Кем был открыт закон инерции тел. §4

Сравним методику применения математики в практических исследованиях с методикой других естественных наук. Такие науки, как физика, химия, биология изучают непосредственно сам реальный объект (возможно в уменьшенных масштабах и в лабораторных условиях). Научные результаты, после необходимой проверки, также непосредственно можно применить на практике. Математика же изучает не сами объекты, а их модели. Описание объекта и формулировка проблемы переводятся с обычного языка на «язык математики» (формализуются), в результате чего получается математическая модель. Далее эта модель исследуется как математическая задача. Полученные научные результаты не сразу применяются на практике, так как они сформулированы на математическом языке. Поэтому осуществляется обратный процесс - содержательная интерпретация (на языке исходной проблемы) полученных математических результатов. Только после этого решается вопрос об их применении на практике.

Неотъемлемой частью методики прикладной математики является всесторонний анализ реальной проблемы, предшествующий ее математическому моделированию. В целом системный анализ проблемы, предполагает выполнение следующих этапов:

· гуманитарный (доматематический) анализ проблемы;

· математическое исследование проблемы;

· применение полученных результатов на практике.

Проведение такого системного анализа каждой конкретной проблемы должно осуществляться исследовательской группой, включающей экономистов (как постановщиков проблемы или заказчиков), математиков, юристов, социологов, психологов, экологов и т. д. Причем математики, как основные исследователи, должны участвовать не только в «решении» задачи, но и в ее постановке, а также во внедрении результатов на практике.

Для проведения математических исследований экономической задачи требуется выполнение следующих основных этапов:

1. изучение предметной области и определение цели исследования;

2. формулировка проблемы;

3. сбор данных (статистических, экспертных и прочих);

4. построение математической модели;

5. выбор (или разработка) вычислительного метода и построение алгоритма решения задачи;

6. программирование алгоритма и отладка программы;

7. проверка качества модели на контрольном примере;

8. внедрение результатов на практике.

Этапы 1 -3 относятся к доматематической части исследования. Предметная область должна быть досконально изучена самими экономистами для того, чтобы они, как заказчики, могли четко сформулировать проблему и определить цели перед исследователями. Исследователям должны быть предоставлены все необходимые документальные и статистические данные в исчерпывающем объеме. Математиками производится организация, хранения, анализ и обработка данных, предоставленных им в удобной (электронной) форме заказчиками.

Этапы 4 -7 относятся к математической части исследований. Результатом этого этапа является формулировка исходной проблемы в виде строгой математической задачи. Математическую модель редко можно «подобрать» из числа имеющихся, известных моделей (рис.1.1). Процесс подбора параметров модели таким образом, чтобы она соответствовала изучаемому объекту, называется идентификацией модели . Исходя из характера полученной модели (задачи) и цели исследования выбирают либо известный метод, либо приспосабливают (модифицируют) известный метод, либо разрабатывают новый. После этого составляют алгоритм (порядок решения задачи) и программу для ЭВМ. Полученные с помощью этой программы результаты анализируют: решают тестовые задачи, вводят необходимые изменения и исправления в алгоритм и программу.

Если для «чистой» математики традиционным является однократный выбор математической модели и однократная формулировка допущений в самом начале исследования, то в прикладных работах часто бывает полезно вернуться к модели и внести в нее исправления после того, как первый тур пробных расчетов уже произведен. Более того, часто оказывается плодотворным сопоставление моделей, когда одно и то же явление описывается не одной, а несколькими моделями. Если выводы оказываются (приблизительно) одними и теми же при разных моделях, разных методах исследования - это является свидетельством правильности расчетов, адекватности модели самому объекту, объективности выдаваемых рекомендаций.

Заключительный этап 8 проводится совместными усилиями заказчиков и разработчиков модели.

Результаты математических (как и всяких научных) исследований являются только рекомендацией к использованию на практике. Окончательное решение этого вопроса - применять модель или нет - зависит от заказчика, т. е. от лица ответственного за исход и за последствия, к которым приведет применение рекомендуемых результатов.

Для построения математической модели конкретной экономической задачи (проблемы) рекомендуется выполнение следующей последовательности работ:

1. определение известных и неизвестных величин, а также существующих условий и предпосылок (что дано и что требуется найти?);

2. выявление важнейших факторов проблемы;

3. выявление управляемых и неуправляемых параметров;

4. математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными), исходя из содержания рассматриваемой задачи.

Известные параметры задачи относительно ее математической модели считаются внешними (заданными априори, т. е. до построения модели). В экономической литературе они называются экзогенными переменными . Значение же изначально неизвестных переменных вычисляются в результате исследования модели, поэтому по отношению к модели они считаются внутренними . В экономической литературе они называются эндогенными переменными .

В § 2 под важнейшими понимаются факторы, которые играют существенную роль в самой задаче и которые, так или иначе, влияют на конечный результат. В § 3 управляемыми называются те параметры задачи, которым можно придавать произвольные числовые значения исходя из условий задачи; неуправляемыми считаются те параметры, значение которых зафиксировано и не подлежит изменению.

С точки зрения назначения, можно выделить описательные модели и модели принятия решения . Описательные модели отражают содержание и основные свойства экономических объектов как таковых. С их помощью вычисляются числовые значения экономических факторов и показателей.

Модели принятия решения помогают найти наилучшие варианты плановых показателей или управленческих решений. Среди них наименее сложным являются оптимизационные модели, посредством которых описываются (моделируются) задачи типа планирования, а наиболее сложными - игровые модели, описывающие задачи конфликтного характера с учетом пересечения различных интересов. Эти модели отличаются от описательных тем, что в них имеется возможность выбора значений управляющих параметров (что отсутствует в описательных моделях).

Примеры составления математических моделей

Пример 1.1. Пусть некоторый экономический регион производит несколько видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта Обозначим известные величины: - спрос населения на -й продукт ; - количество i-го продукта, необходимое для выпуска единицы -го продукта по данной технологии . Обозначим неизвестные величины: - объем выпуска -го продукта . Совокупность называется вектором спроса, числа - технологическими коэффициентами, а совокупность - вектором выпуска. По условию задачи вектор распределяется на две части: на конечное потребление (вектор ) и на воспроизводство (вектор ). Вычислим ту часть вектора которая идет на воспроизводство. В силу обозначений для производства количества -го товара идет количества -го товара. Тогда сумма показывает ту величину -го товара, которая нужна для всего выпуска . Следовательно, должно выполняться равенство:

Обобщая это рассуждение на все виды продуктов, приходим к искомой модели:

Решая полученную систему линейных уравнений относительно находим требуемый вектор выпуска.

Для того чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная матрица А (размером ) называется технологической матрицей. Очевидно, модель можно записать в виде: или

Получили классическую модель «Затраты-выпуск», автором которой является известный американский экономист В. Леонтьев.

Пример 1.2. Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом в количестве 10 единиц, сортом - 15 единиц. При переработке из нефти получаются два материала: бензин () и мазут (). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М ;

II :2ед.А + 1ед.В дает 1ед.Б + 5ед.М ;

III :2ед.А + 2ед.В дает 1ед.Б + 2ед.М.

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу. Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины: - количество использования -го технологического процесса . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута) известны .

Тогда одно конкретное решение завода сводится к выбору одного вектора , для которого выручка завода равна долл. Здесь 32 долл. - это доход, полученный от одного применения первого технологического процесса (10 долл. 3ед.Б + 1 долл. 2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А : ,

для сорта В : ,

где в первом неравенстве коэффициенты 1, 2, 2 - это нормы расхода нефти сорта А для одноразового применения технологических процессов I , II , III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В .

Математическая модель в целом имеет вид:

Найти такой вектор , чтобы

максимизировать

при выполнении условий:

,

,

.

Сокращенная форма этой записи имеет вид:

при ограничениях

, (1.4.2)

,

Получили так называемую задачу линейного программирования. Модель (1.4.2.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример 1.3. Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины . Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг. Обозначим известные параметры задачи: - число разновидностей ценных бумаг; - фактическая прибыль (случайное число) от -го вида ценной бумаги - ожидаемая прибыль от -го вида ценной бумаги. Обозначим неизвестные величины: - средства, выделенные для приобретения ценных бумаг вида . В силу обозначений вся инвестированная сумма определяется как . Для упрощения модели введем новые величины

Таким образом, - это доля от всех средств, выделяемая для приобретения ценных бумаг вида . Очевидно, что . Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией

прибыли для ценных бумаг вида и вида . Здесь М - обозначение математического ожидания. Математическая модель исходной задачи имеет вид:

(1.4.3)

Получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг. Модель (1.4.3.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример 1.4. На базе торговой организации имеется типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа будет пользоваться спросом, то магазин от его реализации получит прибыль , если же он не будет пользоваться спросом - убыток .

Одним из показателей зрелости науки считается использование ею математических методов исследования. Такие методы применяются в криминалистике издавна. В сущности, уже упоминавшийся такой общий метод познания, как измерение, есть гносеологически обобщенное понятие любого математического метода. Однако когда мы говорим о "математизации" криминалистики, то имеем в виду современные математические методы исследования, состоящие из операций неизмеримо более сложных, нежели простое сравнение объекта с мерой.

С начала 60-х годов в криминалистической литературе получает широкое признание как принципиальная возможность использования математических методов в криминалистических научных исследованиях, так и необходимость их применения для решения задач криминалистической экспертизы, в том числе и задачи идентификации. Рассматривая эту проблему в разных аспектах, криминалисты неизменно подчеркивали, что применение математических методов исследования открывает новые возможности в развитии как криминалистической науки, так и практики доказывания, а сама постановка этой проблемы свидетельствует о достижении криминалистикой такого уровня развития, когда она, как и другие развитые науки, испытывает потребность в тех точных методах познания своего предмета, которые может предоставить ей современная математика.

Процесс "математизации" криминалистики в настоящее время протекает в трех направлениях. Первое из них - это общетеоретическое направление.

В общетеоретическом плане процесс "математизации" поставил перед криминалистами задачу принципиального обоснования возможностей применения математических методов исследования и определения тех областей науки, при разработке которых эти методы могут дать наиболее эффективные результаты. В литературе данное направление представлено работами В. А. Пошкявичуса, Н. С. Полевого, А. А. Эйсмана, Н. А. Селиванова, З. И. Кирсанова, Л. Г. Эджубова и других авторов. Основные выводы, которые можно сделать после ознакомления с их исследованиями, сводятся к следующему:

1. Процесс "математизации" криминалистики есть естественный процесс, обусловленный современным этапом развития этой науки и математических методов исследования, приобретающих в силу этого все более универсальный характер. Использование математико-кибернетических методов исследования в криминалистике принципиально допустимо; их применение в доказывании нельзя рассматривать как использование специальных знаний, если речь идет о количественных характеристиках и элементарных математических методах; в тех случаях, когда математические методы используются для описания, обоснования или анализа явлений, познание которых осуществляется с помощью специальных знаний, применение этих методов охватывается понятием применения в судопроизводстве специальных познаний.

2. Использование математико-кибернетических методов исследования возможно в целях:

А) совершенствования методики криминалистической экспертизы, что в итоге приведет к расширению ее возможностей;

Б) научного анализа процесса доказывания и разработки рекомендаций по применению теории вероятностей и математической статистики, математической логики, исследования операций и теории игр в следственной практике.

В исследованиях общетеоретического направления получили свое отражение и два других направления процесса "математизации" криминалистики: использование математических методов в криминалистической экспертизе и при анализе процесса доказывания в целом.

Второе направление рассматриваемого процесса - использование математических методов для разработки проблем теории криминалистической идентификации и ее практических приложений и проблем криминалистической экспертизы, а в итоге - и проблем судебной экспертизы в целом . Суть этого направления и пути использования результатов математизации охарактеризованы А. Р. Шляховым: "Роль математических методов в судебной экспертизе двояка: с одной стороны, они выступают в качестве составной части функционирования ЭВМ в виде программных комплексов решения задач и ИПС, с другой стороны, они могут использоваться самостоятельно, без ЭВМ и обеспечивать полное либо частичное решение задач судебной экспертизы. Математические методы давно и прочно вошли в методики производства экспертиз, например, трасологических, баллистических, почерковедческих, автотехнических и др. ... Математические методы полезны при обработке результатов измерений, аналитического сравнения и как критерий достаточности выявленной совокупности признаков для индивидуализации объекта, оценки полноты ее в целях отождествления".

Это направление развивается наиболее интенсивно как непосредственно отвечающее потребностям судебно-экспертной практики. Еще в 1969 г. А. Р. Шляхов отмечал, что математические методы заняли одно из главных мест в системе методов, общих для всех стадий экспертного исследования и различных видов криминалистических экспертиз. В 1977 г. методы прикладной математики и программно-математические методы применения ЭВМ по предложенной А. И. Винбергом и А. Р. Шляховым классификации методов экспертного исследования были отнесены к числу общих (общепознавательных) методов. С конца 60-х гг. идет интенсивный поиск точек приложения математико-кибернетических методов практически во всех видах судебных экспертиз, предпринимаются попытки инвентаризации применяемых методов.

В результате интенсивного изучения проблемы использования математических методов в научных и экспертных исследованиях был поставлен вопрос о пределах их применения. Г. Л. Грановский отметил две точки зрения: одни возлагают надежды в области совершенствования экспертизы только на применение методов точных наук, другие более осторожно подходят к этому вопросу и указывают на пределы возможностей использования современной математики. Именно их позиция представляется более близкой к правильному пониманию проблемы". По его мнению, существуют естественные ограничения, "которые природа объектов экспертизы налагает на возможности использования для их исследования математических методов... Применение количественных методов в любой экспертизе теоретически допустимо, но практически еще мало известно, какие признаки и в каких пределах поддаются математическому описанию и оценке, какие результаты можно ожидать от использования для их исследования математических методов". Современная экспертная практика идет по пути решения этой двуединой задачи: определение точек приложения математических методов, и затем уже их практическое использование.

В настоящее время математические методы наиболее активно применяются при решении задач судебно-почерковедческой экспертизы, САТЭ, а также КЭМВИ; при этом они не только используются при проведении судебно-экспертного исследования (в процессе получения информации об объекте судебной экспертизы), но и являются средством решения судебно- экспертной задачи на основе информации об объекте. При этом наибольшую доказательственную ценность составляет количественная информация, что подтверждают исследования, связанные с решением задачи установления ФКВ объектов волокнистой природы (В.А. Пучков, В. З. Поляков, 1986) на основе результатов аналитического исследования микрочастиц волокон (когда после проведения информационного поиска по массиву волокон, исследованных в экспертизах, задача принятия решения по результатам конкретного аналитического исследования сводится к теоретико-вероятностной задаче), с применением вероятностно-статистической модели (Л. А. Гегечкори, 1985) к решению задачи криминалистической идентификации по признакам состава и строения (модель может быть использована как на предварительной стадии, так и на стадиях сравнительного исследования и синтезирующей; ядром модели являются статистические критерии, использующиеся на стадии сравнительного исследования и в зависимости от которых организуется статистический анализ информационных фондов, необходимый при работе модели на других стадиях решения задачи), с разработкой математической модели задач дифференциации подлинных подписей и неподлинных, выполненных с подражанием после предварительной тренировки (С. А. Атаходжаев и др., 1984). Отметим также разработку математических моделей задачи о наезде ТС на пешехода в условиях ограниченной видимости и некоторые подходы к применению математических методов в задачах судебно-фоноскопической экспертизы.

Опыт использования математических методов в судебной экспертизе свидетельствует о том, что необходимо четко разграничивать применение математических методов для обработки информации, получаемой в процессе изучения объектов судебной экспертизы, и разработку математических моделей для решения судебно-экспертных задач на основе результатов исследования. Если первый аспект не является специфически криминалистическим (ибо исследование объекта судебной экспертизы ведется естественнонаучными методами), то второй имеет особую криминалистическую природу. Она предстает в снятом виде, когда мы располагаем уже математической моделью для решения типовой судебно-экспертной задачи, однако, если не отвлекаться от процесса разработки математической модели, криминалистическая природа ее обнаруживается со всей очевидностью. В самом деле, разработка математических моделей для типовых судебно-экспертных задач всегда инициируется потребностью решения конкретных, индивидуально определенных задач. Специалист-математик в тесном контакте с судебным экспертом выделяет наиболее существенные количественные закономерности, которые дают возможность разработать математическую модель не только для конкретной судебно-экспертной задачи, но и для целого типа задач. В этом и заключен глубокий смысл математизации их решения. Математические методы в судебной экспертизе являются не только (и не столько) методами изучения объектов, получения информации о них (каковы, например, физические и химические методы), но и методами решения судебно-экспертных задач на основе результатов исследования.

Третье направление математизации криминалистических научных исследований - применение математических методов для решения проблем криминалистической тактики и методики. В литературе оно представлено работами А. А. Эйсмана, И. М. Лузгина, Л. Г. Видонова, Н.А. Селиванова и др. Уже первые исследования в этой области показали ограниченность приложения математических методов к решению проблем тактики и методики.

А. А. Эйсман справедливо отметил, что "судебное доказывание не может быть описано с помощью средств традиционной логики, прежде всего, потому, что все акты доказывания, как простые, так и сложные, носят не только качественный характер (да/нет), но и количественный (более надежно, менее надежно). Именно эта оценочная, количественная сторона создает главные трудности для моделирования... Отсутствуют какие бы то ни было средства и возможности показать абсолютный уровень этой надежности, дать ей строгие количественные значения. Это вполне понятно, потому что мы не располагаем (и трудно с научной достоверностью предсказать, будем ли когда-нибудь располагать) методами количественной оценки улик. По-видимому, единственным средством получения таких количественных характеристик является статистическая обработка огромного числа событий и фактов, входящих в содержание доказательств. При этом речь идет о статистическом учете значения отдельных фактов (например, обнаружения поличного) в разных меняющихся условиях. Нетрудно представить почти беспредельный объем таких статистических исследований. В то же время, трудно судить и о практической эффективности результатов, если они будут получены." Именно поэтому А. А. Эйсман высказывал мнение, что в логике следствия из средств математической логики используются лишь некоторые формулы исчисления высказываний, которые "не образуют строгого исчисления, то есть законченного аппарата правил построения вывода, а играют вспомогательную роль". Это мнение поддерживал и И. М. Лузгин.

Н. А. Селиванов ограничил применение математических методов в области криминалистической тактики лишь измерением различных объектов и решением некоторых задач в процессе отдельных следственных действий, преимущественно при осмотре места происшествия: для определения неизвестного расстояния по двум известным, наклона линии полета брызг крови, размеров автомобильных шин по их следам, скорости движения автомобиля по тормозному пути и некоторых других. У И. М. Лузгина мы встречаем упоминание о логико-математическом моделировании, объектами которого, с его точки зрения, могут быть признаки спорных ситуаций, факты, образующие состав преступления, и связанные с ним обстоятельства, отношения между предметами и явлениями, признаки следов. Однако, кроме упоминания, никаких данных, подтверждающих реальную возможность такого моделирования, он не приводит.

Пионерами изучения возможности применения в криминалистической методике вероятностно-статистических методов можно считать З. И. Кирсанова и Н. А. Родионова. Первый определил основные направления применения статистических методов: для изучения способов совершения преступления, видов документов, подделываемых преступниками, предметов, используемых в качестве тайников, в целом для обобщения и изучения следственной практики и т. п.. Второй назвал те статистические методы, которые, по его мнению, могут быть применены при расследовании преступлений. Примером успешного применения вероятностно-статистических методов для определения зависимостей между элементами криминалистической характеристики умышленных убийств служат работы Л. Г. Видонова.

Предпринимаются попытки оценки при помощи вероятностно-статистических методов эффективности отдельных тактических приемов или их сочетаний в рамках специальных комплексов, эффективности тактических комбинаций (операций) по отдельным категориям преступлений.

Расширение сферы применения в криминалистике математических методов логически повлекло за собой исследование возможностей их использования для решения практических задач на базе компьютерных технологий. "Говоря о применении математических методов, хотелось бы подчеркнуть, что не следует противопоставлять их ЭВМ, - справедливо замечал уже в 1984 году в этой связи А. Р. Шляхов. - Математические и технико- криминалистические методы могут дополнять друг друга, взаимодействовать, а в ряде случаев функционировать параллельно. По своей сути и форме они не тождественны. Верно, что почти все достижимое математикой может решать и

ЭВМ (иногда даже лучше математиков), но без математиков ЭВМ бессильна". Такой областью правоохранительной практической деятельности, где применение ЭВМ оказалось наиболее перспективным, является судебная экспертиза.

Помимо экспертной практики, в криминалистике определились следующие направления использования кибернетических методов:

Извлечение информации о различных объектах, процессах и автоматизация ее первичной обработки;

Применение автоматических устройств и ЭВМ для срочной обработки информации и для получения производных параметров по фиксированной первичной информации;

Автоматизация процесса кодирования и сканирования информации;

Компьютерное распознавание образов;

Исследование математических моделей процесса доказывания.



Понравилась статья? Поделитесь с друзьями!