключается в том, что игральная кость является правильной - все грани выпадают одинаково часто с вероятностью p i =1/6, i =, M=6. Проведен опыт, который состоял в том, что кость бросили 60 раз (провели N =60 независимых испытаний). Согласно модели мы ожидаем, что все наблюдаемые частоты O i появления 1,2,... 6 очков должны быть близки к своим средним значениям E i =Np i =60∙(1/6)=10. Согласно H 0 вектор средних частот {E i }={Np i }=(10, 10, 10, 10, 10, 10). (Гипотезы, в которых средние частоты полностью известны до начала опыта, называются простыми.) Если бы наблюдаемый вектор {O i } был равен (34,0,0,0,0,26) , то сразу ясно, что модель неверна – кость не может быть правильной, так как60 раз выпадали только 1 и 6. Вероятность такого события для правильной игральной кости ничтожна: P = (2/6) 60 =2.4*10 -29 . Однако появление столь явных расхождений между моделью и опытом исключение. Пусть вектор наблюдаемых частот {O i } равен (5, 15, 6, 14, 4, 16). Согласуется ли это с H 0 ? Итак, нам надо сравнить два вектора частот {E i } и {O i }. При этом вектор ожидаемых частот {E i } не случаен, а вектор наблюдаемых {O i } случаен – при следующем опыте (в новой серии из 60 бросков) он окажется другим. Полезно ввести геометрическую интерпретацию задачи и считать, что в пространстве частот (в данном случае 6 мерном) даны две точки с координатами(5, 15, 6, 14, 4, 16) и (10, 10, 10, 10, 10, 10). Достаточно ли далеко они удалены друг от друга, чтобы счесть это несовместным сH 0 ? Иными словами нам надо:

  1. научиться измерять расстояния между частотами (точками пространства частот),
  2. иметь критерий того, какое расстояние следует считать слишком (“неправдоподобно”) большим, то есть несовместным с H 0 .

Квадрат обычного евклидова расстояниябыл бы равен:

X 2 Euclid = S (O i -E i) 2 = (5-10) 2 +(15-10) 2 + (6-10) 2 +(14-10) 2 +(4-10) 2 +(16-10) 2

При этом поверхности X 2 Euclid = const всегда являются сферами, если мы фиксируем значения E i и меняем O i . Карл Пирсон заметил, что использовать евклидово расстояние в пространстве частот не следует. Так, неправильно считать, что точки (O =1030 и E =1000) и (O =40 и E =10) находятся на равном расстоянии друг от друга, хотя в обоих случаях разность O -E =30. Ведь чем больше ожидаемая частота, тем большие отклонения от нее следует считать возможными. Поэтому точки (O =1030 и E =1000) должны считаться “близкими”, а точки (O =40 и E =10) “далекими” друг от друга. Можно показать, что если верна гипотеза H 0 , то флуктуации частоты O i относительно E i имеют величину порядка квадратного корня(!) из E i . Поэтому Пирсон предложил при вычислении расстояния возводить в квадраты не разности (O i -E i ), а нормированные разности (O i -E i )/E i 1/2 . Итак, вот формула, по которой вычисляется расстояние Пирсона (фактически это квадрат расстояния):

X 2 Pearson = S ((O i -E i )/E i 1/2) 2 =S (O i -E i ) 2 /E i

В нашем примере:

X 2 Pearson = (5-10) 2 /10+(15-10) 2 /10 +(6-10) 2 /10+(14-10) 2 /10+(4-10) 2 /10+(16-10) 2 /10=15.4

Для правильной игральной кости все ожидаемые частоты E i одинаковы, но обычно они различны, поэтому поверхности, на которых расстояние Пирсона постоянно (X 2 Pearson =const) оказываются уже эллипсоидами, а не сферами.

Теперь после того, как выбрана формула для подсчета расстояний, необходимо выяснить, какие расстояния следует считать “не слишком большими” (согласующимися с H 0).Так, например, что можно сказать по поводу вычисленного нами расстояния 15.4? В каком проценте случаев (или с какой вероятностью), проводя опыты с правильной игральной костью, мы получали бы расстояние большее, чем 15.4? Если этот процент будет мал (<0.05), то H 0 надо отвергнуть. Иными словами требуется найти распределение длярасстояния Пирсона. Если все ожидаемые частоты E i не слишком малы (≥5), и верна H 0 , то нормированные разности (O i - E i )/E i 1/2 приближенно эквивалентны стандартным гауссовским случайным величинам: (O i - E i )/E i 1/2 ≈N (0,1). Это, например, означает, что в 95% случаев| (O i - E i )/E i 1/2 | < 1.96 ≈ 2 (правило “двух сигм”).

Пояснение . Число измерений O i , попадающих в ячейку таблицы с номером i , имеет биномиальное распределение с параметрами: m =Np i =E i ,σ =(Np i (1-p i )) 1/2 , где N - число измерений (N »1), p i – вероятность для одного измерения попасть в данную ячейку (напомним, что измерения независимы и производятся в постоянных условиях). Если p i мало, то: σ≈(Np i ) 1/2 =E i и биномиальное распределение близко к пуассоновскому, в котором среднее число наблюдений E i =λ, а среднее квадратичное отклонение σ=λ 1/2 = E i 1/2 . Для λ≥5пуассоновскоераспределение близко к нормальному N (m =E i =λ, σ=E i 1/2 =λ 1/2), а нормированная величина (O i - E i )/E i 1/2 ≈ N (0,1).

Пирсон определил случайную величину χ 2 n – “хи-квадрат с n степенями свободы”, как сумму квадратов n независимых стандартных нормальных с.в.:

χ 2 n = T 1 2 + T 2 2 + …+ T n 2 , гдевсе T i = N(0,1) - н. о. р. с. в.

Попытаемся наглядно понять смысл этой важнейшей в статистике случайной величины. Для этого на плоскости (при n =2) или в пространстве (при n =3) представим облако точек, координаты которых независимы и имеют стандартное нормальное распределениеf T (x ) ~exp (-x 2 /2). На плоскости согласно правилу “двух сигм”, которое независимо применяется к обеим координатам, 90% (0.95*0.95≈0.90) точек заключены внутри квадрата(-2

f χ 2 2 (a) = Сexp(-a/2) = 0.5exp(-a/2).

При достаточно большом числе степеней свободы n (n >30) хи-квадрат распределение приближается к нормальному: N (m = n ; σ = (2n ) ½). Это следствие “центральной предельной теоремы”: сумма одинаково распределенных величин имеющих конечную дисперсию приближается к нормальному закону с ростом числа слагаемых.

Практически надо запомнить, что средний квадрат расстояния равен m (χ 2 n )=n , а его дисперсия σ 2 (χ 2 n )=2n . Отсюда легко заключить какие значения хи-квадрат следует считать слишком малыми и слишком большими:большая часть распределения заключена в пределахот n -2∙(2n ) ½ до n +2∙(2n ) ½ .

Итак, расстояния Пирсона существенно превышающие n +2∙ (2n ) ½ , следует считать неправдоподобно большими (не согласующимися с H 0) . Если результат близок к n +2∙(2n ) ½ , то следует воспользоваться таблицами, в которых можно точно узнать в какой доле случаев могут появляться такие и большие значения хи-квадрат.

Важно знать, как правильно выбирать значение числа степеней свободы (number degrees of freedom , сокращенно n .d .f .). Казалось естественным считать, что n просто равно числу разрядов: n =M . В своей статье Пирсон так и предположил. В примере с игральной костью это означало бы, что n =6. Однако спустя несколько лет было показано, что Пирсон ошибся. Число степеней свободы всегда меньше числа разрядов, если между случайными величинами O i есть связи. Для примера с игральной костью сумма O i равна 60, и независимо менять можно лишь 5 частот, так что правильное значение n =6-1=5. Для этого значения n получаем n +2∙(2n ) ½ =5+2∙(10) ½ =11.3. Так как15.4>11.3, то гипотезу H 0 - игральная кость правильная, следует отвергнуть.

После выяснения ошибки, существовавшие таблицы χ 2 пришлось дополнить, так как исходно в них не было случая n =1, так как наименьшее число разрядов =2. Теперь же оказалось, что могут быть случаи, когда расстояние Пирсона имеет распределение χ 2 n =1 .

Пример . При 100 бросаниях монеты число гербов равно O 1 = 65, а решек O 2 = 35. Число разрядов M =2. Если монета симметрична, то ожидаемые частотыE 1 =50, E 2 =50.

X 2 Pearson = S (O i -E i) 2 /E i = (65-50) 2 /50 + (35-50) 2 /50 = 2*225/50 = 9.

Полученное значение следует сравнивать с теми, которые может принимать случайная величина χ 2 n =1 , определенная как квадрат стандартной нормальной величины χ 2 n =1 =T 1 2 ≥ 9 ó T 1 ≥3 или T 1 ≤-3. Вероятность такого события весьма мала P (χ 2 n =1 ≥9) = 0.006. Поэтому монету нельзя считать симметричной: H 0 следует отвергнуть. То, что число степеней свободы не может быть равно числу разрядов видно из того, что сумма наблюдаемых частот всегда равна сумме ожидаемых, например O 1 +O 2 =65+35 = E 1 +E 2 =50+50=100. Поэтому случайные точки с координатами O 1 и O 2 располагаются на прямой: O 1 +O 2 =E 1 +E 2 =100 и расстояние до центра оказывается меньше, чем, если бы этого ограничения не было, и они располагались на всей плоскости. Действительно для двух независимые случайных величин с математическими ожиданиями E 1 =50, E 2 =50, сумма их реализаций не должна быть всегда равной 100 – допустимыми были бы, например, значения O 1 =60, O 2 =55.

Пояснение . Сравним результат, критерия Пирсона при M =2 с тем, что дает формула Муавра Лапласа при оценке случайных колебаний частоты появления события ν =K /N имеющего вероятность p в серии N независимых испытаний Бернулли (K -число успехов):

χ 2 n =1 =S (O i -E i ) 2 /E i = (O 1 -E 1) 2 /E 1 + (O 2 -E 2) 2 /E 2 = (Nν -Np ) 2 /(Np ) + (N (1-ν )-N (1-p )) 2 /(N (1-p ))=

=(Nν-Np) 2 (1/p + 1/(1-p))/N=(Nν-Np) 2 /(Np(1-p))=((K-Np)/(Npq) ½) 2 = T 2

Величина T =(K -Np )/(Npq ) ½ = (K -m (K ))/σ(K ) ≈N (0,1) при σ(K )=(Npq ) ½ ≥3. Мы видим, что в этом случае результат Пирсона в точности совпадает с тем, что дает применение нормальной аппроксимации для биномиального распределения.

До сих пор мы рассматривали простые гипотезы, для которых ожидаемые средние частоты E i полностью известны заранее. О том, как правильно выбирать число степеней свободы для сложных гипотез см. ниже.

Применение хи-квадрат критерия для проверки сложных гипотез

В примерах с правильной игральной костью и монетой ожидаемые частоты можно было определить до(!) проведения опыта. Подобные гипотезы называются “простыми”. На практике чаще встречаются “сложные гипотезы”. При этом для того, чтобы найти ожидаемые частоты E i надо предварительно оценить одну или несколько величин (параметры модели), и сделать это можно только, воспользовавшись данными опыта. В результате для “сложных гипотез” ожидаемые частоты E i оказываются зависящими от наблюдаемых частот O i и потому сами становятся случайными величинами, меняющимися в зависимости от результатов опыта. В процессе подбора параметров расстояние Пирсона уменьшается – параметры подбираются так, чтобы улучшить согласие модели и опыта. Поэтому число степеней свободы должно уменьшаться.

Как оценить параметры модели? Есть много разных способов оценки – “метод максимального правдоподобия”, “метод моментов”, “метод подстановки”. Однако можно не привлекать никаких дополнительных средств и найти оценки параметров минимизируя расстояние Пирсона. В докомпьютерную эпоху такой подход использовался редко: приручных расчетах он неудобен и, как правило, не поддается аналитическому решению. При расчетах на компьютере численная минимизация обычно легко осуществляется, а преимуществом такого способа является его универсальность. Итак, согласно “методу минимизации хи-квадрат”, мы подбираем значения неизвестных параметров так, чтобы расстояние Пирсона стало наименьшим. (Кстати, изучая изменения этого расстояния при небольших смещениях относительно найденного минимума можно оценить меру точности оценки: построить доверительные интервалы.) После того как параметры и само это минимальное расстояние найдено опять требуется ответить на вопрос достаточно ли оно мало.

Общая последовательность действий такова:

  1. Выбор модели (гипотезы H 0).
  2. Выбор разрядов и определение вектора наблюдаемых частот O i .
  3. Оценка неизвестных параметров модели и построение для них доверительных интервалов (например, через поиск минимума расстояния Пирсона).
  4. Вычисление ожидаемых частот E i .
  5. Сравнение найденной величины расстояния Пирсона X 2 с критическим значением хи-квадрат χ 2 крит - наибольшим, которое еще рассматривается как правдоподобное, совместимое с H 0 . Величину, χ 2 крит мы находим из таблиц, решая уравнение

P (χ 2 n > χ 2 крит)=1-α,

где α – “уровень значимости” или ”размер критерия” или “величина ошибки первого рода” (типичное значение α=0.05).

Обычно число степеней свободы n вычисляют по формуле

n = (число разрядов) – 1 – (число оцениваемых параметров)

Если X 2 > χ 2 крит, то гипотеза H 0 отвергается, в противном случае принимается. В α∙100% случаев (то есть достаточно редко) такой способ проверки H 0 приведет к “ошибке первого рода”: гипотеза H 0 будет отвергнута ошибочно.

Пример. При исследовании 10 серий из 100 семян подсчитывалось число зараженных мухой-зеленоглазкой. Получены данные: O i =(16, 18, 11, 18, 21, 10, 20, 18, 17, 21);

Здесь неизвестен заранее вектор ожидаемых частот. Если данные однородны и получены для биномиального распределения, то неизвестен один параметр доля p зараженных семян. Заметим, что в исходной таблице фактически имеется не 10 а 20 частот, удовлетворяющих 10 связям: 16+84=100, … 21+79=100.

X 2 = (16-100p) 2 /100p +(84-100(1-p)) 2 /(100(1-p))+…+

(21-100p) 2 /100p +(79-100(1-p)) 2 /(100(1-p))

Объединяя слагаемые в пары (как в примере с монетой), получаем ту форму записи критерия Пирсона, которую обычно пишут сразу:

X 2 = (16-100p) 2 /(100p(1-p))+…+ (21-100p) 2 /(100p(1-p)).

Теперь если в качестве метода оценки р использовать минимум расстояния Пирсона, то необходимо найти такое p , при котором X 2 =min . (Модель старается по возможности “подстроиться” под данные эксперимента.)

Критерий Пирсона - это наиболее универсальный из всех используемых в статистике. Его можно применять к одномерным и многомерным данным, количественным и качественным признакам. Однако именно в силу универсальности следует быть осторожным, чтобы не совершить ошибки.

Важные моменты

1.Выбор разрядов.

  • Если распределение дискретно, то произвола в выборе разрядов обычно нет.
  • Если распределение непрерывно, то произвол неизбежен. Можно использовать статистически эквивалентные блоки (все O одинаковы, например =10). При этом длины интервалов разные. При ручных вычислениях стремились делать интервалы одинаковыми. Должны ли интервалы при изучении распределения одномерного признака быть равными? Нет.
  • Объединять разряды нужно так, чтобы не слишком малыми (≥5) оказывались именно ожидаемые (а не наблюдаемые!) частоты. Напомним, что именно они {E i } стоят в знаменателях при вычислении X 2 ! При анализе одномерных признаков допускается нарушать это правило в двух крайних разрядах E 1 =E max =1. Если число разрядов велико, и ожидаемые частоты близки, то X 2 хорошо приближается χ 2 даже для E i =2.

Оценка параметров . Использование “самодельных”, неэффективных методов оценки может привести к завышенным значениям расстояния Пирсона.

Выбор правильного числа степеней свободы . Если оценки параметров делаются не по частотам, а непосредственно по данным (например, в качестве оценки среднего берется среднее арифметическое), то точное число степеней свободы n неизвестно. Известно лишь, что оно удовлетворяет неравенству:

(число разрядов – 1 – число оцениваемых параметров) < n < (число разрядов – 1)

Поэтому необходимо сравнить X 2 с критическими значениями χ 2 крит вычисленными во всем этом диапазоне n .

Как интерпретировать неправдоподобно малые значения хи-квадрат? Следует ли считать монету симметричной, если при 10000 бросаний, она 5000 раз выпала гербом? Ранее многие статистики считали, что H 0 при этом также следует отвергнуть. Теперь предлагается другой подход: принять H 0 , но подвергнуть данные и методику их анализа дополнительной проверке. Есть две возможности: либо слишком малое расстояние Пирсона означает, что увеличение числа параметров модели не сопровождалось должным уменьшением числа степеней свободы, или сами данные были сфальсифицированы (возможно ненамеренно подогнаны под ожидаемый результат).

Пример. Два исследователя А и B подсчитывали долю рецессивных гомозигот aa во втором поколении при моногибридном скрещивании AA * aa . Согласно законам Менделя эта доля равна 0.25. Каждый исследователь провел по 5 опытов, и в каждом опыте изучалось 100 организмов.

Результаты А: 25, 24, 26, 25, 24. Вывод исследователя: закон Менделя справедлив(?).

Результаты B : 29, 21, 23, 30, 19. Вывод исследователя: закон Менделя не справедлив(?).

Однако закон Менделя имеет статистическую природу, и количественный анализ результатов меняет выводы на обратные! Объединив пять опытов в один, мы приходим к хи-квадрат распределению с 5 степенями свободы (проверяется простая гипотеза):

X 2 A = ((25-25) 2 +(24-25) 2 +(26-25) 2 +(25-25) 2 +(24-25) 2)/(100∙0.25∙0.75)=0.16

X 2 B = ((29-25) 2 +(21-25) 2 +(23-25) 2 +(30-25) 2 +(19-25) 2)/(100∙0.25∙0.75)=5.17

Среднее значение m [χ 2 n =5 ]=5, среднеквадратичное отклонение σ[χ 2 n =5 ]=(2∙5) 1/2 =3.2.

Поэтому без обращения к таблицам ясно, что значение X 2 B типично, а значение X 2 A неправдоподобно мало. Согласно таблицам P (χ 2 n =5 <0.16)<0.0001.

Этот пример – адаптированный вариант реального случая, произошедшего в 1930-е годы (см. работу Колмогорова “Об еще одном доказательстве законов Менделя”). Любопытно, что исследователь A был сторонником генетики, а исследователь B – ее противником.

Путаница в обозначениях. Следует различать расстояние Пирсона, которое при своем вычислении требует дополнительных соглашений,от математического понятия случайной величины хи-квадрат. Расстояние Пирсона при определенных условиях имеет распределение близкое к хи-квадрат с n степенями свободы. Поэтому желательно НЕ обозначать расстояние Пирсона символом χ 2 n , а использовать похожее, но другое обозначение X 2. .

Критерий Пирсона не всесилен. Существует бесконечное множество альтернатив для H 0 , которые он не в состоянии учесть. Пусть вы проверяете гипотезу о том, что признак имел равномерное распределение, у вас имеется 10 разрядов и вектор наблюдаемых частот равен (130,125,121,118,116,115,114,113,111,110). Критерий Пирсона не c может “заметить” того, что частоты монотонно уменьшаются и H 0 не будет отклонена. Если бы его дополнить критерием серий то да!

23. Понятие распределения хи-квадрат и Стьюдента, и графический вид

1) Распределение (хи-квадрат) с n степенями свободы - это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Распределение (хи – квадрат) – распределение случайной величины (причем математическое ожидание каждой из них равно 0, а среднее квадратическое отклонение-1)

где случайные величины независимы и имеют одно и тоже распределение. При этом число слагаемых, т.е., называется "числом степеней свободы" распределения хи-квадрат. Число хи-квадрат опредляется одни параметром-числом степеней свободы. С увеличением числа степеней свободы распределение медленно приближается к нормальному.

Тогда сумма их квадратов

является случайной величиной, распределенной по так называемому закону «хи-квадрат» с k = n степенями свободы; если же слагаемые связаны каким-либо соотношением (например, ), то число степеней свободы k = n – 1.

Плотность этого распределения

Здесь - гамма-функция; в частности, Г(п + 1) = п! .

Следовательно, распределение «хи-квадрат» определяется одним параметром – числом степеней свободы k.

Замечание 1. С увеличением числа степеней свободы распределение «хи-квадрат» постепенно приближается к нормальному.

Замечание 2. С помощью распределения «хи-квадрат» определяются многие другие распреде-ления, встречающиеся на практике, например, распределение случайной величины - длины случайного вектора (Х1, Х2,…, Хп), координаты которого независимы и распределены по нормальному закону.

Впервые χ2-распределение было рассмотрено Р.Хельмертом (1876) и К.Пирсоном (1900).

Мат.ожид.=n; D=2n

2) Распределение Стьюдента

Рассмотрим две независимые случайные величины: Z, имеющую нормальное распределение и нормированную (то есть М(Z) = 0, σ(Z) = 1), и V, распределенную по закону «хи-квадрат» с k степенями свободы. Тогда величина

имеет распределение, называемое t – распределением или распределением Стьюдента с k степенями свободы. При этом k называется "числом степеней свободы" распределения Стьюдента.

С возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, "ноу-хау" в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом "Стьюдент". История Госсета – Стьюдента показывает, что еще сто лет назад менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.



Понравилась статья? Поделитесь с друзьями!