Что такое белый карлик в астрономии. Белый карлик, нейтронная звезда, черная дыра

Белые карлики: остывающие звезды во вселенной

Белые карлики - проэволюционировавшие с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.

Белые карлики представляют собой компактные звёзды с массами, сравнимыми или больше массы , но с радиусами в 100 раз меньше и, соответственно, болометрическими светимостями в ~10 000 раз меньшими солнечной. Средняя плотность вещества белых карликов в пределах их фотосфер 105-109 г/см³, что почти в миллион раз выше плотности звёзд главной последовательности. По распространённости белые карлики составляют, по разным оценкам, 3-10 % звёздного населения нашей . Неопределённость оценки обусловлена трудностью наблюдения удалённых белых карликов из-за их малой светимости.

Видимое движение Сириуса по небесной сфере (по Фламмариону)

Первым открытым белым карликом стала звезда 40 Эридана B в тройной системе системе 40 Эридана, которую ещё в 1785 году Вильям Гершель включил в каталог двойных звёзд. В 1910 году Генри Норрис Расселл обратил внимание на аномально низкую светимость 40 Эридана B при её высокой цветовой температуре, что и послужило впоследствии выделению подобных звёзд в отдельный класс белых карликов.

Вторым и третьим открытыми белыми карликами стали Сириус B и Процион B. В 1844 году директор Кёнигсбергской обсерватории Фридрих Бессель, анализируя данные наблюдений, которые велись с 1755 года, обнаружил, что Сириус, ярчайшая звезда неба, и Процион периодически, хотя и весьма слабо, отклоняются от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у каждой из них должен быть близкий спутник. Сообщение было встречено скептически, поскольку слабый спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика - сравнимой с массой Сириуса и Проциона, соответственно.

В январе 1862 года Элвин Грэхэм Кларк, юстируя 18-дюймовый рефрактор, самый большой на то время телескоп в мире (Dearborn Telescope), впоследствии поставленный семейной фирмой Кларков в обсерваторию Чикагского университета, обнаружил в непосредственной близости от Сириуса тусклую звёздочку. Это был спутник Сириуса, Сириус B, предсказанный Бесселем. А в 1896 году американский астроном Д. М. Шеберле открыл Процион B, подтвердив тем самым и второе предсказание Бесселя.

В 1915 году американский астроном Уолтер Сидней Адамс измерил спектр Сириуса B. Из измерений следовало, что его температура не ниже, чем у Сириуса A (по современным данным, температура поверхности Сириуса B составляет 25 000 K, а Сириуса A - 10 000 K), что, с учётом его в 10 000 раз более низкой светимости, чем у Сириуса A, указывает на очень малый радиус и, соответственно, высокую плотность - 106 г/см³ (плотность Сириуса ~0,25 г/см³, плотность Солнца ~1,4 г/см³).

В 1917 году Адриан ван Маанен открыл ещё один белый карлик - звезду ван Маанена в созвездии Рыб.

В 1922 году Виллем Якоб Лейтен предложил называть такие звёзды «белыми карликами».

В начале XX века Герцшпрунгом и Расселлом была открыта закономерность в отношении спектрального класса (то есть температуры) и светимости звёзд - диаграмма Герцшпрунга - Расселла (Г-Р диаграмма). Казалось, что всё разнообразие звёзд укладывается в две ветви Г-Р диаграммы - главную последовательность и ветвь красных гигантов. В ходе работ по накоплению статистики распределения звёзд по спектральному классу и светимости Расселл обратился в 1910 году к профессору Эдуарду Пикерингу. Дальнейшие события Расселл описывает так:

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов. Эта часть казавшейся рутинной работы оказалась весьма плодотворной - она привела к открытию того, что все звёзды очень малой абсолютной величины (то есть низкой светимости) имеют спектральный класс M (то есть очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув, в частности, 40 Эридана B. Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды - A (то есть высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы „возможными“ значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: „Именно такие исключения и ведут к расширению наших знаний“ - и белые карлики вошли в мир исследуемого»

Удивление Расселла вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса - белые карлики образовали новую область на Г-Р диаграмме. Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой в рамках классической физики и астрономии и нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми - Дирака. В 1926 году Фаулер в статье «О плотной материи» («On dense matter», Monthly Notices R. Astron. Soc. 87, 114-122) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы Якова Френкеля, Э. Стоунера и Чандрасекара. В 1928 году Френкель указал, что для белых карликов должен существовать верхний предел массы, то есть эти звёзды с массой выше определённого предела неустойчивы и должны коллапсировать. К этому же выводу независимо пришёл в 1930 году Э. Стоунер, который дал правильную оценку предельной массы. Более точно её вычислил в 1931 году Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81-82) (предел Чандрасекара) и независимо от него в 1932 году Л. Д. Ландау.

Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего, и предположение астронома Василия Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза (масштаб не соблюдён).

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108 К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (4He, альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия 8Be.

Несмотря на весьма низкую равновесную концентрацию 8Be (например, при температуре ~108 К отношение концентраций / ~10−10), скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока.

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры, и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступивших в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты - гелиевые белые карлики, фиолетовые кружки - «нормальные» белые карлики с высоким содержанием углерода.

В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд - из углерода и более тяжёлых элементов. Однако в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля, то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов являются белые карлики.

Протопланетарная туманность HD 44179: асимметричный выброс газопылевой материи красным гигантом.

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей. Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями. Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~70 % массы звезды. «Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, наблюдаются такие объекты как протопланетарные туманности.

Планетарная туманность NGC 3132: в центре двойная звезда - аналог Сириуса.

Такие звёзды явно нестабильны, и в 1956 году астроном и астрофизик Иосиф Шкловский предложил механизм образования планетарных туманностей через сброс оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звёзд приводит к рождению белых карликов. Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока неясны, но можно предположить следующие факторы, способные внести свой вклад в потерю оболочки:

Из-за крайне высокой светимости существенным становится световое давление потока излучения звезды на её внешние слои, что, по расчётным данным, может привести к потере оболочки за несколько тысяч лет.

Вследствие ионизации водорода в областях, лежащих ниже фотосферы, может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.

В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимся изменением теплового режима звезды. Наблюдаются волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний.

У красных гигантов с «двуслойным» термоядерным источником, перешедших на поздней стадии своей эволюции на асимптотическую ветвь гигантов, наблюдаются термические пульсации, сопровождающиеся «переключением» водородного и гелиевого термоядерных источников и интенсивной потерей массы.

Так или иначе, но достаточно длительный период относительно спокойного истечения вещества с поверхности красных гигантов заканчивается сбросом его оболочки и обнажением его ядра. Такая сброшенная оболочка наблюдается как планетарная туманность. Скорости расширения протопланетарных туманностей составляют десятки км/с, то есть близки к значению параболических скоростей на поверхности красных гигантов, что служит дополнительным подтверждением их образования сбросом «излишка массы» красных гигантов.

Сейчас предложенный Шкловским сценарий конца эволюции красных гигантов является общепринятым и подкреплён многочисленными наблюдательными данными.

Как уже упоминалось, массы белых карликов составляют порядка солнечной, но размеры составляют лишь сотую (и даже меньше) часть солнечного радиуса, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г/см³. При таких плотностях электронные оболочки атомов разрушаются, и вещество представляет собой электронно-ядерную плазму, причём её электронная составляющая представляет собой вырожденный электронный газ. Таким образом, для белых карликов, в отличие от звёзд главной последовательности и гигантов, не существует зависимость масса - светимость.

Вышеприведённое уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов. Вместе с тем, при росте плотности вещества из-за запрета Паули (два электрона не могут иметь одно квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая. Следствием такого соотношения зависимостей является существование некоторого значения массы звезды, при которой гравитационные силы уравновешиваются силами давления, а при увеличении массы белого карлика его радиус уменьшается. Другим следствием является то, что если масса больше некоторого предела (предел Чандрасекара), то звезда коллапсирует.

Таким образом, для белых карликов существует верхний предел массы. Интересно, что для наблюдаемых белых карликов существует и аналогичный нижний предел: поскольку скорость эволюции звёзд пропорциональна их массе, то мы можем наблюдать маломассивные белые карлики как остатки лишь тех звёзд, которые успели проэволюционировать за время от начального периода звездообразования Вселенной до наших дней.

Спектры белых карликов в шаровом скоплении NGC 6397. «Стандартный» спектр белого карлика спектрального класса DA для сравнения показан сверху (красный).

Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность - небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.

Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~108 см/с² (или ~1000 км/с²), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.

Белые карлики выделяются в отдельный спектральный класс D (от англ. Dwarf - карлик), в настоящее время используется классификация, отражающая особенности спектров белых карликов, предложенная в 1983 г. Эдвардом Сионом; в этой классификации спектральный класс записывается в следующем формате:

DA - в спектре присутствуют линии бальмеровской серии водорода, линии гелия не наблюдаются
DB - в спектре присутствуют линии гелия He I, линии водорода или металлов отсутствуют
DC - непрерывный спектр без линий поглощения
DO - в спектре присутствуют сильные линии гелия He II, также могут присутствовать линии He I и H
DZ - только линии металлов, линии H или He отсутствуют
DQ - линии углерода, в том числе молекулярного C2
и спектральные особенности:
P - наблюдается поляризация света в магнитном поле
H - поляризация при наличии магнитного поля не наблюдается
V - звёзды типа ZZ Кита или другие переменные белые карлики
X - пекулярные или неклассифицируемые спектры

Экзотическая двойная система PSR J0348+0432, состоящая из пульсара и белого карлика, который обращается вокруг него за 2,5 часа.

Белые карлики начинают свою эволюцию как обнажившиеся вырожденные ядра красных гигантов, сбросивших свою оболочку - то есть в качестве центральных звёзд молодых планетарных туманностей. Температуры фотосфер ядер молодых планетарных туманностей чрезвычайно высоки - так, например, температура центральной звезды туманности NGC 7293 составляет от 90 000 К (оценка по линиям поглощения) до 130 000 К (оценка по рентгеновскому спектру). При таких температурах большая часть спектра приходится на жёсткое ультрафиолетовое и мягкое рентгеновское излучение.

Система KOI-256, состоящая из красного и белого карликов. Иллюстрация NASA.

Вместе с тем, наблюдаемые белые карлики по своим спектрам преимущественно делятся на две большие группы - «водородные» спектрального класса DA, в спектрах которых отсутствуют линии гелия, которые составляют ~80 % популяции белых карликов, и «гелиевые» спектрального класса DB без линий водорода в спектрах, составляющие большую часть оставшихся 20 % популяции. Причина такого различия состава атмосфер белых карликов долгое время оставалась неясной. В 1984 году Ико Ибен рассмотрел сценарии «выхода» белых карликов из пульсирующих красных гигантов, находящихся на асимптотической ветви гигантов, на различных фазах пульсации. На поздней стадии эволюции у красных гигантов с массами до десяти солнечных в результате «выгорания» гелиевого ядра образуется вырожденное ядро, состоящее преимущественно из углерода и более тяжёлых элементов, окружённое невырожденным гелиевым слоевым источником, в котором идёт тройная гелиевая реакция. В свою очередь, над ним располагается слоевой водородный источник, в котором идут термоядерные реакции цикла Бете превращения водорода в гелий, окружённый водородной оболочкой; таким образом, внешний водородный слоевой источник является «производителем» гелия для гелиевого слоевого источника. Горение гелия в слоевом источнике подвержено тепловой неустойчивости вследствие чрезвычайно высокой зависимости от температуры, и это усугубляется большей скоростью преобразования водорода в гелий по сравнению со скоростью выгорания гелия; результатом становится накопление гелия, его сжатие до начала вырождения, резкое повышение скорости тройной гелиевой реакции и развитие слоевой гелиевой вспышки.

За крайне короткое время (~30 лет) светимость гелиевого источника увеличивается настолько, что горение гелия переходит в конвективный режим, слой расширяется, выталкивая наружу водородный слоевой источник, что ведёт к его охлаждению и прекращению горения водорода. После выгорания избытка гелия в процессе вспышки светимость гелиевого слоя падает, внешние водородные слои красного гиганта сжимаются, и происходит новый поджог водородного слоевого источника.

Ибен предположил, что пульсирующий красный гигант может сбросить оболочку, образовав планетарную туманность, как в фазе гелиевой вспышки, так и в спокойной фазе с активным слоевым водородным источником, и, поскольку поверхность отрыва оболочки зависит от фазы, то при сбросе оболочки во время гелиевой вспышки обнажается «гелиевый» белый карлик спектрального класса DB, а при сбросе оболочки гигантом с активным слоевым водородным источником - «водородный» карлик DA; длительность гелиевой вспышки составляет около 20 % от длительности цикла пульсации, что и объясняет соотношение водородных и гелиевых карликов DA:DB ~ 80:20.

Крупные звёзды (в 7-10 раз тяжелее Солнца) в какой-то момент «сжигают» водород, гелий и углерод и превращаются в белые карлики с богатым кислородом ядром. Звёзды SDSS 0922+2928 и SDSS 1102+2054 с кислородсодержащей атмосферой это подтверждают.

Поскольку белые карлики лишены собственных термоядерных источников энергии, то они излучают за счёт запасов своего тепла. Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, пропорциональна четвёртой степени температуры тела.

Как уже отмечалось, в уравнение состояния вырожденного электронного газа температура не входит - то есть радиус белого карлика и излучающая площадь остаются неизменными: в результате, во-первых, для белых карликов не существует зависимость масса - светимость, но существует зависимость возраст - светимость (зависящая только от температуры, но не от площади излучающей поверхности), и, во-вторых, сверхгорячие молодые белые карлики должны достаточно быстро остывать, так как поток излучения и, соответственно, темп остывания, пропорционален четвёртой степени температуры.

В пределе, после десятков миллиардов лет остывания любой белый карлик должен превратиться в так называемый Чёрный карлик (не излучающий видимый свет). Хотя пока таких объектов во Вселенной не наблюдается (по некоторым подсчетам минимум 1015 млрд. лет требуется для остывания белого карлика до температуры 5K), так как время, прошедшее со времени образования первых звезд во Вселенной, составляет (по современным представлениям) около 13 миллиардов лет, но некоторые белые карлики уже охладились до температур ниже 4000 градусов Кельвина (например белые карлики WD 0346+246 и SDSS J110217, 48+411315.4 с температурами 3700K - 3800K и спектральным классом M0 на расстоянии около 100 световых лет от Солнца), что, наряду с малыми размерами, делает их обнаружение весьма сложной задачей.

Снимок Сириуса в мягком рентгеновском диапазоне. Яркий компонент - белый карлик Сириус Б, тусклый - Сириус А

Температура поверхности молодых белых карликов - изотропных ядер звёзд после сброса оболочек, очень высока - более 2·10 5 К, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звезд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» - на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвин, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.

Переменная звезда Мира (ο Кита) в ультрафиолетовом диапазоне. Виден аккреционный «хвост», направленный от основного компонента - красного гиганта к компаньону - белому карлику

При эволюции звёзд различных масс в двойных системах темпы эволюции компонентов неодинаковы, при этом более массивный компонент может проэволюционировать в белый карлик, в то время как менее массивный к этому времени может оставаться на главной последовательности. В свою очередь, при сходе в процессе эволюции менее массивного компонента с главной последовательности и его переходе на ветвь красных гигантов размер эволюционирующей звезды начинает расти до тех пор, пока она не заполняет свою полость Роша. Поскольку полости Роша компонентов двойной системы соприкасаются в точке Лагранжа L1, то на этой стадии эволюции менее массивного компонента чего через точку L1 начинается переток материи с красного гиганта в полость Роша белого карлика и дальнейшая аккреция богатой водородом материи на его поверхность, что приводит к ряду астрономических феноменов:

Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.

Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях магнитного поля карлика вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).

Слева - изображение в рентгеновском диапазоне остатков сверхновой SN 1572 типа Ia, наблюдавшейся Тихо Браге в 1572 году. Справа - фотография в оптическом диапазоне, отмечен бывший компаньон взорвавшегося белого карлика

Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.

Достаточно длительная и интенсивная аккреция на массивный белый карлик приводит к превышению его массой предела Чандрасекара и гравитационному коллапсу, наблюдаемому как вспышка сверхновой типа Ia.

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Виды белых карликов

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка. Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно.

Вырожденный газ

До того как Ральф Фаулер в 1922 году в своей работе «Плотная материя» дал объяснение характеристикам плотности и давления внутри белых карликов, высокая плотность и физические особенности такого строения казались парадоксальными. Фаулер предположил, что в отличие от звезд главной последовательности, для которых уравнение состояния описывается свойствами идеального газа, в белых карликах оно определяется свойствами вырожденного газа.

График зависимости радиуса белого карлика от его массы. Обратите внимание: ультрарелятивистский предел ферми-газа совпадает с пределом Чандрасекара

Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа.

В белых карликах, из-за огромных плотностей, оболочки атомов разрушаются под силой внутреннего давления, и вещество становится электронно-ядерной плазмой, причем электронная часть описывается свойствами вырожденного электронного газа, аналогичными поведению электронов в металлах.

Среди них наиболее распространены углеродно-кислородные с оболочкой, состоящей из гелия и водорода.

Статистически радиус белого карлика сравним с радиусом Земли, а масса варьируется от 0,6 до 1,44 солнечных масс. Поверхностная температура находится в пределах – до 200 000 К, что также объясняет их цвет.

Ядро

Основной характеристикой внутреннего строения является очень высокая плотность ядра, в котором гравитационное равновесие обуславливается вырожденным электронным газом. Температура в недрах белого карлика и гравитационное сжатие уравновешивается давлением вырожденного газа, что обеспечивает относительную устойчивость диаметра, а его светимость, в основном, происходит за счет остывания и сжатия внешних слоев. Состав зависит насколько успела проэволюционировать материнская звезда, в основном это углерод с кислородом и небольшие примеси водорода и гелия, которые превращаются в вырожденный газ.

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

Спектральная классификация

Множество Белых карликов в шаровом скоплении М4, снимок Хаббла

Они выделены в особый спектральный класс D (от английского Dwarfs – карлики, гномы). Но в 1983 году Эдвард Сион предложил более точную классификацию, которая учитывает различия их спектров, а именно: D (подкласс) (спектральная особенность) (температурный индекс).

Существуют следующие подклассы спектров DA, DB, DC, DO, DZ и DQ, которые уточняют наличие или отсутствие линий водорода, гелия, углерода и металлов. А спектральные особенности P, H, V и X уточняют наличие или отсутствие поляризации, магнитного поля при отсутствии поляризации, переменность, пекулярность или неклассифицируемость белых карликов.

  1. Какой ближайший белый карлик к Солнцу? Ближайший это звезда ван Маанена, которая представляет собой тусклый объект находящийся всего в 14,4 световых лет от Солнца. Она расположена в центре созвездия Рыб.

    Звезда ван Маанена — самый близкий, одиночный белый карлик

    Звезда ван Маанена является слишком слабой, чтобы мы смогли ее увидеть невооруженным глазом, ее звездная величина 12,2. Однако если рассматривать белый карлик в системе со звездой, то ближайшим является Сириус Б, удаленный от нас на расстояние 8.5 световых лет. Кстати, самый известный белый карлик это Сириус Б.

    Сравнение размеров Сириуса В и Земли

  2. Самый большой белый карлик располагается в центре планетарной туманности М27 (NGC 6853), которая больше известна как туманность Гантель. Она находится в созвездии Лисички, на расстоянии около 1360 световых лет от нас. Ее центральная звезда больше, чем любой другой известный белый карлик, на данный момент.

  3. Самый маленький белый карлик имеет неблагозвучное название GRW +70 8247 и находится примерно в 43 световых лет от Земли в созвездии Дракона. Его звездная величина около 13 и виден он только через большой телескоп.
  4. Срок жизни белого карлика зависит от того, как медленно он будет остывать. Иногда на его поверхности накапливается достаточно газа и он превращается в сверхновую типа Ia. Продолжительность жизни весьма велика – миллиарды лет, а точнее 10 в 19 степени и даже больше. Большая продолжительность жизни связана с тем, что они очень медленно остывают и у них есть все шансы дожить до конца Вселенной. А время остывания пропорционально четвертой степени температуры.

  5. Среднестатистический белый карлик размеры имеет в 100 раз меньше чем наше Солнце, а при плотности 29000 кг/кубический сантиметр, вес 1 кубического см равняется 29 тоннам. Но стоит учитывать, плотность может варьировать в зависимости от размеров, от 10*5 до 10*9 г/см3.
  6. Наше Солнце в конечной стадии превратится в белый карлик. Как бы грустно это не звучало, но масса нашей звезды не позволяет ей превратиться в нейтронную звезду или черную дыру. Солнце превратится в белого карлика и будет в таком виде существовать еще миллиарды лет.
  7. Как превращается звезда в белый карлик? В основном все зависит от массы, давайте рассмотрим на примере нашего Солнца. Пройдет еще несколько миллиардов лет и Солнце начнет увеличиваться в размерах, превращаясь в красного гиганта, связанно это с тем, что весь водород выгорит в его ядре. После того, как водород выгорит начнется реакция синтеза гелия и углерода.

    В результате этих процессов звезда становится нестабильной и возможно образование звездных ветров. Так как реакции горения более тяжелых элементов чем гелий, приводят к большему выделению тепла. При синтезе гелия, некоторым участкам, расширившейся внешней оболочки Солнца, удастся оторваться и вокруг нашей звезды сформируется планетарная туманность. В результате от нашей звезды в конечном итоге останется одно ядро и когда Солнце превратится в белый карлик в нем уже прекратятся реакции ядерного синтеза.

  8. Планетарная туманность, которая образуется в результате расширения и сброса своих внешних оболочек часто очень ярко светится. Причина заключается в том, что оставшееся от звезды ядро (считай белый карлик) остывает очень медленно, а высокая температура поверхности в сотни тысяч и миллионы градусов по Кельвину, излучает, в основном, в далеком ультрафиолете. Газы туманности поглощая эти УФ кванты, переизлучают их в видимой части света, попутно поглотив часть энергии кванта и светят очень ярко, в отличии от остатка, который в видимом диапазоне очень тусклый.

Ответы на вопросы

  1. Чем отличается белый карлик от ? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа.


































    Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.

  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!

    Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи

Когда мы смотрим на ночное небо, нам кажется, что все звезды одинаковы. Человеческий глаз с большим трудом различает видимый спектр света, излучаемого далекими небесными светилами. Звезда, которую еще едва видно, может уже давно погасла, и мы наблюдаем только ее свет. Каждая из звезд проживает свою жизнь. Одни светят ровным белым светом, другие выглядят пульсирующими неоновым светом яркими точками. Третьи представляют собой тусклые светящиеся пятнышки, едва заметные в небе.

Каждая из звезд пребывает на определенном этапе своей эволюции и с течением времени превращается в небесное светило другого класса. Вместо яркой и ослепительной точки на ночном небе появляется новый космический объект — белый карлик — стареющая звезда. Этот этап эволюции характерен для большинства обычных звезд. Не избежать подобной участи и нашему Солнцу .

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

После того, как звезда израсходовала весь водород, ее ядро под воздействием гравитационных сил и колоссального внутреннего давления начинает сжиматься. Теряя основную часть своей оболочки, небесное светило достигает предел массы звезды, при которой может существовать как белый карлик, лишенный источников энергии, продолжая по инерции излучать тепло. На самом деле белые карлики — это звезды из класса красных гигантов и сверхгигантов, утративших наружную оболочку.

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Эволюция белых карликов

Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.

Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта — полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.

Все известные белые карлики в зависимости от своего спектра делятся на две группы:

  • объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
  • гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.

Белые карлики водородного типа составляют большинство популяции, до 80% из всех известных на данный момент объектов подобного типа. На гелиевые карлики приходится оставшиеся 20%.

Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.

Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.

В отсутствие собственных источников энергии, такие объекты постепенно остывают, соответственно имеют невысокую температуру. На поверхности белых карликов зафиксирована температура в диапазоне 5000-50000 градусов Кельвина. Чем старше звезда, тем ниже ее температура.

К примеру, соседка самой яркой звезды нашего небосклона Сириуса А, белый карлик Сириус В, имеет температуру поверхности всего 2100 градусов Кельвина. Внутри это небесное тело значительно горячее, почти 10000°К. Сириус В стал первым из белых карликов, обнаруженных астрономами. Цвет белых карликов, открытых после Сириуса В, оказался таким же белым, что и послужило поводом дать такое название этому классу звезд.

По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.

Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.

Научный взгляд на историю появления белых карликов

Дальше в небесных светилах на месте иссякших основных источников термоядерной энергии возникает новый источник термоядерной энергии, тройная гелиевая реакция, или тройной альфа-процесс, обеспечивающая выгорание гелия. Эти предположения полностью подтвердились, когда появилась возможность наблюдать поведение звезд в инфракрасном диапазоне. Спектр света обычной звезды существенно отличается от той картины, которую мы наблюдаем, глядя на красные гиганты и белые карлики. Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс.

Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно. Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации. Этот газ образует плотное ядро, лишенное оболочки.

При детальном изучении белых карликов с помощью радиотелескопов и рентгеновской оптики оказалось, что эти небесные объекты не такие простые и скучные, как может показаться на первый взгляд. Учитывая отсутствие внутри таких звезд термоядерных реакций, невольно возникает вопрос – откуда берется огромное давление, сумевшее уравновесить силы гравитации и силы внутреннего притяжения.

В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое. Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации.

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.

Аналогичным образом выглядела ситуация с другим белым карликом — Сирусом В. Являясь спутником самой яркой звезды белый карлик имеет небольшие размеры и огромную плотность звездного вещества — 106 г/см3. Для сравнения, вещество этого небесного светила количеством со спичечный коробок весило бы на нашей планете более миллиона тонн. Температура этого карлика в 2,5 раза выше главной звезды системы Сириус.

Последние научные выводы

Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.

Белые карлики выглядят в этом свете самыми загадочными объектами:

  • Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
  • Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
  • В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.

На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них



Добавить свою цену в базу

Комментарий

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик . Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант . Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик . Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик . Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик . Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики . Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик . Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда . Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда . Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда . Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда . Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары . Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды . Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Жёлтый карлик

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами .

Характеристика

Сегодня мы кратко расскажем о желтых карликах, которых еще называют желтыми звездами. Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности. Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга – Рассела и следуя за более холодными и менее массивными красными карликами.

По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.

Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.

Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце.

Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:

  1. Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
  2. Оранжевый карлик – звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
  3. Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
  4. Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.

Образование

Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.

Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий. После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.

С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.

Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Белые карлики

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

История открытия

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Как же образуются белые карлики?

После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, – это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.

Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости – масса-светимость – для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки.

В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.

Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов, изотропных ядер звёзд после сброса оболочек, очень высока – более 2·10 5 К, однако достаточно быстро падает за счёт излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звёзд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» – на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Температура поверхности наиболее горячих белых карликов – 7·10 4 К, наиболее холодных – меньше 4·10 3 К.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.

2 Происхождение белых карликов

    2.1 Тройная гелиевая реакция и изотермические ядра красных гигантов 2.2 Потеря массы красными гигантами и сброс ими оболочки
3 Физика и свойства белых карликов
    3.1 Зависимость масса-радиус и предел Чандрасекара 3.2 Особенности спектров
4 Классификация белых карликов 5 Астрономические феномены с участием белых карликов
    5.1 Рентгеновское излучение белых карликов 5.2 Аккреция на белые карлики в двойных системах

Примечания
Литература

Введение

Белые карлики - звезды низкой светимости с массами, сопоставимыми с массой Солнца, и высокими эффективными температурами. Название белые карлики связана с цветом первых открытых представителей этого класса - Сириуса B и 40 Эридана B. На диаграмме Герцшпрунга-Рассела они расположены на 10-12 m ниже зрение главной последовательности такого же спектрального класса .

Радиусы белых карликов примерно в 100 раз меньше солнечного, соответственно, их светимость в ~раз меньше солнечной. Плотность вещества белых карликов составляетг / см 3, в миллионы раз больше плотности вещества в звездах главной последовательности. По численности белые карлики составляют 3-10% зрение Галактики. Однако известна лишь небольшая их часть, потому что из-за низкой светимостью обнаружены лишь те, расстояние до которых не превышает 200-300 пк.

По современным представлениям белые карлики - конечный продукт эволюции нормальных звезд с массами от солнечной массы до 8-10 солнечных масс. Они образуются после исчерпания источников термоядерной энергии в недрах звезды и сброса оболочки.

1. История открытия

1.1. Открытия белых карликов

темный" спутник, причем период вращения обоих зрение вокруг общего центра масс должно быть около 50 лет. Сообщение было встречено скептически, поскольку темный спутник оставался невидимым, а его масса должна быть достаточно большой - сравнимой с массой Сириуса.

Я был у своего друга... профессора Э. Пикеринга с деловым визитом. Со свойственной для него добротой он предложил взять спектры всех звезд, Хинксом и я наблюдали с целью... определения их параллаксов. Эта часть работы, казавшейся медленно, оказалась весьма плодотворной - она привела к открытию того, что все звезды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Я вспоминаю, как обсуждая этот вопрос, я спросил у Пикеринга о некоторых других слабые звезды, вспомнил числе 40 Эридана B. Поводя себя характерным для него образом, он сразу же послал запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я считаю, миссис Флеминг), что спектр этой звезды - A (т. е. высокая поверхностная температура). Даже в те "палеозойские" времена я знал об этих вещах достаточно, чтобы сразу же понять, что здесь есть существенное несоответствие между тем, что мы тогда назвали бы "возможными" значениями поверхностной яркости и плотности. Я, пожалуй, не скрыл, что не только удивлен, а просто поражен этим исключением из правила, которое казалось вполне нормальным для характеристики звезд. Пикеринг улыбнулся мне и сказал: "именно такие исключения и приводят к расширению наших знаний" - и белые карлики вошли в мир изучаемого "

Удивление Рассела вполне понятно: 40 Эридана B относится к сравнительно близких звезд, и за параллаксом можно достаточно точно определить расстояние до нее и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для ее спектрального класса - белые карлики образовали новую область на диаграмме Герцшпрунга-Рассела. Такое сочетание светимости, массы и температуры было непонятным и не находило объяснения в рамках стандартной модели строения звезд главной последовательности, разработанную в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой с точки зрения классической физики, однако нашла объяснение в квантовой механике после появления статистики Ферми-Дирака. 1926 года Фаулер в статье "Густая материя" ("Dense matter", Monthly Notices R. Astron. Soc . 87, 114-122 ) Доказал, что, в отличие от звезд главной последовательности, для которых уравнения состояния построено на модели идеального газа (стандартная модель Едингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы и Чандрасекара. 1928 года Френкель указал, что для белых карликов должен существовать верхний предел массы, и 1930 года Чандрасекар в работе "Максимальная масса идеального белого карлика" (" The maximum mass of ideal white dwarfs", Astroph. J. 74, 81-82 ) Доказал, что белые карлики с массой свыше 1,4 солнечной неустойчивые (предел Чандрасекара) и имеют коллапсировать .

2. Происхождение белых карликов

Решение Фаулера объяснил внутреннее строение белых карликов, но не объяснил механизма их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи:

    мнение Е. Эпика, что красные гиганты образуются из звезд главной последовательности в результате выгорания ядерного топлива предположение, сделанное вскоре после Второй мировой войны, что звезды главной последовательности должны терять массу, и такая потеря массы должна существенно влиять на эволюцию звезд.

Эти предположения полностью подтвердились.

2.1. Тройная гелиевая реакция и изотермические ядра красных гигантов

В процессе эволюции звезд главной последовательности происходит "выгорание" водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатия и, соответственно, к повышению плотности и температуры в ее ядре. Рост плотности и температуры в звездном ядре приводит к условиям, в которых активизируется новый источник термоядерной энергии: выгорания гелия (тройная гелиевая реакция или тройной альфа-процесс), характерное для красных гигантов и сверхгигантов.

При температурах около 10 8 K кинетическая энергия ядер гелия становится достаточной для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be 8:

He 4 + He 4 = Be 8

Большая часть Be 8 еще распадается на две альфа-частицы, но если за короткое время существования ядро Be 8 зиткнется с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12:

Be 8 + He 4 = C 12 + 7,3 м эВ.

Несмотря на довольно низкую равновесную концентрацию Be 8 (например, при температуре ~ 10 8 K отношение концентраций / ~, скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно сильна, так, для диапазона температур ~ 1-2 ? 10 8 K энерговыделения http://*****/images/ukbase_2__1234.jpg" alt="\ Varepsilon _ {3 \ alpha} = 10 ^ 8 \ rho ^ 2 Y ^ 3 * \ left ({{T \ over {10 ^ 8}}} \ right) ^ {30}" width="210 height=46" height="46">

где выгорания" водорода она близка к единице).

Стоит, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете в пересчете на единицу массы: энерговыделения при "горении" гелия более чем в 10 раз ниже, чем при "горении" водорода. По мере выгорания гелия и исчерпания этого источника энергии в ядре становятся возможными сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы таких реакций падает с ростом массовых чисел ядер, вступающих в реакцию.

http://*****/images/ukbase_2__519.jpg" alt="\" width="84" height="20 src=">, Т. е. выполняются условия вырождения электронного газа. Расчеты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов есть белые карлики.

нормальные" белые карлики с высоким содержанием углерода.

На фотографии шаровидного звездного скопления NGC 6397 (Рис. 5) идентифицируются белые карлики обоих типов: и гелиевые белые карлики, возникшие при эволюции менее массивных звезд, и углеродные белые карлики - результат эволюции звезд с большей массой.

2.2. Потеря массы красными гигантами и сброс ими оболочки

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на еще богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водород областей. Аналогичная ситуация возникает и с утроенной гелиевой реакции: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелий областями. Светимость звезд с такими "двухслойными" областями нуклеосинтеза значительно возрастает, достигая нескольких тысяч светимости Солнца, звезда при этом "раздувается", увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~ 70% массы звезды. "Раздувание" сопровождается довольно интенсивным утечкой вещества с поверхности звезды, такие объекты наблюдаются как протопланетарного туманности (см. рис. 6).

Шклов" href="/text/category/shklov/" rel="bookmark">Шкловский предложил механизм образования планетарных туманностей путем сброса оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звезд приводит к образованию белых карликов. Точные механизмы потери массы и последующего сброса оболочки для таких звезд пока неизвестны, но можно предложить такие факторы, которые могут привести к потере оболочки:

    В протяженных звездных оболочках могут развиваться неустойчивости, приводящие к сильным колебательных процессов, сопровождающихся изменением теплового режима звезды. На Рис. 6 четко заметны волны плотности выброшенной звездной материи, которые могут быть последствиями таких колебаний. Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае красных гигантов мощность конвективных потоков имеет значительно превосходить солнечную. Из-за слишком высокой светимостью существенным становится световое давление потока излучения звезды на ее внешние слои, по расчетным данным, может привести к потере оболочки за несколько тысяч лет.

избытка массы" красных гигантов.

Предложенный Шкловским сценарий эволюции красных гигантов является общепризнанным и подкреплен данным многочисленных наблюдений.

3. Физика и свойства белых карликов

Как уже отмечалось, массы белых карликов близки к солнечной, но их размеры составляют лишь сотую (и даже меньше) часть солнечного, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г / см 3. При такой плотности электронные оболочки атомов разрушаются и вещество становится электронно-ядерной плазмой, причем ее электронная составляющая является вырожденным электронным газом. Давление P такого газа подчиняется зависимости:

где http://*****/images/ukbase_2__17665.jpg" width="180" height="283 src=">

Рис. 8. Зависимость масса-радиус для белых карликов. Вертикальная асимптота соответствует пределу Чандрасекара.

Приведенное выше уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов (). Вместе с тем, при росте плотности вещества через запрет Паули (два электрона не могут иметь одинаковый квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая:

Для такого уравнения состояния возникает интересная ситуация. Средняя плотность белого карлика http://*****/images/ukbase_2__270.jpg" width="21" height="14 src=">- Масса, а - Радиус белого карлика. Тогда давление http://*****/images/ukbase_2__716.jpg" alt="{P \ over R} \ sim {{M ^ {4/3}} \ over {R ^ 5}}" width="89 height=46" height="46">

Гравитационные силы, противодействующие давления:

есть, хотя перепад давления и гравитационные силы одинаково зависят от радиуса, но они по разному зависят от массы - как ~ и ~ disc"> DA - в спектре есть линии и нет линий гелия. Этот тип ~ 75% белых карликов, они встречаются во всем диапазоне температур; DB - линию ионизированного гелия сильные, линий водорода нет. Гелия в 10 раз больше, температуры - свыше? K; DC - непрерывный спектр, немее линий поглощения с интенсивностью менее 90% от интенсивности непрерывные спектра, температура - до? K; DF - есть линии кальция, нет линий водорода; DG - есть линии кальция, железа, нет линий водорода; DO - линии ионизированного гелия сильные, есть линии нейтрального гелия и (или) водорода. Это горячие белые карлики, их температуры достигает? K

5. Астрономические феномены с участием белых карликов

5.1. Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов - изотропных ядер звезд после сброса оболочек, очень высока - более 2 ? 10 5 K, однако довольно быстро падает благодаря нейтринных охлаждению и излучению с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).

Температура поверхности горячих белых карликов - 7 ? 10 4 K, холодных - ~ 5 ? 10 3 K.

Особенностью излучения белых карликов в рентгеновском диапазоне является то, что основным источником рентгеновского излучения в них фотосфера, что очень отличает их от "нормальных" звезд: в последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низкая для образования рентгеновского излучения (см. рис. для них 9).

При отсутствии аккреции белых карликов есть запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию охлаждения белых карликов построил конце 1940-х гг.

5.2. Аккреция на белые карлики в двойных системах

disc"> Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к образованию карликовых новых (звезд типа U Gem (UG)) или новоподобные переменных звезд. Аккреция на белые карлики, имеют сильное магнитное поле, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения акрециюючои плазмы в приполярная областях вызывает сильную поляризацию излучения в видимой области спектра (поляры и промежуточные поляры). Аккреция на белые карлики богатой водородом вещества приводит к его накоплению на поверхности (состоящий преимущественно из гелия) и разогрева до температур реакции синтеза гелия, что в случае развития тепловой неустойчивости, приводит к взрыву, который наблюдается как вспышка новой звезды. Довольно длительная и интенсивная аккреция на массивный белый карлик приводит к превосходит его массой предела Чандрасекара и гравитационного коллапса, который наблюдается как вспышка сверхновой типа Ia (см. рис. 10).

См.. также

    Аккреция Идеальный газ Вырожденный газ Звезда Нуклеосинтез Планетарная туманность Сверхновая Сириус

Примечания

1. ^ а б в Белые карлики - www. franko. / publish / astro / bukvy / b. pdf / / Астрономический энциклопедический словарь - www. franko. / publish / astro / Под общей редакцией и. - Львов: ЛНУ-ГАО НАНУ, 2003. - С. 54-55. - ISBN -X, УДК

Литература

    Deborah Jean Warner. Alvan Clark and Sons: Artists in Optics, Smithsonian Press, 1968 Шкловский, И. С. О природе планетарных туманностей и их ядер / / Астрономический журнал. - Том 33, № 3, 1956. - Сс. 315-329. , . Физические основы строения и эволюции звезд, М., 1981 - nature. ***** / db / msg. html? mid = 1159166 & uri = index. html Звезды: их рождение, жизнь и смерть, М.: Наука, 1984 - shklovsky-ocr. *****/online/shklovsky. htm Киппенхан г. 100 млрд солнц. Рождение, жизнь и смерть звездах, М.: Мир, 1990 - . ru / astro / index. html Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986 - www. *****/db/FK86/


Понравилась статья? Поделитесь с друзьями!