Очень интересные уравнения и их решения. Квадратные уравнения и как их решать

Уравнение – это математическое выражение, являющееся равенством, содержащее неизвестное. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например: соотношение вида (x – 1)2 = (x – 1)(x – 1) выполняется при всех значениях x.

Если уравнение, содержащее неизвестное x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

В разделе математики, который называется теорией уравнений, основным предметом изучения являются методы решения уравнений. В школьном курсе алгебры уравнениям уделяется большое внимание.

История изучения уравнений насчитывает много веков. Самыми известными математиками, внесшими вклад в развитие теории уравнений, были:

Архимед (около 287–212 до н. э.) - древнегреческий ученый, математик и механик. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Франсуа Виет жил в XVI в. Он внес большой вклад в изучение различных проблем математики. В частности, он ввел буквенные обозначения коэффициентов уравнения и установил связь между корнями квадратного уравнения.

Леонард Эйлер (1707 – 1783) - математик, механик, физик и астроном. Автор св. 800 работ по математическаму анализу, дифференциальных уравнений, геометрии, теории чисел, приближённым вычислениям, небесной механике, математике, оптике, баллистике, кораблестроению, теории музыки, и т. д. Оказал значительное влияниена развитие науки. Вывел формулы (Формулы Эйлера), выражающие тригонометрические функции переменного х через показательную функцию.

Лагранж Жозеф Луи (1736 - 1813 гг.), французский математик и механик. Ему принадлежат выдающиеся исследования, среди них исследования по алгебре (симметрической функции корней уравнения, по дифференциальным уравнениям (теория особых решений, метод вариации постоянных).

Ж. Лагранж и А. Вандермонд - французские математики. В 1771 г. впервые применили способ решения систем уравнений (способ подстановки).

Гаусс Карл Фридрих (1777 -1855 гг.) - немецкий математик. Написал книгу, в которой излагается теория уравнений деления круга (т. е. уравнений xn - 1 = 0), которая во многом была прообразом Галуа теории. Помимо общих методов решения этих уравнений, установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой. Изучал способ сложения. Сделал вывод, что системы уравнений можно между собой складывать, делить, и умножать.

О. И. Сомов – обогатил разные части математики важными и многочисленными трудами, среди них теория определённых алгебраических уравнений высших степеней.

Галуа Эварист (1811-1832 гг.), - французский математик. Основной его заслугой является формулировка комплекса идей, к которым он пришёл в связи с продолжением исследований о разрешимости алгебраических уравнений, начатых Ж. Лагранжем, Н. Абелем и др. , создал теорию алгебраических уравнений высших степеней с одним неизвестным.

А. В. Погорелов (1919 – 1981 гг.) - В его творчестве связаны геометрические методы с аналитическими методами теории дифференциальных уравнений с частными производными. Его труды оказали существенное влияние также на теорию нелинейных дифференциальных уравнений.

П. Руффини - итальянский математик. Посвятил ряд работ, доказательству неразрешимости уравнения 5-й степени, систематически использует замкнутость множества подстановок.

Не смотря на то, что ученые давно изучают уравнения, науке не известно, как и когда у людей возникла необходимость использовать уравнения. Известно только, что задачи, приводящие к решению простейших уравнений, люди решали с того времени, как стали людьми. Еще 3 - 4 тысячи лет до н. э. египтяне и вавилоняне умели решать уравнения. Правило решения этих уравнений, совпадает с современным, но неизвестно, как они до этого дошли.

В Древнем Египте и Вавилоне использовался метод ложного положения. Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь = с, в котором а, Ь, с целые числа. По правилам арифметических действий ах = с - b,

Если Ь > с, то с b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке). Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения. В папирусе Ахмеса 15 задач решается этим методом. Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизвестное количество» единиц). Теперь читают немного менее неточно: «ага». Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах = b. Этот способ заключается в том, что каждую часть уравнения делят на а. Его применяли как египтяне, так и вавилоняне. У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получен ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет в части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть, Яко можеши ею все класть. Не токмо что есть во гражданстве, Но и высших наук в пространстве, Яже числятся в сфере неба, Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми». Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов». Индийские математики часто давали задачи в стихах. Задача о лотосе:

Над озером тихим, с полмеры над водой, Был виден лотоса цвет. Он рос одиноко, и ветер волной Нагнул его в сторону, и уж нет

Цветка над водой. Нашёл его глаз рыбака В двух мерах от места, где рос. Сколько озера здесь вода глубока? Тебе предложу я вопрос.

Виды уравнений

Линейные уравнения

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а (ах + b; ах = - b; х = - b: а.).

Например: решить линейное уравнение: 4х + 12 = 0.

Решение: Т. к а = 4, а b = 12, то х = - 12: 4; х = - 3.

Проверка: 4 (- 3) + 12 = 0; 0 = 0.

Т. к 0 = 0, то -3 является корнем исходного уравнения.

Ответ. х = -3

Если а равно нулю, и b равно нулю, то корнем уравнения ах + b = 0 является любое число.

Например:

0 = 0. Т. к 0 равно 0, то корнем уравнения 0х + 0 = 0 является любое число.

Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Например:

0 = 6. Т. к 0 не равно 6, то 0х – 6 = 0 не имеет корней.

Системы линейных уравнений.

Система линейных уравнений – это система, все уравнения которой линейные.

Решить систему - значит найти все ее решения.

Прежде чем решать систему линейных уравнений, можно определить число её решений.

Пусть дана система уравнений: {а1х + b1y = с1, {а2х + b2y = c2.

Если а1 делённое на а2 не равно b1 делённое на b2, то система имеет одно единственное решение.

Если а1 делённое на а2 равно b1 делённое на b2, но равно с1 делённое на с2, то система не имеет решений.

Если а1 делённое на а2 равно b1 делённое на b2, и равно с1 делённое на с2, то система имеет бесконечно много решений.

Система уравнений, имеющая, по крайней мере, одно решение, называется совместной.

Совместная система называется определенной, если она имеет конечное число решений, и неопределенной, если множество ее решений бесконечно.

Система, не имеющая ни одного решения, называется несовместной или противоречивой.

Способы решения линейных уравнений

Всего есть несколько способов решения линейных уравнений:

1) Метод подбора. Это самый простейший способ. Он заключается в том, что подбирают все допустимые значения неизвестного путём перечисления.

Например:

Решить уравнение.

Пусть х = 1. Тогда

4 = 6. Т. к 4 не равно 6, то наше предположение, что х = 1 было неверным.

Пусть х = 2.

6 = 6. Т. к 6 равно 6, то наше предположение, что х = 2 было верным.

Ответ: х = 2.

2) Способ упрощения

Этот способ заключается в том, что все члены содержащие неизвестное переносим в левую часть, а известные в правую с противоположным знаком, приводим подобные, и делим обе части уравнения на коэффициент при неизвестном.

Например:

Решить уравнение.

5х – 4 = 11 + 2х;

5х – 2х = 11 + 4;

3х = 15; : (3) х = 5.

Ответ. х = 5.

3) Графический способ.

Он заключается в том, что строится график функций данного уравнения. Т. к в линейном уравнение у = 0, то график будет параллелен оси ординат. Точка пересечения графика с осью абсцисс будет решением данного уравнения.

Например:

Решить уравнение.

Пусть у = 7. Тогда у = 2х + 3.

Построим график функций обоих уравнений:

Способы решения систем линейных уравнений

В седьмом классе изучают три способа решения систем уравнений:

1) Способ подстановки.

Этот способ заключается в том, что в одном из уравнений выражают одно неизвестное через другое. Полученное выражение подставляют в другое уравнение, которое после этого обращается в уравнение с одним неизвестным, затем решают его. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например.

Решить систему уравнений.

5х - 2у - 2 = 1.

3х + у = 4; у = 4 - 3х.

Подставим полученное выражение в другое уравнение:

5х – 2(4 – 3х) -2 = 1;

5х – 8 + 6х = 1 + 2;

11х = 11; : (11) х = 1.

Подставим полученное значение в уравнение 3х + у = 4.

3 · 1 + у = 4;

3 + у = 4; у = 4 – 3; у = 1.

Проверка.

/3 · 1 + 1 = 4,

\5 · 1 – 2 · 1 – 2 = 1;

Ответ: х = 1; у = 1.

2) Способ сложения.

Этот способ заключается в том, что если данная система состоит из уравнений, которые при почленном сложении образуют уравнение с одним неизвестным, то решив это уравнение, мы получим значение одного из неизвестных. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например:

Решить систему уравнений.

/3у – 2х = 5,

\5х – 3у = 4.

Решим полученное уравнение.

3х = 9; : (3) х = 3.

Подставим полученное значение в уравнение 3у – 2х = 5.

3у – 2 · 3 = 5;

3у = 11; : (3) у = 11/3; у = 3 2/3.

Итак, х = 3; у = 3 2/3.

Проверка.

/3 · 11/3 – 2 · 3 = 5,

\5 · 3 – 3 · 11/ 3 = 4;

Ответ. х = 3; у = 3 2/3

3) Графический способ.

Этот способ основан на том, что в одной системе координат строятся графики уравнений. Если графики уравнения пересекаются, то координаты точки пересечения являются решением данной системы. Если графики уравнения являются параллельными прямыми, то данная система не имеет решений. Если графики уравнений сольются в одну прямую, то система имеет бесконечно много решений.

Например.

Решить систему уравнений.

18х + 3у - 1 = 8.

2х - у = 5; 18х + 3y - 1 = 8;

У = 5 - 2х; 3у = 9 - 18х; : (3) у = 2х - 5. у = 3 - 6х.

Построим графики функций у = 2х - 5 и у = 3 - 6х на одной системе координат.

Графики функций у = 2х - 5 и у = 3 - 6х пересекаются в точке А (1; -3).

Следовательно решением данной системы уравнений будет х = 1 и у = -3.

Проверка.

2 · 1 - (- 3) = 5,

18 · 1 + 3 · (-3) - 1 = 8.

18 - 9 – 1 = 8;

Ответ. х = 1; у = -3.

Заключение

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Линейные уравнения. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Линейные уравнения.

Линейные уравнения - не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

Обычно линейное уравнение определяется, как уравнение вида:

ax + b = 0 где а и b – любые числа.

2х + 7 = 0. Здесь а=2, b=7

0,1х - 2,3 = 0 Здесь а=0,1, b=-2,3

12х + 1/2 = 0 Здесь а=12, b=1/2

Ничего сложного, правда? Особенно, если не замечать слова: "где а и b – любые числа" ... А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

Что напрягает и подрывает доверие к математике, да...) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

Решение линейных уравнений. Примеры.

Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

х - 3 = 2 - 4х

Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) - в правой.

Для этого нужно перенести - 4х в левую часть, со сменой знака, разумеется, а - 3 - в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря...) Получим:

х + 4х = 2 + 3

Приводим подобные, считаем:

Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно - делим обе части уравнения на 5. Получаем готовый ответ:

Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

Например, вот это уравнение:

С чего начнём? С иксами - влево, без иксов - вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

Раскрываем скобки:

Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

Раскрываем оставшиеся скобки:

Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

Приводим подобные:

И делим обе части на 25, т.е. снова применяем второе преобразование:

Вот и всё. Ответ: х =0,16

Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

Но... Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать...) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

Особые случаи при решении линейных уравнений.

Сюрприз первый.

Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

2х+3=5х+5 - 3х - 2

Слегка скучая, переносим с иксом влево, без икса - вправо... Со сменой знака, всё чин-чинарём... Получаем:

2х-5х+3х=5-2-3

Считаем, и... опаньки!!! Получаем:

Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да...) Тупик?

Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

Да!!! Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите - можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

Вот вам и ответ: х - любое число.

Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

Сюрприз второй.

Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

2х+1=5х+5 - 3х - 2

После тех же самых тождественных преобразований мы получим нечто интригующее:

Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред - вполне веское основание для правильного решения уравнения.)

Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

Вот вам и ответ: решений нет.

Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

Обучающие:

  • Обобщить знания по всем видам уравнений, подчеркнуть значимость всех способов, применяемых при решении уравнений.
  • Активизирование работы учащихся за счет, разнообразных приемов на уроке.
  • Проверить теоретические и практические навыки при решении уравнений.
  • Заострить внимание на том, что, одно уравнение можно решить несколькими способами

Развивающие:

  • Повысить интерес учащихся к предмету, через использование ИКТ.
  • Ознакомление учащихся с историческим материалом по теме.
  • Развитие мыслительной деятельности при определении вида уравнения и способов его решения.

Воспитательные:

  • Воспитать дисциплину на уроке.
  • Развитие способности к восприятию прекрасного, в себе самом, в другом человеке и в окружающем мире.

Тип урока:

  • Урок обобщения и систематизации знаний.

Вид урока:

  • Комбинированный.

Материально-техническое оснащение:

  • Компьютер
  • Экран
  • Проектор
  • Диск с презентацией темы

Методы и приемы:

План урока:

  1. Организационный момент (1минуты)
  2. Расшифровка темы урока (3минуты)
  3. Сообщение темы и цели урока (1минута)
  4. Теоретическая разминка (3минут)
  5. Исторический экскурс (3минуты)
  6. Игра “Убери лишнее” (2минуты)
  7. Творческая работа (2минуты)
  8. Задание “Найди ошибку” (2минуты)
  9. Решение одного уравнения несколькими способами (на слайде) (3минуты)
  10. Решение одного уравнения несколькими способами (у доски) (24 минут)
  11. Самостоятельная работа в парах с последующим объяснением (5минут)
  12. Индивидуальное домашнее задание(1минуты)
  13. Итог урока рефлексия (1минута)

Эпиграф урока:

“Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”.
А.Франс

Конспект урока

Организационная часть

Проверяю готовность учащихся к уроку, отмечаю отсутствующих на уроке. Ребята, Французский писатель 19 века А.Франс однажды заметил “ Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”. Так давайте на нашем уроке следовать совету, писателя и переваривать знания с большим аппетитом, ведь они пригодятся в нашей жизни.

Расшифровка темы урока

Для того, чтобы перейти к более сложном заданием, давайте разомнем свои мозги простыми заданиями. Тема нашего урока зашифрована, решив устные задания и найдя к ним ответ, зная, что каждый ответ имеет свою букву, мы раскроем тему урока. Презентация слайд 3

Сообщение темы и цели урока

Вы, сегодня сами назвали тему урока

“Виды уравнений и способы их решения”. Презентация слайд 4

Цель: Вспомнить и обобщить все виды уравнений и способы их решения. Решить одно уравнение всеми способами. Презентация слайд 5 Прочитать высказывание Эйнштейна Презентация слайд 5

Теоретическая разминка

Вопросы Презентация слайд 7

Ответы

  1. Равенство, содержащее переменную величину, обозначенную какой-то буквой.
  2. Это значит найти все его корни, или доказать, что корней нет.
  3. Значение переменной, при котором уравнение обращается в верное равенство.
  4. После этого определения прочесть стихотворение об уравнении Презентация слайд 12,13,14

Ответы на 2 последних вопроса Презентация слайд 9,10,11

Исторический экскурс

Историческая справка, о том “Кто и когда придумал уравнение” Презентация слайд 15

Представим себе, что первобытная мама по имени... впрочем, у неё, наверно, и имени то не было, сорвала с дерева 12 яблок, чтобы дать каждому из своих 4 детей. Вероятно, она не умела считать не только до 12, но и до четырёх, и уж несомненно не умела делить 12 на 4.А яблоки она поделила, наверно, так: сначала дала каждому ребёнку по яблоку, потом ещё по яблоку, потом ещё по одному и тут увидела, что яблок больше нет и дети довольны. Если записать эти действия на современном математическом языке, то получается х4=12, то есть мама решила задачу на составление уравнение. По-видимому, ответить на поставленный выше вопрос невозможно. Задачи, приводящие к решению уравнений, люди решили на основе здравого смысла с того времени, как они стали людьми. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитие учения об уравнениях достиг греческий учёный Диофант(III век), о котором писали:

Он уйму всяких разрешил проблем.
И запахи предсказывал, и ливни.
Поистине, его познанья дивны.

Большой вклад в решение уравнений внёс среднеазиатский математик Мухаммед ал Хорезми (IХ век). Его знаменитая книга ал-Хорезми посвящена решению уравнений. Она называется “Китаб ал-джебр вал-мукабала”, т. е. “Книга о восполнении и противопоставлении”. Эта книга стала известна европейцам, а от слова “ал-джебр” из ее заглавия произошло слово “алгебра” – название одной из главных частей математики. В дальнейшем многие математики занимались проблемами уравнений. Общее правило решений квадратных уравнений приведённых к виду х2+вх=0 было сформулировано немецким математиком Штифелем, проживавшим в ХV веке. После трудов нидерландского математика Жирара (ХVI век), а также Декарта и Ньютона, способ решения принял современный вид. Формулы, выражающие зависимости корней уравнения от его коэффициентов была введена Виетом. Франсуа Виет жил в ХVI веке. Он внёс большой вклад в изучение различных проблем в математике и астрономии; в частности, он ввёл буквенные обозначения коэффициентов уравнения. А сейчас познакомимся с интересным эпизодом из его жизни. Громкую славу Виет получил при короле Генрихе III, вовремя франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись, благодаря которой испанцы вели переписку с врагами Генриха III даже в самой Франции.

Напрасно французы пытались найти ключ к шифру, и тогда король обратился к Виету. Рассказывают, что Виет нашёл за две недели непрерывной работы ключ к шифру, после чего, неожиданно для Испании, Франция стала выигрывать одно сражение за другим. Будучи уверенным, что шифр разгадать не возможно, испанцы обвинили Виета в связи с дьяволом и приговорили к сожжению на костре. К счастью, он не был выдан инквизиции и вошёл в историю как великий математик.

Игра “Убери лишнее”

Цель игры ориентирование в видах уравнений.

У нас даны три столбика уравнений,в каждом из них, уравнения определены по какому-то признаку,но одно из них лишнее ваша задача его найти и охарактеризовать. Презентация слайд 16

Творческая работа

Цель этого задания: Восприятие на слух математической речи ориентировании детей в видах уравнений.

На экране вы видите 9 уравнений. Каждое уравнение имеет свой номер, я буду называть вид этого уравнения, а вы должны найти уравнение этого вида, и поставить только номер, под которым оно стоит, в результате вы получите 9-значное число Презентация слайд 17

  1. Приведенное квадратное уравнение.
  2. Дробно-рациональное уравнение
  3. Кубическое уравнение
  4. Логарифмическое уравнение
  5. Линейное уравнение
  6. Неполное квадратное уравнение
  7. Показательное уравнение
  8. Иррациональное уравнение
  9. Тригонометрическое уравнение

Задание “Найди ошибку”

Один ученик решал уравнения, но весь класс смеялся, в каждом уравнении он допустил ошибку, ваша задача найти ее и исправить. Презентация слайд 18

Решение одного уравнения несколькими способами

А теперь решим одно уравнение всеми возможными способами, для экономии времени на уроке одно уравнение на экране. Сейчас вы назовете вид этого уравнения, и объясните какой способ используется, при решении этого уравнения Презентация слайды 19-27

Решение одного уравнения несколькими способами (у доски)

Мы посмотрели пример, а теперь давайте решим уравнение у доски всевозможными способами.

X-2 - иррациональное уравнение

Возведем в квадрат обе части уравнения.

X 2 +2x+4x-1-4=0

Решаем это уравнение у доски 9 способами.

Самостоятельная работа в парах с последующим объяснением у доски

А сейчас вы поработаете в парах, на парту я даю уравнение, ваша задача определить вид уравнения, перечислить все способы решения этого уравнения, решить 1-2 наиболее рациональными для вас способами. (2 минуты)

Задания для работы в парах

Решите уравнение

После самостоятельной работы в парах один представитель выходит к доске представляет свое уравнение, решает одним способом

Индивидуальное домашнее задание (дифференцируемо)

Решите уравнение

(определить вид уравнения, решить всеми способами на отдельном листе)

Итог урока рефлексия.

Подвожу итог урока, заостряю внимание на том, что одно уравнение можно решить многими способами, выставляю оценки, делаю вывод, кто был активным кому надо быть поактивнее. Зачитываю высказывание Калинина Презентация слайд 28

Посмотрите внимательно на те цели которые мы с вами поставили для сегодняшнего урока:

  • Что на ваш взгляд нам удалось сделать?
  • Что получилось не очень хорошо?
  • Что вам особенно понравилось и запомнилось?
  • Сегодня я узнал новое...
  • На уроке мне пригодились знания...
  • Для меня было сложно...
  • На уроке мне понравилось...

Литература.

  1. Дорофеев Г.В. “Сборник заданий для проведения письменного экзамена по математике за курс средней школы” - М.: Дрофа, 2006.
  2. Гарнер Мартин. Математические головоломки и развлечения.
  3. Ивлев Б.М., Саакян С.М. Дидактические материалы по алгебре и началам анализа для 10 кл., 11 кл. М.: Просвещение. 2002.

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.



Понравилась статья? Поделитесь с друзьями!