Какие химические свойства характерны для водорода. Соединения кислорода с водородом

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

Водород занимает особое положение в Периодической системе химических элементов Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H + он сходен со щелочными металлами, и его следует поместить в I группу. По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s 1 . Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления +1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород (H 2) представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раз легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации (435 кДж/моль) распад молекул H 2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведет себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щелочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведет себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объемов водорода с одним объемом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °C.

Реакция с галогенами протекает, в зависимости от природы галогена, по-разному:

С фтором такая реакция идет со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идет значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы - серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450–500 °C в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твердого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H 2 O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода - бесцветная жидкость, без запаха и вкуса. Вода - самое распространенное вещество на поверхности Земли. В человеческом организме содержится 63–68% воды.

Физические свойства воды во многом являются аномальными. При нормальном атмосферном давлении вода кипит при 100 °C. Температура замерзания чистой воды 0 °C. B отличие от других жидкостей плотность воды при охлаждении возрастает не монотонно, а имеет максимум при +4 °C. Теплоемкость воды очень высока и составляет 418 кДж/моль·K. Теплоемкость льда при 0 °C составляет 2,038 кДж/моль·K. Аномально высокой является теплота плавления льда. Электропроводность воды очень мала. Аномальные физические свойства воды объясняют ее строение. Валентный угол H–O–H равен 104,5°. Молекула воды представляет собой искаженный тетраэдр, в двух вершинах которого располагаются атомы водорода, а две другие заняты орбиталями неподеленных пар электронов атома кислорода, не участвующих в образовании химических связей.

Вода является стабильным соединением, ее разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах. Так, натрий вступает в реакцию водой уже при комнатной температуре, реакция сопровождается выделением большого количества тепла; железо реагирует с водой при температуре 800 °С:

Характеристика s-элементов

К блоку s-элементов относятся 13 элементов, общим для которых является застраивание в их атомах s-подуровня внешнего энергетического уровня.

Хотя водород и гелий относятся к s-элементам из-за специфики их свойств их следует рассматривать отдельно. Водород, натрий, калий, магний, кальций - жизненно необходимые элементы.

Соединения s-элементов проявляют общие закономерности в свойствах, что объясняется сходством электронного строения их атомов. Все внешние электроны являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой и находится данный элемент. Степень окисления металлов s-элементов всегда положительна. Другая особенность заключается в том, что после отделения электронов внешнего слоя остается ион, имеющий оболочку благородного газа. При увеличении порядкового номера элемента, атомного радиуса, уменьшается энергии ионизации (от 5,39 эВ y Li до 3,83 эВ y Fr), а восстановительная активность элементов возрастает.

Подавляющее большинство соединений s-элементов бесцветно (в отличие от соединений d-элементов), так как исключен обуславливающий окраску переход d-электронов с низких энергетических уровней на более высокие энергетические уровни.

Соединения элементов групп IA - IIA - типичные соли, в водном растворе они практически полностью диссоциируют на ионы, не подверженны гидролизу по катиону (кроме солей Be 2+ и Mg 2+).

водород гидрид ионный ковалентный

Для ионов s-элементов комплексообразование не характерно. Кристаллические комплексы s - элементов с лигандами H 2 O-кристаллогидраты, известны с глубокой древности, например: Na 2 В 4 O 7 10H 2 O-бура, KАl (SO 4) 2 12H 2 O-квасцы. Молекулы воды в кристаллогидратах группируются вокруг катиона, но иногда полностью окружают и анион. Вследствие малого заряда иона и большого радиуса иона щелочные металлы наименее склонны к образованию комплексов, в том числе и аквакомплексов. В качестве комплексообразователей в комплексных соединениях невысокой устойчивости выступают ионы лития, бериллия, магния.

Водород. Химические свойства водорода

Водород - наиболее легкий s-элемент. Его электронная конфигурация в основном состоянии 1S 1 . Атом водорода состоит из одного протона и одного электрона. Особенность водорода состоит в том, что его валентный электрон находится непосредственно в сфере действия атомного ядра. У водорода нет промежуточного электронного слоя, поэтому водород нельзя считать электронным аналогом щелочных металлов.

Как и щелочные металлы водород является восстановителем, проявляет степень окисления +1, Спектры водорода сходны со спектрами щелочных металлов. Со щелочными металлами сближает водород его способность давать в растворах гидратированный положительно заряженный ион Н + .

Подобно галогеном атому водорода не достает одного электрона. Этим и обусловлено существование гидрид-иона Н - .

Кроме того, как и атомы галогенов атомы водорода характеризуются высоким значением энергии ионизации (1312 кдж/моль). Таким образом, водород занимает особое положение в Периодической системе элементов.

Водород - самый распространенный элемент во вселенной: он составляет до половины массы солнца и большинства звезд.

На солнце и других планетах водород находится в атомарном состоянии, в межзвездной среде в виде частично ионизированных двухатомных молекул.

Водород имеет три изотопа; протий 1 Н, дейтерий 2 Д и тритий 3 Т, причем тритий - радиоактивный изотоп.

Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой и обладают большой подвижностью. Поэтому у водорода очень низкие температуры плавления (-259,2 о С) и кипения (-252,8 о С). Из-за высокой энергии диссоциации (436 кдж/моль) распад молекул на атомы происходит при температурах выше 2000 о С. Водород бесцветный газ без запаха и вкуса. Он имеет малую плотность - 8,99·10 -5 г/см При очень высоких давлениях водород переходит в металлическое состояние. Считается, что на дальних планетах солнечной системы - Юпитере и Сатурне водород находится в металлическом состоянии. Существует предположение, что в состав земного ядра также входит металлический водород, где он находится при сверхвысоком давлении, создаваемым земной мантией.

Химические свойства. При комнатной температуре молекулярный водород реагирует лишь со фтором, при облучении светом - с хлором и бромом, при нагревании с О 2 ,S, Se, N 2 , C, I 2 .

Реакции водорода с кислородом и галогенами протекают по радикальному механизму.

Взаимодействие с хлором - пример неразветвленной реакции при облучении светом (фотохимическая активация), при нагревании (термическая активация).

Сl+ H 2 = HCl + H (развитие цепи)

H+ Сl 2 = HCl + Сl

Взрыв гремучего газа - водородокислородной смеси - пример разветвленного цепного процесса, когда инициированние цепи включает не одну, а несколько стадий:

Н 2 + О 2 = 2ОН

Н+ О 2 = ОН+О

О+ Н 2 = ОН+ Н

ОН+ Н 2 = Н 2 О + Н

Взрывного процесса удается избежать, если работать с чистым водородом.

Поскольку для водорода характерна - положительная (+1) и отрицательная (-1) степень окисления, водород может проявлять и восстановительные, и окислительные свойства.

Восстановительные свойства водорода проявляются при взаимодействии с неметаллами:

Н 2 (г) + Cl 2 (г) = 2НCl (г),

2Н 2 (г) + О 2 (г) = 2Н 2 О (г),

Эти реакции протекают с выделением большого количества теплоты, что свидетельствуют о высокой энергии (прочности) связей Н-Сl, Н-О. Поэтому водород проявляет восстановительные свойства по отношению ко многим оксидам, галогенидам, например:

На этом основано применение водорода в качестве восстановителя для получения простых веществ из оксидов галогенидов.

Еще более сильным восстановителем является атомарный водород. Он образуется из молекулярного в электронном разряде в условиях низкого давления.

Высокой восстановительной активностью обладает водород в момент выделения при взаимодействии металла с кислотой. Такой водород восстанавливает CrCl 3 в CrCl 2:

2CrCl 3 + 2HСl + 2Zn = 2CrCl 2 + 2ZnCl 2 +H 2 ^

Важное значение имеет взаимодействие водорода с оксидом азота (II):

2NO + 2H 2 = N 2 + H 2 O

Используемое в очистительных системах при производстве азотной кислоты.

В качестве окислителя водород взаимодействует с активными металлами:

В данном случае водород ведет себя как галоген, образуя аналогичные галогенидам гидриды .

Гидриды s-элементов I группы имеют ионную структуру типа NaCl. В химическом отношении ионные гидриды ведут себя как основные соединения.

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород неметаллических элементов, например, гидриды состава SiH 4 , ВН 3 , СН 4 . По химической природе гидриды неметаллов являются кислотными соединениями.

Характерной особенностью гидролиза гидридов является выделение водорода, реакция протекает по окислительно-восстановительному механизму.

Основной гидрид

Кислотный гидрид

За счет выделения водорода гидролиз протекает полностью и необратимо (?Н<0, ?S>0). При этом основные гидриды образуют щелочь, а кислотные кислоту.

Стандартный потенциал системы В. Следовательно, ион Н - сильный восстановитель.

В лаборатории водород получают взаимодействием цинка с 20% -й серной кислотой в аппарате Киппа.

Технический цинк часто содержит небольшие примеси мышьяка и сурьмы, которые восстанавливаются водородом в момент выделения до ядовитых газов: арсина SbH 3 и стабина SbH Таким водородом можно отравиться. С химически чистым цинком реакция протекает медленно из-за перенапряжения и хорошего тока водорода получить не удается. Скорость этой реакции увеличивается путем добавления кристалликов медного купороса, реакция ускоряется за счет образования гальванической пары Cu-Zn.

Более чистый водород образуется при действии щелочи на кремний или алюминий при нагревании:

В промышленности чистый водород получают электролизом воды, содержащей электролиты (Na 2 SO 4 , Ba (OH) 2).

Большое количество водорода образуется в качестве побочного продукта при электролизе водного раствора хлорида натрия с диафрагмой, разделяющей катодное и анодное пространство,

Наибольшее количество водорода получают газификацией твердого топлива (антрацита) перегретым водяным паром:

Либо конверсией природного газа (метана) перегретым водяным паром:

Образующаяся смесь (синтез-газ) используется в производстве многих органических соединений. Выход водорода можно увеличить, пропуская синтез-газ над катализатором, при этом СО превращается вСО 2 .

Применение. Большое количество водорода расходуется на синтез аммиака. На получение хлороводорода и соляной кислоты, для гидрогенизации растительных жиров, для восстановления металлов (Mо, W, Fe) из оксидов. Водород-кислородное пламя используют для сварки, резки и плавления металлов.

Жидкий водород используют в качестве ракетного топлива. Водородное топливо является экологически безопасным и более энергоемким, чем бензин, поэтому в будущем оно может заменить нефтепродукты. Уже сейчас в мире на водороде работает несколько сот автомобилей. Проблемы водородной энергетики связаны с хранением и транспортировкой водорода. Водород храня в подземных танкерах в жидком состоянии под давлением 100 атм. Перевозка больших количеств жидкого водорода представляет серьезную опасность.

Наиболее известным и наиболее изученным соединением кислорода является его оксид H 2 O – вода. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. В толстом слое имеет голубовато-зеленоватый цвет.

Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

Из всех жидких и твердых веществ вода обладает наибольшей удельной теплоемкостью. Благодаря этому факту вода является аккумулятором теплоты в различных организмах.

При нормальном давлении температура плавления льда 0 0 С (273 0 К), температура кипения воды +100 0 С (373 0 К). Это аномально высокие значения. При Т 0 +4 0 С вода имеет небольшую плотность, равную 1 г/мл. Выше или ниже этой температуры плотность воды меньше 1 г/мл. Эта особенность отличает воду от всех других веществ, плотность которых с понижением t 0 увеличивается. При переходе воды их жидкого состояния в твердое состояние происходит увеличение объема: из каждых 92 объемов жидкой воды образуется 100 объемов льда. С увеличением объема плотность уменьшается, поэтому, будучи легче воды, лед всегда всплывает на поверхность.

Исследования строения воды показали, что молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород. Валентный угол равен 104, 27. Молекула воды полярна – электронная плотность смещена к атому кислорода. Такая полярная молекула может взаимодействовать с другой молекулой с образованием более сложных агрегатов как за счет взаимодействия диполей, так и путем образования водородных связей. Это явление получило название ассоциации воды. Ассоциация молекул воды в основном определяется образованием между ними водородных связей. Молекулярная масса воды в состоянии пара равна 18 и отвечает ее простейшей формуле – Н 2 О. В остальных случаях молекулярная масса воды в кратное число раз больше восемнадцати (18).

Полярность и малые размеры молекулы приводят к тому, что она обладает сильными гидратирующими свойствами.

Диэлектрическая проницаемость воды настолько велика (81), что она оказывает мощное ионизирующее действие на растворенные в ней вещества, вызывая диссоциацию кислот, солей и оснований.

Молекула воды способна присоединиться к различным ионам, образуя гидраты. Эти соединения характеризуются специфическим стрением, напоминая комплексные соединения.

Одним из важнейших продуктов присоединения является ион гидроксония – Н 3 О, который образуется вследствие присоединения иона Н + к неподеленной паре электронов атома кислорода.

Вследствие этого присоединения образующийся ион гидроксония приобретает заряд +1.

Н + + Н 2 О Н 3 О +

Такой процесс возможен в системах, где содержатся вещества, отщепляющие ион водорода.

Вода, как на холоде, так и при нагревании активно взаимодействует со многими металлами, стоящими в ряду активности до водорода. В этих реакциях образуются соответствующие им оксиды или гидроксиды и вытесняется водород.:

2 Fe + 3 HOH = Fe 2 O 3 + 3 H 2

2 Na + 2 HOH = 2 NaOH + H 2

Ca + 2 HOH = Ca (OH) 2 + H

Вода довольно активно присоединяется к основным и кислотным оксидам, образуя соответствующие гидроксиды:

CaO + H 2 O = Ca (OH) 2 – основание

P 2 O 5 + 3 H 2 O = 2 H 3 PO 4 – кислота

Вода, которая присоединена в этих случаях, называется конституционной (в отличие от кристаллизационной в кристаллогидратах).

Вода реагирует с галогенами, в этом случае образуется смесь кислот:

H 2 + HOH HCl + HClO

Наиболее важным свойством воды является ее растворяющая способность.

Вода – самый распространенный растворитель в природе и технике. Большинство химических реакций проводится в воде. Но, пожалуй, наибольшее значение имеют биологические и биохимические процессы, происходящие в растительном и животном организмах с участием белков, жиров, углеводов и других веществ в водной среде организма.

Второе соединение водорода с кислородом – пероксид водорода H 2 O 2 .

Структурная формула Н – О – О – Н, молекулярный вес – 34.

Латинское название Hydrogenii peroxydum.

Это вещество было открыто в 1818 году французским ученым Луи-Жаком Тенаром, который изучал действие различных минеральных кислот на бария пероксид (BaO 2). В природе пероксид водорода образуется в процессе окисления. Наиболее удобным и современным способом получения H 2 O 2 является электролитический способ, который и используется в промышленности. В качестве исходных веществ используют серную кислоту или аммония сульфат.

Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода связаны непосредственно друг с другом неполярной ковалентной связью. связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула H 2 O 2 также полярна. Между молекулами H 2 O 2 возникает водородная связь, что приводит к их ассоциации с энергией связи О – О, равной 210 кДж, это значительно меньше энергии связи Н – О (470 кДж).

Раствор перекиси водорода – прозрачная бесцветная жидкость, без запаха или со слабым своеобразным запахом, слабокислой реакции. Быстро разлагается под действием света, при нагревании, при соприкосновении с щелочью, окисляющими и восстанавливающими веществами, выделяя кислород. Происходит реакция: H 2 O 2 = H 2 O + O

Малая устойчивость молекул H 2 O 2 обусловлена непрочностью связи О – О.

Хранят его в посуде из темного стекла и в прохладном месте. При действии на кожу концентрированных растворов перекиси водорода образуются ожоги, причем обожженное место болит.

ПРИМЕНЕНИЕ: в медицине применяют 3 % раствор перекиси водорода как кровоостанавливающее средство, дезинфицирующее и дезодорирующее средство для промываний и полосканий при стоматите, ангине, гинекологических заболеваниях и др.

При соприкосновении с ферментом каталазой (из крови, гноя, тканей) действует атомарный кислород в момент выделения. Действие H 2 O 2 кратковременное. Ценность препарата заключается в том, что продукты его разложения безвредны для тканей.

ГИДРОПЕРИТ – комплексное соединение перекиси водорода с мочевиной. Содержание перекиси водорода составляет около 35 %. Применяют как антисептическое средство вместо перекиси водорода.

Одним из основных химических свойств H 2 O 2 является его окислительно-восстановительные свойства. Степень окисления кислорода в H 2 O 2 равна -1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому перекись водорода обладает свойствами как окислителя, так и восстановителя, т.е. проявляет окислительно-восстановительную двойственность. Следует отметить, что окислительные свойства H 2 O 2 выражены гораздо сильнее, чем восстановительные и проявляются они в кислой, щелочной и нейтральной средах. Например:

2 KI + H 2 SO 4 + H 2 O 2 = I 2 + K 2 SO 4 + 2 H 2 O

2 I - - 2ē → I 2 0 1 – в-ль

H 2 O 2 + 2 H + + 2ē → 2 H 2 O 1 – ок-ль

2 I - + H 2 O 2 + 2 H + → I 2 + 2 H 2 O

Под действием сильных окислителей H 2 O 2 проявляет восстановительные свойства:

2 KMnO 4 + 5 H 2 O 2 + 3 H 2 SO 4 = 2 MnSO 4 + 5 O 2 + K 2 SO 4 + 8 H 2 O

MnO 4 - + 8H + + 5ē → Mn +2 + 4 H 2 O 2 – ок-ль

H 2 O 2 - 2ē → O 2 + 2 H + 5 – в-ль

2 MnO 4 - + 5 H 2 O 2 + 16 H + → 2 Mn +2 + 8 H 2 O + 5 O 2 + 10 H +

Выводы:

1. Кислород -самый распространенный элементна Земле.

В природе кислород встречается в двух аллотропных видоизменениях: O 2 – дикислород или «обычный кислород» и О 3 – трикислород (озон).

2.Аллотропия – образование разных простых веществ одним элементом.

3.Аллотропные видоизменения кислорода: кислород и озон.

4.Соединения кислорода с водородом -вода и пероксид водорода .

5.Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

6.При Т 0 +4 0 С вода имеет плотность, равную 1 г/мл.

7.Молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород.

8.Валентный угол равен 104, 27

9.Молекула воды полярна – электронная плотность смещена к атому кислорода.

12.Сера. Характеристика серы, исходя из ее положения в периодической системе, с точки зрения теории строения атома, возможные степени окисления, физические свойства, распространение в природе,биологическая роль, способы получения, химические свойства. . Применение серы и её соединений в медицине и народном хозяйстве.

СЕРА:

А) нахождение в природе

Б) биологическая роль

В) применение в медицине

Сера широко распространена в природе и встречается как в свободном состоянии (самородная сера), так и в виде соединений – FeSe (пирит), CuS, Ag 2 S, PbS, CaSO 4 и др. Входит в состав различных соединений, содержащихся в природных углях, нефтях и природных газах.

Сера принадлежит к числу элементов, имеющих важное значение для жизненных процессов, т.к. она входит в состав белковых веществ. Содержание серы в организме человека составляет 0, 25 %. Входит в состав аминокислот: цистеина, глютатиона, метионина и др.

Особенно много серы в белках волос, рогов, шерсти. Кроме того, сера является составной частью биологически активных веществ организма: витаминов и гормонов (н-р, инсулина).

В виде соединений сера обнаружена в нервной ткани, в хрящах, костях и в желчи. Она участвует в окислительно-восстановительных процессах организма.

При недостатке серы в организме наблюдается хрупкость и ломкость костей, выпадение волос.

Сера содержится в крыжовнике, винограде, яблоках, капусте, луке репчатом, ржи, горохе, ячмене, гречихе, пшенице.

Рекордсмены: горох 190, соя 244 %.



Понравилась статья? Поделитесь с друзьями!