Масса атомов и молекул.

Атомной массой называется сумма масс всех протонов, нейтронов и электронов, из которых состоит тот или иной атом или молекула. По сравнению с протонами и нейтронами масса электронов очень мала, поэтому она не учитывается в расчетах. Хотя это и некорректно с формальной точки зрения, нередко данный термин используется для обозначения средней атомной массы всех изотопов элемента. На самом деле это относительная атомная масса, называемая также атомным весом элемента. Атомный вес – это среднее значение атомных масс всех изотопов элемента, встречающихся в природе. Химики должны различать эти два типа атомной массы при выполнении своей работы – неправильное значение атомной массы может, к примеру, привести к неправильному результату для выхода продукта реакции.

Шаги

Нахождение атомной массы по периодической таблице элементов

    Изучите как записывается атомная масса. Атомная масса, то есть масса данного атома или молекулы, может быть выражена в стандартных единицах системы СИ – граммах, килограммах и так далее. Однако в связи с тем, что атомные массы, выраженные в этих единицах, чрезвычайно малы, их часто записывают в унифицированных атомных единицах массы, или сокращенно а.е.м. – атомные единицы массы. Одна атомная единица массы равна 1/12 массы стандартного изотопа углерод-12.

    • Атомная единица массы характеризует массу одного моля данного элемента в граммах . Эта величина очень полезна при практических расчетах, поскольку с ее помощью можно легко перевести массу заданного количества атомов или молекул данного вещества в моли, и наоборот.
  1. Найдите атомную массу в периодической таблице Менделеева. В большинстве стандартных таблиц Менделеева содержатся атомные массы (атомные веса) каждого элемента. Как правило, они приведены в виде числа в нижней части ячейки с элементом, под буквами, обозначающими химический элемент. Обычно это не целое число, а десятичная дробь.

    Помните о том, что в периодической таблице приведены средние атомные массы элементов. Как было отмечено ранее, относительные атомные массы, указанные для каждого элемента в периодической системе, являются средними значениями масс всех изотопов атома. Это среднее значение ценно для многих практических целей: к примеру, оно используется при расчете молярной массы молекул, состоящих из нескольких атомов. Однако когда вы имеете дело с отдельными атомами, этого значения, как правило, бывает недостаточно.

    • Поскольку средняя атомная масса представляет собой усредненное значение для нескольких изотопов, величина, указанная в таблице Менделеева не является точным значением атомной массы любого единичного атома.
    • Атомные массы отдельных атомов необходимо рассчитывать с учетом точного числа протонов и нейтронов в единичном атоме.

Расчет атомной массы отдельного атома

  1. Найдите атомный номер данного элемента или его изотопа. Атомный номер – это количество протонов в атомах элемента, оно никогда не изменяется. Например, все атомы водорода, причем только они, имеют один протон. Атомный номер натрия равен 11, поскольку в его ядре одиннадцать протонов, тогда как атомный номер кислорода составляет восемь, так как в его ядре восемь протонов. Вы можете найти атомный номер любого элемента в периодической таблице Менделеева – практически во всех ее стандартных вариантах этот номер указан над буквенным обозначением химического элемента. Атомный номер всегда является положительным целым числом.

    • Предположим, нас интересует атом углерода. В атомах углерода всегда шесть протонов, поэтому мы знаем, что его атомный номер равен 6. Кроме того, мы видим, что в периодической системе, в верхней части ячейки с углеродом (C) находится цифра "6", указывающая на то, что атомный номер углерода равен шести.
    • Обратите внимание, что атомный номер элемента не связан однозначно с его относительной атомной массой в периодической системе. Хотя, особенно для элементов в верхней части таблицы, может показаться, что атомная масса элемента вдвое больше его атомного номера, она никогда не рассчитывается умножением атомного номера на два.
  2. Найдите число нейтронов в ядре. Количество нейтронов может быть различным для разных атомов одного и того же элемента. Когда два атома одного элемента с одинаковым количеством протонов имеют разное количество нейтронов, они являются разными изотопами этого элемента. В отличие от количества протонов, которое никогда не меняется, число нейтронов в атомах определенного элемента может зачастую меняться, поэтому средняя атомная масса элемента записывается в виде десятичной дроби со значением, лежащим между двумя соседними целыми числами.

    Сложите количество протонов и нейтронов. Это и будет атомной массой данного атома. Не обращайте внимания на количество электронов, которые окружают ядро – их суммарная масса чрезвычайно мала, поэтому они практически не влияют на ваши расчеты.

Вычисление относительной атомной массы (атомного веса) элемента

  1. Определите, какие изотопы содержатся в образце. Химики часто определяют соотношение изотопов в конкретном образце с помощью специального прибора под названием масс-спектрометр. Однако при обучении эти данные будут предоставлены вам в условиях заданий, контрольных и так далее в виде значений, взятых из научной литературы.

    • В нашем случае допустим, что мы имеем дело с двумя изотопами: углеродом-12 и углеродом-13.
  2. Определите относительное содержание каждого изотопа в образце. Для каждого элемента различные изотопы встречаются в разных соотношениях. Эти соотношения почти всегда выражают в процентах. Некоторые изотопы встречаются очень часто, тогда как другие очень редки – временами настолько, что их с трудом можно обнаружить. Эти величины можно определить с помощью масс-спектрометрии или найти в справочнике.

    • Допустим, что концентрация углерода-12 равна 99%, а углерода-13 – 1%. Другие изотопы углерода действительно существуют, но в количествах настолько малых, что в данном случае ими можно пренебречь.
  3. Умножьте атомную массу каждого изотопа на его концентрацию в образце. Умножьте атомную массу каждого изотопа на его процентное содержание (выраженное в виде десятичной дроби). Чтобы перевести проценты в десятичную дробь, просто разделите их на 100. Полученные концентрации в сумме всегда должны давать 1.

    • Наш образец содержит углерод-12 и углерод-13. Если углерод-12 составляет 99% образца, а углерод-13 – 1%, то необходимо умножить 12 (атомная масса углерода-12) на 0,99 и 13 (атомная масса углерода-13) на 0,01.
    • В справочниках даются процентные соотношения, основанные на известных количествах всех изотопов того или иного элемента. Большинство учебников по химии содержат эту информацию в виде таблицы в конце книги. Для изучаемого образца относительные концентрации изотопов можно также определить с помощью масс-спектрометра.
  4. Сложите полученные результаты. Просуммируйте результаты умножения, которые вы получили в предыдущем шаге. В результате этой операции вы найдете относительную атомную массу вашего элемента – среднее значение атомных масс изотопов рассматриваемого элемента. Когда рассматривается элемент в целом, а не конкретный изотоп данного элемента, используется именно эта величина.

    • В нашем примере 12 x 0,99 = 11,88 для углерода-12, и 13 x 0,01 = 0,13 для углерода-13. Относительная атомная масса в нашем случае составляет 11,88 + 0,13 = 12,01 .
  • Некоторые изотопы менее стабильны, чем другие: они распадаются на атомы элементов с меньшим количеством протонов и нейтронов в ядре с выделением частиц, входящих в состав атомного ядра. Такие изотопы называют радиоактивными.

Для измерения массы атома используется относительная атомная масса, которая выражается в атомных единицах массы (а. е. м.). Относительная молекулярная масса складывается из относительных атомных масс веществ.

Понятия

Для осознания, что такое относительная атомная масса в химии, следует понимать, что абсолютная масса атома слишком мала, чтобы выражать её в граммах, а тем более в килограммах. Поэтому в современной химии за атомную единицу массы (а. е. м.) взята 1/12 часть массы углерода. Относительная атомная масса равна отношению абсолютной массы к 1/12 абсолютной массы углерода. Другими словами относительная масса отражает, во сколько раз масса атома конкретного вещества превышает 1/12 массы атома углерода. Например, относительная масса азота - 14, т.е. атом азота содержит 14 а. е. м. или в 14 раз больше, чем 1/12 часть атома углерода.

Рис. 1. Атомы и молекулы.

Среди всех элементов водород самый лёгкий, его масса равна 1 единице. Самые тяжёлые атомы имеют массу в 300 а. е. м.

Молекулярная масса - значение, показывающее, во сколько раз масса молекулы превышает 1/12 часть массы углерода. Также выражается в а. е. м. Масса молекулы складывается из массы атомов, поэтому для вычисления относительной молекулярной массы необходимо сложить значения масс атомов вещества. Например, относительная молекулярная масса воды равна 18. Это значение складывается из относительных атомных масс двух атомов водорода (2) и одного атома кислорода (16).

Рис. 2. Углерод в периодической таблице.

Как видно, эти два понятия имеют несколько общих характеристик:

  • относительная атомная и молекулярная массы вещества - безразмерные величины;
  • относительная атомная масса имеет обозначение A r , молекулярная - M r ;
  • единица измерения одинакова в обоих случаях - а. е. м.

Молярная и молекулярная массы совпадают численно, но отличаются по размерности. Молярная масса - это отношение массы вещества к количеству молей. Она отражает массу одного моля, который равен числу Авогадро, т.е. 6,02 ⋅ 10 23 . Например, 1 моль воды весит 18 г/моль, а M r (Н 2 О) = 18 а. е. м. (тяжелее в 18 раз одной атомной единицы массы).

Как рассчитать

Чтобы выразить относительную атомную массу математически, следует определить, что 1/2 часть углерода или одна атомная единица массы равна 1,66⋅10 −24 г. Следовательно, формула относительной атомной массы имеет следующий вид:

A r (X) = m a (X) / 1,66⋅10 −24 ,

где m a - абсолютная атомная масса вещества.

Относительная атомная масса химических элементов указана в периодической таблице Менделеева, поэтому её не нужно рассчитывать самостоятельно при решении задач. Относительные атомные массы принято округлять до целых. Исключение составляет хлор. Масса его атомов равна 35,5.

Следует обратить внимание, что при расчёте относительной атомной массы элементов, имеющих изотопы, учитывается их среднее значение. Атомная масса в этом случае высчитывается следующим образом:

A r = ΣA r,i n i ,

где A r,i - относительная атомная масса изотопов, n i - содержание изотопов в природных смесях.

Например, кислород имеет три изотопа - 16 О, 17 О, 18 О. Их относительная масса равна 15,995, 16,999, 17,999, а их содержание в природных смесях - 99,759 %, 0,037 %, 0,204 % соответственно. Поделив проценты на 100 и подставив значения, получим:

A r = 15,995 ∙ 0,99759 + 16,999 ∙ 0,00037 + 17,999 ∙ 0,00204 = 15,999 а.е.м.

Обратившись к периодической таблице, легко найти это значение в клетке кислорода.

Рис. 3. Таблица Менделеева.

Относительная молекулярная масса - сумма масс атомов вещества:

При определении значения относительной молекулярной массы учитываются индексы символов. Например, вычисление массы H 2 CO 3 выглядит следующим образом:

M r = 1 ∙ 2 + 12 + 16 ∙ 3 = 62 а. е. м.

Зная относительную молекулярную массу, можно вычислить относительную плотность одного газа по второму, т.е. определить, во сколько раз одно газообразное вещество тяжелее второго. Для этого используется уравнение D (y) x = M r (х) / M r (y).

Что мы узнали?

Из урока 8 класса узнали об относительной атомной и молекулярной массе. За единицу относительной атомной массы принята 1/12 часть массы углерода, равная 1,66⋅10 −24 г. Для вычисления массы необходимо абсолютную атомную массу вещества разделить на атомную единицу массы (а. е. м.). Значение относительной атомной массы указано в периодической системе Менделеева в каждой клетке элемента. Молекулярная масса вещества складывается из суммы относительных атомных масс элементов.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 190.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n, измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

Число Авогадро ди Кваренья (NA). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 1023. (Постоянная Авогадро имеет размерность - моль-1).

Сколько молекул содержится в 6,4 г серы?

Молекулярная масса серы равна 32 г /моль. Определяем количество г/моль вещества в 6,4 г серы:

n(s) = m(s) / M(s) = 6,4г / 32 г/моль = 0,2 моль

Определим число структурных единиц (молекул), используя постоянную Авогадро NA N(s) = n(s) NA = 0,2 6,02 1023 = 1,2 1023

Молярная масса показывает массу 1 моля вещества (обозначается M).

Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества.

Молярная масса вещества численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая - безразмерная.

M = NA m(1 молекула) = NA Mr 1 а.е.м. = (NA 1 а.е.м.) Mr = Mr

Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. (SO3), то масса одного моля молекул равна 80 г. Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных соотношений к молярным. Все утверждения относительно молекул остаются справедливыми для молей (при замене, в случае необходимости, а.е.м. на г) Например, уравнение реакции: 2Na + Cl2 --> 2NaCl, означает, что два атома натрия реагируют с одной молекулой хлора или, что одно и то же, два моль натрия реагируют с одним молем хлора.

Закон сохранения массы веществ.

(М.В.Ломоносов, 1748 г.; А.Лавуазье, 1789 г.)

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия DE связана с увеличением его массы Dm соотношением DE = Dm c2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10-11 г и Dm практически не может быть измерено. В ядерных реакциях, где DЕ в ~106 раз больше, чем в химических реакциях, Dm следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Составление химических уравнений.

Включает три этапа:

1. Запись формул веществ, вступивших в реакцию (слева) и продуктов реакции (справа), соединив их по смыслу знаками "+" и "-->" :

HgO --> Hg + O2

2. Подбор коэффициентов для каждого вещества так, чтобы количество атомов каждого элемента в левой и правой части уравнения было одинаково:

2HgO --> 2Hg + O2

3. Проверка числа атомов каждого элемента в левой и правой частях уравнения.

Расчеты по химическим уравнениям.

Расчеты по химическим уравнениям (стехиометрические расчеты) основаны на законе сохранения массы веществ. В реальных химических процессах из-за неполного протекания реакций и потерь масса продуктов обычно меньше теоретически рассчитаной. Выходом реакции (h) называют отношение реальной массы продукта (mp) к теоретически возможной (mт), выраженное в долях единицы или в процентах.

h= (mp / mт) 100%

Если в условиях задач выход продуктов реакции не указан, его в расчетах принимают за 100% (количественный выход).

Другое по теме

Основные направления (тенденции) современной радиотехники проникновение идей радиотехники в медицину
Не так давно исполнилось 100 лет со дня первого в мире применения электромагнитных волн в практических целях. 6 февраля 1900 года русский физик, изобретатель радио Александр Попов, узнав о несчастье - 27 рыбаков было унесено в Балтийское море на оторванной льдине, - дал на 50-километровое расстояние радиодепешу на остр...

Форма и вращение астероидов
Астероиды так малы, что сила тяжести на них ничтожна. Она не в состоянии придать им форму шара, какую придает планетам и их большим спутникам, сминая и утрамбовывая их вещество. Большую роль при этом играет явление текучести. Высокие горы на Земле у подошвы "расползаются", так как прочность пород оказывается...

Относительная атомная масса

Атомы элементов характеризуются определённой (только им присущей) массой. Например, масса атома Н равна 1,67 . 10 −23 г, атома С − 1,995 . 10 −23 г, атома О − 2,66 . 10 −23 г.

Пользоваться такими малыми значениями неудобно, поэтому введено понятие об относительной атомной массе А r − отношении массы атома данного элемента к атомной единице массы (1,6605 . 10 −24 г).

Молекула - наименьшая частица вещества, сохраняющая химические свойства этого вещества. Все молекулы построены из атомов и поэтому также электронейтральны.

Состав молекулы передаётся молекулярной формулой , которая отражает и качественный состав вещества (символы химических элементов, входящих в его молекулу), и его количественный состав (нижние числовые индексы, отвечающие числу атомов каждого элемента в молекуле).

Масса атомов и молекул

Для измерения масс атомов и молекул в физике и химии принята единая система измерения. Эти величины измеряются в относительных единицах.

Атомная единица массы (а.е.м.) равна 1/12 массы m атома углерода 12 С (m одного атома 12 С равна 1,993Ч10 -26 кг).

Относительная атомная масса элемента (A r) – это безразмерная величина, равная отношению средней массы атома элемента к 1/12 массы атома 12 С. При расчете относительной атомной массы учитывается изотопный состав элемента. Величины A r определяют по таблице Д.И. Менделеева

Абсолютная масса атома (m) равна относительной атомной массе, умноженной на 1 а.е.м. Например, для атома водорода абсолютная масса определяется следующим образом:

m (H) = 1,008Ч1,661Ч10 -27 кг = 1,674Ч10 -27 кг

Относительная молекулярная масса соединения (M r) – это безразмерная величина, равная отношению массы m молекулы вещества к 1/12 массы атома 12 С:

Относительная молекулярная масса равна сумме относительных масс атомов, входящих в состав молекулы. Например:

М r (C 2 H 6) = 2Ч A r (C) + 6ЧA r (H) = 2Ч12 + 6 = 30.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на 1 а.е.м.

2. Что называется молярной массой эквивалента?

кон эквивалентов открыт Рихтером в 1791г. Атомы элементов взаимодействуют друг с другом в строго определенных соотношениях – эквивалентах.

В СИ эквивалент есть 1/z часть (воображаемая) частицы Х. Х – атом, молекула, ион и т.д. Z – равен числу протонов, которое связывает или отдает частица Х (эквивалент нейтрализации) или числу электронов, которое отдает или принимает частица Х (эквивалент окисления-восстановления) или заряду иона Х (ионный эквивалент).

Молярная масса эквивалента, размерность – г/моль, есть отношение молярной массы частицы Х к числу Z.


Например, молярная масса эквивалентаэлемента определяется отношением молярной массы элемента к его валентности.

Закон эквивалентов: массы реагирующих веществ относятся между собой, как молярные массы их эквивалентов.

Математическое выражение

где m 1 и m 2 – массы реагирующих веществ,

Молярные массы их эквивалентов.

Если реагирующая порция вещества характеризуется не массой, а объемом V(x), то в выражении закона эквивалентов его молярная масса эквивалента заменяется молярным объемом эквивалента.

3. Каковы основные законы химии?

Основные законы химии . Закон сохранения массы и энергии сформулировал М. В. Ломоносов в 1748 году. Масса веществ участвующих в химических реакциях не изменяется. В 1905г Эйнштейн полагал, взаимосвязь между энергией и массой

Е=m×c 2 , с=3×10 8 м/с

Масса и энергия есть свойства материи. Масса – мера энергии. Энергия – мера движения, поэтому они не эквивалентны и не превращаются друг в друга, однако всякий раз, когда изменяется энергия тела Е , изменяется его масса m . Ощутимые изменения массы происходят в ядерной химии.

С точки зрения атомно-молекулярной теории атомы имеющие постоянную массу не исчезают и не возникают из ничего, это приводит к сохранению массы веществ. Закон доказан экспериментально. Опираясь на этот закон составляются химические уравнения. Количественные расчеты по уравнениям реакций называют стехиометрическими расчетами. В основе всех количественных расчетов лежит закон сохранения массы, и следовательно, можно планировать и контролировать производство.

4. Какие основные классы неорганических соединений существуют? Дайте определение, приведите примеры.

Простые вещества . Молекулы состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения). Молекулы состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Резкой границы между металлами и неметаллами нет, т.к. есть простые вещества, проявляющие двойственные свойства.

5. Каковы основные типы химических реакций?

Существует огромное множество различных химических реакций и несколько способов их классификации. Чаще всего химические реакции классифицируют по числу и составу реагентов и продуктов реакции. По этой классификации выделяют четыре типа химических реакций - это реакции соединения, разложения, замещения, обмена.

Реакция соединения - это реакция, реагентами которой являются два или несколько простых или сложных веществ, а продуктом - одно сложное вещество. Примеры реакций соединения:

Образование оксида из простых веществ - C + O 2 = CO 2 , 2Mg + O 2 = 2MgO

Взаимодействие металла с неметаллом и получение соли - 2Fe + 3Cl 2 = 2FeCl 3

Взаимодействие оксида с водой - CaO + H 2 O = Ca(OH) 2

Реакция разложения - это реакция, реагентом которой является одно сложное вещество, а продуктом - два или несколько простых или сложных веществ. Чаще всего реакции разложения протекают при нагревании. Примеры реакций разложения:

Разложение мела при нагревании: CaCO 3 = CaO + CO 2

Разложение воды под действием электрического тока: 2H 2 O = 2H 2 + O 2

Разложение оксида ртути при нагревании - 2HgO = 2Hg + O 2

Реакция замещения - это реакция, реагентами которой являются простое и сложное вещества, а продуктами - также простое и сложное вещества, но атомы одного из элементов в сложном веществе заменены на атомы простого реагента. Примеры:

Замещение водорода в кислотах - Zn + H 2 SO 4 = ZnSO 4 + H 2

Вытеснение металла из соли - Fe + CuSO 4 = FeSO 4 + Cu

Образование щелочи - 2Na + 2H 2 O = 2NaOH + H 2

Реакция обмена - это реакция, реагентами и продуктами которой являются по два сложных вещества, в процессе реакции реагенты обмениваются между собой своими составными частями, в результате чего образуются другие сложные вещества. Примеры:

Взаимодействие соли с кислотой: FeS + 2HCl = FeCl 2 + H 2 S

Взаимодействие двух солей: 2K 3 PO 4 + 3MgSO 4 = Mg 3 (PO 4) 2 + 3K 2 SO 4

Существуют химические реакции, которые нельзя отнести ни к одному из перечисленных типов.

6. Кем, когда и какими опытами было открыто ядро атома и создана ядерная модель атома?

Ядерная модель атома. Одна из первых моделей строения атома былапредложена английским физиком Э. Резерфордом. В опытах по рассеянию а-частиц было показано, что почти вся масса атома сосредоточена в очень малом объеме - положительно заряженном ядре. Согласно моделиРезерфорда, вокруг ядра на относительно большом расстоянии непрерывно движутся электроны, причем их количество таково, что в целом атом электрически нейтрален. Позднее наличие в атоме тяжелогоядра, окруженного электронами, было подтверждено другими учеными. Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10 –10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.

7. Что нового ввел Н. Бор в представлении об атоме? Дайте краткое изложение постулатов Бора применительно к атому водорода.

Теория Бора для атома водорода

Следуя теории Бора для атома водорода, Зоммерфельд предложил такое правило квантования, что при его применении к атому водорода модель Бора не противоречит волновой природе электрона, постулированной де Бройлем. Вывести выражение для уровней энергии атома водорода, используя правило Зоммерфельда, согласно которому разрешенные электронные орбитали представляют собой окружности с длиной, кратной длине волны электрона.

Так как квантовые числа I, т и не вносят ничего в энергию электронного состояния, то все возможные состоянияв данном) радиальном уровне энергетически равны. Это значит, что в спектре будут наблюдаться только единичные линии, такие, как предсказывал Бор. Однако хорошо известно, что в спектре водородасуществует тонкая структура, изучение которой было толчком к развитию теории Бора - Зоммерфельда для атома водорода. Очевидно, что простая форма волнового уравнения не вполне адекватно описывает атом водорода, и, таким образом, мы находимся в-положении, лишь немного лучшем того, когда опирались на модель атома Бора. 

8. Что определяют и какие значения могут иметь: главное квантовое число n , побочное (орбитальное) - l, магнитное - m l и спиновое - m s ?

Квантовые числа .

1. Главное квантовое число, n – принимает целочисленные значения от 1 до ¥ (n=1 2 3 4 5 6 7…) или буквенные (K L M N O P Q).

max значение n соответствует числу энергетических уровней в атоме и соответствует номеру периода в таблице Д.И. Менделеева, характеризует величину энергии электрона, размер орбитали. Элемент с n=3 имеет 3 энергетических уровня, находится в третьем периоде, обладает большим размером электронного облака и энергией, чем элемент с n=1.

2. Орбитальное квантовое число l принимает значения в зависимости от главного квантового числа и имеет соответствующие буквенные значения.

l=0, 1, 2, 3… n-1

l – характеризует форму орбиталей:

Орбитали с одним и тем же значением n , но с разными значениями l различаются несколько по энергии т.е.уровни делятся на подуровни.

Число возможных подуровней равно главному квантовому числу.

3. Магнитное квантовое число m l принимает значения от -l ,…0…,+l .

Число возможных значений магнитного квантового числа определяет число орбиталей данного вида. В пределах каждого уровня может быть только:

одна s – орбиталь, т.к. m l =0 при l=0

три р – орбитали, m l = -1 0 +1, при l=1

пять d – орбиталей m l =-2 –1 0 +1 +2, при l=2

семь f – орбиталей.

Магнитное квантовое число определяет ориентацию орбиталей в пространстве.

4. Спиновое квантовое число (спин), m s .

Спин характеризует магнитный момент электрона, обусловленный вращением электрона вокруг собственной оси по часовой и против часовой стрелки.

Обозначив электрон стрелкой ­, а орбиталь черточкой или клеточкой можно показать

Правила, характеризующие порядок заполнения орбиталей.

Принцип Паули:

l l n 2 , а на уровнях - 2n 2

n+l ), при равенстве, с n – наименьшей.

правилу Гунда

9. Как объясняет теория Бора происхождение и линейчатую структуру атомных спектров?

Теория Н. Бора была предложена в 1913 году, в ней использовалась планетарная модель Резерфорда и квантовая теория Планка-Эйнштейна. Планк считал, что наряду с пределом делимости материи – атом, существует предел делимости энергии - квант. Атомы излучают энергию не непрерывно, а определенными порциями квантами

Первый постулат Н. Бора : существуют строго определенные разрешенные, так называемые стационарные орбиты; находясь на которых электрон не поглощает и не излучает энергию. Разрешенными являются только те орбиты, для которых момент количества движения равный произведению m e ×V×r, может меняться определенными порциями (квантами), т.е. квантуется.

Состояние атома с n=1 называют нормальным, при n=2,3… - возбужденным.

Скорость электрона с увеличением радиуса уменьшается, кинетическая и общая энергия возрастает.

Второй постулат Бора: при переходе с одной орбиты на другую электрон поглощает или излучает квант энергии.

Е дальн -Е ближ =h×V. Е=-21,76×10 -19 /n 2 Дж/атом=-1310кДж/моль.

Такую энергию надо затратить, чтобы перевести электрон в атоме водорода с первой боровской орбиты (n=1) на бесконечно удаленную, т.е. оторвать электрон от атома, превратив его в положительно заряженный ион.

Квантовая теория Бора объяснила линейчатый характер спектра атомов водорода.

Недостатки:

1. Постулируется пребывание электрона только на стационарных орбитах, как же в таком случае совершается переход электронов?

2. Не объясняются все детали спектров, их разная толщина.

Что в атоме называют энергетическим уровнем и энергетическим подуровнем?

Число энергетических уровней атома равно номеру периода, в котором он расположен. Например,калий(К) -элемент четвертого периода, имеет 4 энергетических уровня (n = 4). Энергетический подуровень - совокупность орбиталей с одинаковыми значениями главного и орбитального квантовых чисел.

11. Какую форму имеют s- , p- и d- электронные облака.

При химических реакциях ядра атомов остаются без изменений, изменяется лишь строение электронных оболочек вследствие перераспределения электронов между атомами. Способностью атомов отдавать или присоединять электроны определяются его химические свойства.

Электрон имеет двойственную (корпускулярно-волновую) природу. Благодаря волновым свойствам электроны в атоме могут иметь только строго определенные значения энергии, которые зависят от расстояния до ядра. Электроны, обладающие близкими значениями энергии образуют энергетический уровень. Он содержит строго определенное число электронов - максимально 2n 2 . Энергетические уровни подразделяются на s-, p-, d- и f- подуровни; их число равно номеру уровня.

Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5).

Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подуровнем.

l=0 s- подуровень, s- орбиталь – орбиталь сфера

l=1 p- подуровень, p- орбиталь – орбиталь гантель

l=2 d- подуровень, d- орбиталь – орбиталь сложной формы

f-подуровень, f-орбиталь – орбиталь еще более сложной формы

На первом энергетическом уровне (n = 1) орбитальное квантовое число lпринимает единственное значение l = (n - 1) = 0. Форма обитали - сферическая; на первом энергетическом только один подуровень - 1s. Для второго энергетического уровня (n = 2) орбитальное квантовое число может принимать два значения: l = 0, s- орбиталь - сфера большего размера, чем на первом энергетическом уровне; l = 1, p- орбиталь - гантель. Таким образом, на втором энергетическом уровне имеются два подуровня - 2s и 2p. Для третьего энергетического уровня (n = 3) орбитальное квантовое число l принимает три значения: l = 0, s- орбиталь - сфера большего размера, чем на втором энергетическом уровне; l = 1, p- орбиталь - гантель большего размера, чем на втором энергетическом уровне; l = 2, d- орбиталь сложной формы.

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня - 3s, 3p и 3d.

12. Дайте формулировку принципа Паули и правила Гунда.

Принцип Паули: в атоме не может быть двух и более электронов с одинаковым набором всех четырех квантовых чисел. Из чего следует, что на одной орбитали могут находиться два электрона с противоположно направленными спинами.

Максимально возможное число электронов:

на s – подуровне - одна орбиталь – 2 электрона, т.е. s 2 ;

на p- – -три орбитали – 6 электронов, т.е. р 6 ;

на d - – - пять орбиталей – 10 электронов, т.е. d 10 ;

на f- –– - семь орбиталей – 14 электронов, т.е. f 14 .

Число орбиталей на подуровнях определяется 2l +1, а число электронов на них будет 2×(2l +1),число орбиталей на подуровнях равно квадрату главного квантового числа n 2 , а на уровнях - 2n 2 , т.о. в первом периоде периодической системы элементов максимально может быть 2 элемента, во втором – 8, в третьем – 18 элементов, в четвертом – 32.

В соответствии с I и II правилами М.В.Клечковского заполнение орбиталей происходит в порядке возрастания суммы (n+l ), при равенстве, с n – наименьшей.

Электронные формулы записываются следующим образом:

1. В виде числового коэффициента указывают номер энергетического уровня.

2. Приводят буквенные обозначения подуровня.

3. Число электронов на данном энергетическом подуровне указывают в виде показателя степени, при этом все электроны данного подуровня суммируются.

Размещение электронов в пределах данного подуровня подчиняется правилу Гунда : на данном подуровне электроны стремятся занять максимальное число свободных орбиталей, так, чтобы суммарный спин был максимальным.

13. Дайте формулировку правил Клечковского. Как они определяют порядок заполнения АО?

В соответствии с I и II правилами М.В.Клечковского заполнение орбиталей происходит в порядке возрастания суммы (n+l ), при равенстве, с n – наименьшей.

Электронные формулы записываются следующим образом:

1. В виде числового коэффициента указывают номер энергетического уровня.

2. Приводят буквенные обозначения подуровня.

3. Число электронов на данном энергетическом подуровне указывают в виде показателя степени, при этом все электроны данного подуровня суммируются.

14. Что называют энергией ионизации, сродством к электрону, электроотрицательностью и в каких единицах они измеряются?

Атомные характеристики . Химическая природа элемента обуславливается способностью его атома терять или приобретать электроны. Эта способность количественно может быть оценена энергией ионизации атома и его сродством к электронам .

Энергией ионизации называется энергия, которую необходимо затратить для отрыва электрона от атома (иона или молекулы). Она выражается в джоулях или электронвольтах. 1 ЭВ = 1,6×10 -19 Дж.

Энергия ионизации, I, является мерой восстановительной способности атома. Чем меньше I, тем больше восстановительная способность атома.

Наименьшими значениями I обладают s элементы первой группы. Значения же I 2 для них резко возрастают. Аналогично для s элементов II группы резко возрастает I 3 .

Наибольшими значениями I 1 обладают p-элементы VIII группы. Это возрастание энергии ионизации при переходе от s элементов I группы к p элементам VIII группы обуславливается возрастанием эффективного заряда ядра.

Сродством к электрону называется энергия, которая выделяется при присоединении электрона к атому (иону или молекуле). Выражается также в Дж или эВ. Можно сказать, что сродство к электрону – мера окислительной способности частиц. Надежные значения Е найдены лишь для небольшого числа элементов.

Наибольшим сродством к электрону обладают р-элементы VII группы (галогены), так как присоединяя один электрон к нейтральному атому они приобретают законченный октет электронов.

E (F) = 3,58 эВ, Е (Cl) = 3,76 эВ

Наименьшие и даже отрицательные значения Е имеют атомы с конфигурацией s 2 и s 2 p 6 или наполовину заполненным р-подуровнем.

Е (Mg) = -0,32 эВ, Е (Ne) = -0.57 эВ, Е (N) = 0,05 эВ

Присоединение последующих электронов невозможно. Так, многозарядные анионы О 2- , N 3- не существуют.

Электроотрицательностью называется количественная характеристика способности атома в молекуле притягивать к себе электроны. Эта способность зависит от I и Е. По Малликену: ЭО = (I+E)/2.

Электроотрицательности элементов по периоду возрастают, по группе – уменьшаются.

Одним из фундаментальных свойств атомов, является их масса. Абсолютная (истинная) масса атома – величина чрезвычайно малая. Взвесить атомы на весах невозможно, поскольку таких точных весов не существует. Их массы были определены с помощью расчетов.

Например, масса одного атома водорода равна 0,000 000 000 000 000 000 000 001 663 грамма! Масса атома урана – одного из самых тяжелых атомов, составляет приблизительно 0,000 000 000 000 000 000 000 4 грамма.

Точное значение массы атома урана – 3,952 ∙ 10−22 г, а атома водорода, самого легкого среди всех атомов, – 1,673 ∙ 10−24 г.

Производить расчеты с малыми числами неудобно. Поэтому вместо абсолютных масс атомов используют их относительные массы.

Относительная атомная масса

О массе любого атома можно судить, сравнивая ее с массой другого атома (находить отношение их масс). С момента определения относительных атомных масс элементов использовались различные атомы в качестве сравнения. Своеобразными эталонами для сравнения в свое время были атомы водорода и кислорода.

Единая шкала относительных атомных масс и новая единица атомной массы, принята Международным съездом физиков (1960) и унифицирована Международным съездом химиков (1961).

По сегодняшний день эталоном для сравнения является 1/12 часть массы атома углерода. Данное значение называют атомной единицей массы, сокращенно а.е.м

Атомная единица массы (а.е.м.) – масса 1/12 части атома углерода

Сравним, во сколько раз отличается абсолютная масса атома водорода и урана от 1 а.е.м., для этого разделим эти числа одно на другое:

Полученные при расчетах значения и являются относительными атомными массами элементов – относительно 1/12 массы атома углерода.

Так, относительная атомная масса водорода приблизительно равна 1, а урана – 238. Обратите внимание, что относительная атомная масса не имеет единиц измерения, так как при делении единицы измерения абсолютных масс (граммы) сокращаются.

Относительные атомные массы всех элементов указаны в Периодической Системе химических элементов Д.И. Менделеева. Символ, при помощи которого обозначают относительную атомную массу – Аr (буква r – сокращение от слова relative, что означает относительный).

Значения относительных атомных масс элементов используются во многих расчетах. Как правило, значения, приведенные в Периодической Системе, округляются до целых чисел. Обратите внимание, что элементы в Периодической Системе размещены в порядке увеличения относительных атомных масс.

Например, при помощи Периодической Системы определим относительные атомные массы ряда элементов:

Ar(O) = 16; Ar(Na) = 23; Ar(P) = 31.
Относительную атомную массу хлора принято записывать равной 35,5!
Ar(Сl) = 35,5

  • Относительные атомные массы пропорциональны абсолютным массам атомов
  • Эталоном для определения относительной атомной массы является 1/12 часть массы атома углерода
  • 1 а.е.м. = 1,662 ∙ 10−24 г
  • Относительную атомную массу обозначают Ar
  • Для расчетов значения относительных атомных масс округляют до целых, исключение – хлор, для которого Ar = 35,5
  • Относительная атомная масса не имеет единиц измерения


Понравилась статья? Поделитесь с друзьями!