Расстояние между объектами (метрика). Расстояние между кластерами

Касающимся принципов работы трансформаторов , дросселей , многих видов электродвигателей и генераторов . Закон гласит:

или другими словами:

Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея ») .

Диск Фарадея

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий . Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл , который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла .

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС , генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС , генерируемую действием электрической силы вследствие изменения магнитного поля. Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений. Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Таким образом, «правило потока» о том, что ЭДС в цепи равна скорости изменения магнитного потока через контур, применяется независимо от причины изменения потока: то ли потому что поле изменяется, то ли потому что цепь движется (или и то, и другое).... В нашем объяснении правила мы использовали два совершенно различных закона для двух случаев  –      для «движущейся цепи» и     для «меняющегося поля».
Мы не знаем никакого аналогичного положения в физике, когда такие простые и точные общие принципы требовали бы для своего реального понимания анализа с точки зрения двух различных явлений.

-Ричард Фейнман ,   Фейнмановские лекции по физике

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности :

Известно, что электродинамика Максвелла - как её обычно понимают в настоящее время - при применении к движущимся телам приводит к асимметрии, которая, как кажется, не присуща этому явлению. Возьмем, к примеру, электродинамическое взаимодействие магнита и проводника. Наблюдаемое явление зависит только от относительного движения проводника и магнита, тогда как обычное мнение рисует резкое различие между этими двумя случаями, в которых либо одно, либо другое тело находится в движении. Ибо, если магнит находится в движении, а проводник покоится, в окрестности магнита возникает электрическое поля с определенной плотностью энергии, создавая ток там, где расположен проводник. Но если магнит покоится, а проводник движется, то в окрестности магнита никакое электрическое поле не возникает. В проводнике, однако, мы находим электродвижущую силу, для которой не существует соответствующей энергии самой по себе, но которая вызывает - предполагая равенство относительного движения в двух обсуждаемых случаях - электрические токи по тому же направлению и той же интенсивности, как в первом случае.

Примеры подобного рода вместе с неудачной попыткой обнаружить какое-либо движение Земли относительно «светоносной среды» предполагают, что явления электродинамики, а также механики не обладают свойствами, соответствующими идее абсолютного покоя.

-Альберт Эйнштейн , К электродинамике движущихся тел

Поток через поверхность и ЭДС в контуре

Определение поверхностного интеграла предполагает, что поверхность Σ поделена на мелкие элементы. Каждый элемент связан с вектором d A , величина которого равна площади элемента, а направление - по нормали к элементу во внешнюю сторону.

Векторное поле F (r , t ) определено во всём пространстве, а поверхность Σ ограничена кривой ∂Σ, движущейся со скоростью v . По этой поверхности производится интегрирование поля.

Закон электромагнитной индукции Фарадея использует понятие магнитного потока Φ B через замкнутую поверхность Σ, который определён через поверхностный интеграл :

где d A - площадь элемента поверхности Σ(t ), B - магнитное поле, а B ·d A - скалярное произведение B и d A . Предполагается, что поверхность имеет «устье», очерчённое замкнутой кривой, обозначенной ∂Σ(t ). Закон индукции Фарадея утверждает, что когда поток изменяется, то при перемещении единичного положительного пробного заряда по замкнутой кривой ∂Σ совершается работа , величина которой определяется по формуле:

где - величина электродвижущей силы (ЭДС) в вольтах , а Φ B - магнитный поток в веберах . Направление электродвижущей силы определяется законом Ленца .

Следовательно, ЭДС

где v = скорости проводника или магнита , а l = вертикальной длине петли. В этом случае скорость связана с угловой скоростью вращения v = r ω, где r = радиусу цилиндра. Обратите внимание, что такая же работа выполняется по любому пути, который вращается вместе с петлёй и соединяет верхний и нижний ободы.

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле Φ B = B w ℓ, где w - ширина движущейся петли. Это выражение не зависит от времени, поэтому из этого неправильно следует, что никакой ЭДС не генерируется. Ошибка этого утверждения состоит в том, что в нём не учитывается весь путь тока через замкнутую петлю.

Для правильного использования правила потока мы должны рассмотреть весь путь тока, который включает в себя путь через ободы на верхнем и нижнем дисках. Мы можем выбрать произвольный замкнутый путь через ободы и вращающуюся петлю, и по закону потока найти ЭДС по этому пути. Любой путь, который включает сегмент, прилегающий к вращающейся петле, учитывает относительное движение частей цепи.

В качестве примера рассмотрим путь, проходящий в верхней части цепи в направлении вращения верхнего диска, а в нижней части цепи - в противоположном направлении по отношению к нижнему диску (показано стрелками на рис. 4). В этом случае если вращающаяся петля отклонилась на угол θ от коллекторной петли, то её можно рассматривать как часть цилиндра площадью A = r ℓ θ. Эта площадь перпендикулярна полю B , и вносимый ею вклад в поток равен:

где знак является отрицательным, потому что по правилу правой руки поле B, генерируемое петлёй с током, противоположно по направлению приложенному полю B" . Поскольку это только зависящая от времени часть потока, по закону потока ЭДС равна:

в согласии с формулой закона Лоренца.

Теперь рассмотрим другой путь, в котором проход по ободам дисков выберем через противоположные сегменты. В этом случае связанный поток будет уменьшаться при увеличении θ, но по правилу правой руки токовая петля добавляет приложенное поле B , поэтому ЭДС для этого пути будет точно такое же значение, как и для первого пути. Любой смешанный возвратный путь приводит к такому же результату для значения ЭДС, так что это на самом деле не имеет значения, какой путь выбрать.

Прямая оценка изменения потока

Рис. 5. Упрощенная версия рис. 4. Петля скользит со скоростью v в стационарном однородном поле B .

Использование замкнутого пути для вычисления ЭДС, как это сделано выше, зависит от детальной геометрии пути. В отличие от этого, использование закона Лоренца не зависит от таких ограничений. Нижеследующее рассмотрение предназначено для лучшего понимания эквивалентности путей и позволит избежать выяснения деталей выбранного пути при использовании закона потока.

Рис. 5 является идеализацией рисунка 4, здесь изображена проекция цилиндра на плоскость. Действителен тот же анализ по связанному пути, но сделаны некоторые упрощения. Не зависящие от времени детали цепи не могут влиять на скорость изменения потока. Например, при постоянной скорости скольжения петли протекание тока через петлю не зависит от времени. Вместо того, чтобы при вычисления ЭДС рассматривать детали выбранного замкнутого контура, можно сосредоточиться на области поля B , заметаемой движущейся петлёй. Предложение сводится к нахождению скорости, с которой поток пересекает цепь. Это понятие обеспечивает прямую оценку скорости изменения потока, что позволяет не задумываться о более зависящих от времени деталях различных вариантов пути по цепи. Так же, как при применении закона Лоренца, становится ясно, что два любых пути, связанных со скользящей петлёй, но отличающиеся тем, каким образом они пересекают петлю, создают поток с такой же скоростью его изменения.

На рис. 5 область заметания в единицу времени равна dA / dt = v ℓ, независимо от деталей выбранного замкнутого пути, так что по закону индукции Фарадея ЭДС равна:

Этот путь независимой ЭДС показывает, что если скользящая петля заменена твёрдой проводящей пластиной или даже некоторой сложной искривлённой поверхностью, анализ будет такой же: найти поток в заметаемой области движущиеся части цепи. Аналогичным образом, если скользящая петля в барабане генератора на рис. 4 заменяется на твёрдый проводящий цилиндр, расчет заметаемой площади делается точно так же, как и в случае с простой петлёй. То есть ЭДС, вычисленная по закону Фарадея, будет точно такая же, как в случае цилиндра с твёрдыми проводящими стенками, или, если хотите, цилиндра со стенками из тёртого сыра. Заметим, однако, что ток, протекающий в результате этой ЭДС, не будет точно таким же, потому что ток зависит ещё от сопротивления цепи.

Уравнение Фарадея - Максвелла

Переменное магнитное поле создаёт электрическое поле, описываемое уравнением Фарадея - Максвелла:

обозначает ротор E - электрическое поле B - плотность магнитного потока .

Это уравнение присутствует в современной системе уравнений Максвелла , часто его называют законом Фарадея. Однако, поскольку оно содержит только частные производные по времени, его применение ограничено ситуациями, когда заряд покоится в переменном по времени магнитном поле. Оно не учитывает электромагнитную индукцию в случаях, когда заряженная частица движется в магнитном поле.

В другом виде закон Фарадея может быть записан через интегральную форму теоремы Кельвина-Стокса :

Для выполнения интегрирования требуется независимая от времени поверхность Σ (рассматриваемая в данном контексте как часть интерпретации частных производных). Как показано на рис. 6:

Σ - поверхность, ограниченная замкнутым контуром ∂Σ , причём, как Σ , так и ∂Σ являются фиксированными, не зависящими от времени, E - электрическое поле, d - бесконечно малый элемент контура ∂Σ , B - магнитное поле , dA - бесконечно малый элемент вектора поверхности Σ .

Элементы d и dA имеют неопределённые знаки. Чтобы установить правильные знаки, используется правило правой руки , как описано в статье о теореме Кельвина-Стокса . Для плоской поверхности Σ положительное направление элемента пути d кривой ∂Σ определяется правилом правой руки, по которому на это направление указывают четыре пальца правой руки, когда большой палец указывает в направлении нормали n к поверхности Σ.

Интеграл по ∂Σ называется интеграл по пути или криволинейным интегралом . Поверхностный интеграл в правой части уравнения Фарадея-Максвелла является явным выражением для магнитного потока Φ B через Σ . Обратите внимание, что ненулевой интеграл по пути для E отличается от поведения электрического поля, создаваемого зарядами. Генерируемое зарядом E -поле может быть выражено как градиент скалярного поля , которое является решением уравнения Пуассона и имеет нулевой интеграл по пути.

Интегральное уравнение справедливо для любого пути ∂Σ в пространстве и любой поверхности Σ , для которой этот путь является границей.

Рис. 7. Площадь заметания элемента вектора d кривой ∂Σ за время dt при движении со скоростью v .

и принимая во внимание (Ряд Гаусса), (Векторное произведение) и (теорема Кельвина - Стокса), мы находим, что полная производная магнитного потока может быть выражена

Добавляя член к обеим частям уравнения Фарадея-Максвелла и вводя вышеприведённое уравнение, мы получаем:

что и является законом Фарадея. Таким образом, закон Фарадея и уравнения Фарадея-Максвелла физически эквивалентны.

Рис. 7 показывает интерпретацию вклада магнитной силы в ЭДС в левой части уравнения. Площадь, заметаемая сегментом d кривой ∂Σ за время dt при движении со скоростью v , равна:

так что изменение магнитного потока ΔΦ B через часть поверхности, ограниченной ∂Σ за время dt , равно:

и если сложить эти ΔΦ B -вклады вокруг петли для всех сегментов d , мы получим суммарный вклад магнитной силы в закон Фарадея. То есть этот термин связан с двигательной ЭДС.

Пример 3: точка зрения движущегося наблюдателя

Возвращаясь к примеру на рис. 3, в движущейся системе отсчета выявляется тесная связь между E - и B -полями, а также между двигательной и индуцированной ЭДС. Представьте себе наблюдателя, движущегося вместе с петлёй. Наблюдатель вычисляет ЭДС в петле с использованием как закона Лоренца, так и с использованием закона электромагнитной индукции Фарадея. Поскольку этот наблюдатель движется с петлей, он не видит никакого движения петли, то есть нулевую величину v × B . Однако, поскольку поле B меняется в точке x , движущийся наблюдатель видит изменяющееся во времени магнитного поля, а именно:

где k - единичный вектор в направлении z .

Закон Лоренца

Уравнение Фарадея-Максвелла говорит, что движущийся наблюдатель видит электрическое поле E y в направлении оси y , определяемое по формуле:

Решение для E y с точностью до постоянной, которая ничего не добавляет в интеграл по петле:

Используя закон Лоренца, в котором имеется только компонента электрического поля, наблюдатель может вычислить ЭДС по петле за время t по формуле:

и мы видим, что точно такой же результат найден для неподвижного наблюдателя, который видит, что центр масс x C сдвинулся на величину x C + v t . Однако, движущийся наблюдатель получил результат под впечатлением, что в законе Лоренца действовала только электрическая составляющая, тогда как неподвижный наблюдатель думал, что действовала только магнитная составляющая.

Закон индукции Фарадея

Для применения закона индукции Фарадея рассмотрим наблюдателя, движущегося вместе с точкой x C . Он видит изменение магнитного потока, но петля ему кажется неподвижной: центр петли x C фиксирован, потому что наблюдатель движется вместе с петлей. Тогда поток:

где знак минуса возникает из-за того, что нормаль к поверхности имеет направление, противоположное приложенному полю B . Из закона индукции Фарадея ЭДС равна:

и мы видим тот же результат. Производная по времени используется при интегрировании, поскольку пределы интегрирования не зависят от времени. Опять же, для преобразования производной по времени в производную по x используются методы дифференцирования сложной функции.

Неподвижный наблюдатель видит ЭДС как двигательную , тогда как движущийся наблюдатель думает, что это индуцированная ЭДС.

Электрический генератор

Рис. 8. Электрический генератор на основе диска Фарадея. Диск вращается с угловой скоростью ω, при этом проводник, расположенный вдоль радиуса, движется в статическом магнитном поле B . Магнитная сила Лоренца v × B создаёт ток вдоль проводника по направлению к ободу, затем цепь замыкается через нижнюю щётку и ось поддержки диска. Таким образом, вследствие механического движения генерируется ток.

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов . Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея , показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» - Induced B). Обод, таким образом, становится электромагнитом , который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Электродвигатель

Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B , которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля , диск будет вращаться с такой скоростью, чтобы d Φ B / dt было равно напряжению, вызывающему ток.

Электрический трансформатор

ЭДС, предсказанная законом Фарадея, является также причиной работы электрических трансформаторов. Когда электрический ток в проволочной петле изменяется, меняющийся ток создаёт переменное магнитное поле. Второй провод в доступном для него магнитном поле будет испытывать эти изменения магнитного поля как изменения связанного с ним магнитного потока d Φ B / d t . Электродвижущая сила, возникающая во второй петле, называется индуцированной ЭДС или ЭДС трансформатора . Если два конца этой петли связать через электрическую нагрузку, то через неё потечёт ток.

Электромагнитные расходомеры

Закон Фарадея используется для измерения расхода электропроводящих жидкостей и суспензий. Такие приборы называются магнитными расходомерам. Наведённое напряжение ℇ, генерируемое в магнитном поле B за счет проводящей жидкости, движущейся со скоростью v , определяется по формуле:

где ℓ - расстояние между электродами в магнитном расходомере.

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки чаще всего нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышение температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита. Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a,b), тогда как слабее по правому краю (c,d). Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Вектор магнитной индукции \(~\vec B\) характеризует силовые свойства магнитного поля в данной точке пространства. Введем еще одну величину, зависящую от значения вектора магнитной индукции не в одной точке, а во всех точках произвольно выбранной поверхности. Эту величина называется магнитным потоком и обозначается греческой буквой Φ (фи).

\(~\Phi = B \cdot S \cdot \cos \alpha .\) (1)

В СИ единицей магнитного потока является вебер (Вб):

1 Вб = 1 Тл ⋅ 1 м 2 .

  • Магнитный поток в 1 Вб - это магнитный поток однородного магнитного поля с индукцией 1 Тл через перпендикулярную ему плоскую поверхность площадью 1 м 2 .
Поток может быть как положительным, так и отрицательным в зависимости от значения угла α. Поток магнитной индукции наглядно может быть истолкован как величина, пропорциональная числу линий вектора индукции \(~\vec B\), пронизывающих данную площадку поверхности.

Из формулы (1) следует, что магнитные поток может изменяться:

  • или только за счет изменения модуля вектора индукции B магнитного поля, тогда \(~\Delta \Phi = (B_2 - B_1) \cdot S \cdot \cos \alpha\) ;
  • или только за счет изменения площади контура S , тогда \(~\Delta \Phi = B \cdot (S_2 - S_1) \cdot \cos \alpha\) ;
  • или только за счет поворота контура в магнитном поле, тогда \(~\Delta \Phi = B \cdot S \cdot (\cos \alpha_2 - \cos \alpha_1)\) ;
  • или одновременно за счет изменения нескольких параметров, тогда \(~\Delta \Phi = B_2 \cdot S_2 \cdot \cos \alpha_2 - B_1 \cdot S_1 \cdot \cos \alpha_1\) .

Электромагнитная индукция (ЭМИ)

Открытие ЭМИ

Вам уже известно, что вокруг проводника с током всегда существует магнитное поле. А нельзя наоборот, с помощью магнитного поля создать ток в проводнике? Именно такой вопрос заинтересовал английского физика Майкла Фарадея, который в 1822 г. записал в своем дневнике: «Превратить магнетизм в электричество». И только через 9 лет эта задача была им решена.

Открытие электромагнитной индукции , как назвал Фарадей это явление, было сделано 29 августа 1831 г. Первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 2).

17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 3).

В течение одного месяца Фарадей опытным путем открыл, что в замкнутом контуре возникает электрический ток при любом изменении магнитного потока через него. Полученный таким способом ток называется индукционным током I i .

Известно, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, которую называют ЭДС индукции и обозначают E i .

Индукционный ток I i в контуре и ЭДС индукции E i связаны следующим соотношением (законом Ома):

\(~I_i = -\dfrac {E_i}{R},\)

где R - сопротивление контура.

  • Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции . Если контур замкнут, то вместе с ЭДС индукции возникает и индукционный ток. Джеймс Клерк Максвелл предложил такую гипотезу: изменяющееся магнитное поле создает в окружающем пространстве электрическое поле, которое и приводит свободные заряды в направленное движение, т.е. создает индукционный ток. Силовые линии такого поля замкнуты, т.е. электрическое поле вихревое . Индукционные токи, возникающие в массивных проводниках под действием переменного магнитного поля, называются токами Фуко или вихревыми токами .

История

Вот краткое описание первого опыта, данное самим Фарадеем.

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута (фут равен 304,8 мм), и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, не смотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

См. так же

  1. Васильев А. Вольта, Эрстед, Фарадей //Квант. - 2000. - № 5. - С. 16-17

Правило Ленца

Русский физик Эмилий Ленц в 1833 г. сформулировал правило (правило Ленца ), которое позволяет установить направление индукционного тока в контуре:

  • возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится препятствовать тому изменению внешнего магнитного потока, вызвавшее данный ток.
  • индукционный ток имеет такое направление, что препятствует причине его вызывающей.

Например, при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки, т.е. вектор индукции \({\vec{B}}"\) этого поля направлен против вектора индукции \(\vec{B}\) внешнего магнитного поля. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией \({\vec{B}}"\), увеличивающее магнитный поток через витки катушки.

См. так же

Закон ЭМИ

Опыты Фарадея показали, что ЭДС индукции (и сила индукционного тока) в проводящем контуре пропорциональна скорости изменения магнитного потока. Если за малое время Δt магнитный поток меняется на ΔΦ, то скорость изменения магнитного потока равна \(\dfrac{\Delta \Phi }{\Delta t}\). С учетом правила Ленца Д. Максвелл в 1873 г. дал следующую формулировку закона электромагнитной индукции:

  • ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего этот контур, взятой с противоположным знаком
\(~E_i = -\dfrac {\Delta \Phi}{\Delta t}.\)
  • Эту формулу можно применять только при равномерном изменении магнитного потока.
  • Знак «минус» в законе следует из закона Ленца. При увеличении магнитного потока (ΔΦ > 0), ЭДС отрицательная (E i < 0), т.е. индукционный ток имеет такое направление, что вектор магнитной индукции индукционного магнитного поля направлен против вектора магнитной индукции внешнего (изменяющегося) магнитного поля (рис. 4, а). При уменьшении магнитного потока (ΔΦ < 0), ЭДС положительная (E i > 0) (рис. 4, б).
Рис. 4

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Так как ЭДС индукции E i выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

  • магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В:
1 Вб = 1 В ∙ 1 с.

ЭДС индукции в движущемся проводнике

При движении проводника длиной l со скоростью \(\vec{\upsilon}\) в постоянном магнитном поле с вектором индукции \(\vec{B}\) в нем возникает ЭДС индукции

\(~E_i = B \cdot \upsilon \cdot l \cdot \sin \alpha,\)

где α – угол между направлением скорости \(\vec{\upsilon}\) проводника и вектором магнитной индукции \(\vec{B}\).

Причиной появления этой ЭДС является сила Лоренца, действующая на свободные заряды в движущемся проводнике. Поэтому направление индукционного тока в проводнике будет совпадать с направлением составляющей силы Лоренца на этот проводник.

С учетом этого можно сформулировать следующее для определения направления индукционного тока в движущемся проводнике (правило левой руки ):

  • нужно расположить левую руку так, чтобы вектор магнитной индукции \(\vec{B}\) входил в ладонь, четыре пальца совпадали с направлением скорости \(\vec{\upsilon}\)проводника, тогда отставленный на 90° большой палец укажет направление индукционного тока (рис. 5).

Если проводник движется вдоль вектора магнитной индукции, то индукционного тока не будет (сила Лоренца равна нулю).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.344- 351.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учрежде-ний с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. - Мн.: Нар. асвета, 2008. - С. 170-182.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - С. 399-408, 412-414.

Федун В.И. Конспект лекций по физике Электромагнетизи

Лекция 26.

Электромагнитная индукция. Открытие Фарадея .

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явлениеэлектромагнитной индукции .

В замкнутом проводящем контуре при изменении магнитного потока (потока вектора ), охватываемого этим контуром, возникает электрический ток .

Этот ток получил название индукционного .

Появление индукционного тока означает, что при изменении магнитного

потока в контуре возникает э.д.с. индукции (работа по перенесению единичного заряда по замкнутому контуру). Отметим, что значениесовершенно не зависит от того, каким образом осуществляется изменение магнитного потока, и определяется лишь скоростью его изменения, т.е. величиной
. Изменение знака производной
приводит к изменению знакаэ.д.с. индукции .

Рисунок 26.1.

Фарадей обнаружил, что индукционный ток можно вызвать двумя различными способами, которые удобно объяснить с помощью рисунка.

1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см. рис.26.1).

2-й способ: изменение магнитного поля , создаваемого катушкой, за счет ее движения или вследствие изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

В обоих этих случаях гальванометр будет показывать наличие индукционного тока в рамке.

Направление индукционного тока и, соответственно, знак э.д.с. индукции определяются правилом Ленца.

Правило Ленца.

Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей .

Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией .

Закон электромагнитной индукции (закон Фарадея).

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с. индукции определяется формулой

Природа электромагнитной индукции .

С целью выяснения физических причин, которые приводят к возникновению э.д.с. индукции, последовательно рассмотрим два случая.

1. Контур движется в постоянном магнитном поле.

действовать сила

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции . В нашем случае

.

Здесь знак «минус» поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого правилом правого винта. Произведениеесть скорость приращения площади контура (приращение площади в единицу времени), поэтому

,

где
- приращение магнитного потока сквозь контур.

.

Полученный результат можно обобщить на случай произвольной ориентации вектора индукции магнитного поля относительно плоскости контура и на любой контур, движущийся (и/или деформируемый) произвольным образом в постоянном неоднородном внешнем магнитном поле.

Итак, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием магнитной составляющей силы Лоренца, пропорциональной
, которая возникает при перемещении проводника.

2. Контур покоится в переменном магнитном поле.

Наблюдаемое на опыте возникновение индукционного тока свидетельствует о том, что и в этом случае в контуре появляются сторонние силы, которые теперь связаны с изменяющимся во времени магнитным полем. Какова же их природа? Ответ на этот принципиальный вопрос был дан Максвеллом.

Поскольку проводник покоится, то скорость упорядоченного движения электрических зарядов
и, следовательно, магнитная сила, пропорциональная
, также равна нулю и уже не может привести заряды в движение. Однако кроме магнитной силы на электрический заряд может действовать только сила со стороны электрического поля, равная. Поэтому остается заключить, чтоиндукционный ток обусловлен электрическим полем , возникающим при изменении во времени внешнего магнитного поля . Именно это электрическое поле и ответственно за появление э.д.с. индукции в неподвижном контуре. Согласно Максвеллу,изменяющееся во времени магнитное поле порождает в окружающем пространстве электрическое поле . Возникновение электрического поля не связано с наличием проводящего контура, который лишь позволяет обнаружить по возникновению в нем индукционного тока существование этого поля.

Формулировка закона электромагнитной индукции , данная Максвеллом, принадлежит к числу наиболее важных обобщений электродинамики.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле .

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуруопределяется выражением

,

где - магнитный поток, пронизывающий контур.

Используемый для обозначения скорости изменения магнитного потока знак частной производной указывает на то, что контур является неподвижным.

Поток вектора через поверхность, ограниченную контуром, равен
, поэтому выражение закона электромагнитной индукции можно переписать следующим образом:

Это одно из уравнений системы уравнений Максвелла.

Тот факт, что циркуляция электрического поля, возбуждаемого переменным во времени магнитным полем, отлична от нуля, означает, что рассматриваемое электрическое поле не потенциальное .Оно, как и магнитное поле, являетсявихревым .

В общем случае электрическое поле может быть представлено векторной суммой потенциального (поля статических электрических зарядов, циркуляция которого равна нулю) и вихревого (обусловленного изменяющимся во времени магнитным полем) электрических полей.

В основе рассмотренных нами явлений, объясняющих закон электромагнитной индукции, не просматривается общего принципа, позволяющего установить общность их физической природы. Поэтому эти явления следует рассматривать как независимые, а закон электромагнитной индукции - как результат их совместного действия. Тем более удивительным оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения магнитного потока сквозь контур. В тех случаях, когда меняется и поле и расположение или конфигурация контура в магнитном поле, э.д.с. индукции следует рассчитывать по формуле

Выражение, стоящее в правой части этого равенства, представляет собой полную производную магнитного потока по времени: первое слагаемое связано с изменением магнитного поля во времени, второе – с движением контура.

Можно сказать, что во всех случаях индукционный ток вызывается полной силой Лоренца

.

Какая часть индукционного тока вызывается электрической, а какая магнитной составляющей силы Лоренца - зависит от выбора системы отсчета .

О работе сил Лоренца и Ампера .

Из самого определения работы следует, что сила, действующая в магнитном поле на электрический заряд и перпендикулярная его скорости, не может совершать работы. Однако при движении проводника с током, увлекающего за собой заряды, сила Ампера все же работу совершает. Наглядным подтверждением этого служат электромоторы.

Это противоречие исчезает, если принять во внимание, что движение проводника в магнитном поле неизбежно сопровождается явлением электромагнитной индукции. Поэтому наряду с силой Ампера работу над электрическими зарядами совершает и возникающая в проводнике электродвижущая сила индукции. Т.о., полная работа сил магнитного поля складывается из механической работы, обусловленной силой Ампера, и работы э.д.с., индуцируемой при движении проводника. Обе работы равны по модулю и противоположны по знаку, поэтому их сумма равна нулю. Действительно, работа амперовой силы при элементарном перемещении проводника с током в магнитном поле равна
, за это же время э.д.с. индукции совершает работу

,

тогда полная работа
.

Силы Ампера совершают работу не за счет энергии внешнего магнитного поля, которое может оставаться постоянным, а за счет источника э.д.с., поддерживающего ток в контуре.

АНО ВПО «КАЗАНСКИЙ ИНСТИТУТ ФИНАНСОВ, ЭКОНОМИКИ И ИНФОРМАТИКИ»

ФАКУЛЬТЕТ ЭКОНОМИКИ И УПРАВЛЕНИЯ

Курсовая работа

по дисциплине: Многомерные статистические методы

Кластерный анализ. Расстояние между объектами.
Расстояние между кластерами.

Студент 3 курса Адыгамова Н.К.

Научный руководитель

КАЗАНЬ 2010

Введение……..……………………………………….……..3

ГЛАВА 1. Многомерные статистические методы….…….4

1.1 Введение в кластерный анализ..……………..….…….4

1.2 Задача кластерного анализа…………...……….……...7

1.3 Методы кластерного анализа………………………...11

ГЛАВА 2. Расстояние между объектами. Расстояние между кластерами………………………………………………...13

2.1 Расстояние между объектами (клстерами) и мера близости…………………………………………………..13

2.2 Расстояние между кластерами……………………….18

ГЛАВА 3. Применение кластерного анализа………………..21

Заключение……………………………………………..28

Список использованной литературы…………………29

Введение

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Это происходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим числом характеристик. К ним относятся и кластерный анализ.

Цель данной работы является изучение теоретических аспектов кластерного анализа, ознакомление с практическим применением кластерного анализа и исследование расстояния между объектами и кластерами.

Курсовая работа включает в себя теоретическую часть, в которой рассматриваются задачи курса многомерных статистических методов и производится излагание основной части работы - описание класстерного анализа, а также практичская часть работы.

Таким образом, кластерный анализ – объект изучения в данной курсовой работе.

1. Многомерные статистические методы.

Многомерные статистические методы изучает основные теоритические положения наиболее часто встречаемых в практике экономического анализа, исследование зависимости (корреляционный и регриссионный анализы), снижение размерностей (компонентный анализ) и классификации (кластерный анализ).

Классификация методов статистического исследования по конечной цели исследования:

1. Установление самого факта наличия (или отсутствия) статистически значимой связи между исследуемыми переменными

2. Прогноз (восстановление) неизвестных значений интересующих нас индивидуальных или средних исследуемых результирующих показателей по данным значениям объясняющих переменных.

3. Выявление причинных связей между объясняющими переменными и результирующими показателями, частичное управление значениями зависимой переменной путем регулирования величин объясняющих переменных.

1.1 Введение в кластерный анализ

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.

Кластерный анализ позволяет сокращать размерность данных, делать ее наглядной.

Кластерный анализ может применяться к совокупностям временных рядов, здесь могут выделяться периоды схожести некоторых показателей и определяться группы временных рядов со схожей динамикой.

Кластерный анализ параллельно развивался в нескольких направлениях, таких как биология, психология, др., поэтому у большинства методов существует по два и более названий. Это существенно затрудняет работу при использовании кластерного анализа

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачах социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа с другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения: В частности, состав и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой совокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

1.2. Задача кластерного анализа.

Задачи кластерного анализа можно объединить в следующие группы:

    Разработка типологии или классификации.

    Исследование полезных концептуальных схем группирования объектов.

    Представление гипотез на основе исследования данных.

    Проверка гипотез или исследований для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Как правило, при практическом использовании кластерного анализа одновременно решается несколько из указанных задач. Рассмотрим пример процедуры кластерного анализа. Допустим, мы имеем набор данных А, сос-тоящий из 14-ти примеров, у которых имеется по два признака X и Y. Данные по ним приведены в таблице 1 .

Таблица 1. Набор данных А

№ примера

признак X

признак Y

Данные в табличной форме не носят информативный характер. Представим переменные X и Y в виде диаграммы рассеивания, изображенной на рис. 1 .

Рис. 1. Диаграмма рассеивания переменных X и Y

На рисунке мы видим несколько групп "похожих" примеров. Примеры (объекты), которые по значениям X и Y "похожи" друг на друга, принадлежат к одной группе (кластеру); объекты из разных кластеров не похожи друг на друга.

Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где xj - представляет собой измерения j-го объекта.

Для решения задачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты -ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Х и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Х и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Х , Хj) называется функцией расстояния (метрикой), если:

а) d(Хi , Хj)  0, для всех Х и Хj из Ер

б) d(Хi, Хj) = 0, тогда и только тогда, когда Х = Хj

в) d(Хi, Хj) = d(Хj, Х)

г) d(Хi, Хj)  d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.

Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d2(Хi , Хj) =

2. l1 - норма d1(Хi , Хj) =

3. Сюпремум - норма d (Хi , Хj) = sup

k = 1, 2, ..., р

4. lp - норма dр(Хi , Хj) =

Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p  n:

Тогда расстояние между парами векторов d(Х , Хj) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами G. и Gj. Неотрицательная вещественная функция S(Х ; Хj) = Sj называется мерой сходства, если:

1) 0 S(Хi , Хj)1 для Х  Хj

2) S(Хi , Хi) = 1

3) S(Хi , Хj) = S(Хj , Х)

Пары значений мер сходства можно объединить в матрицу сходства:

Величину Sij называют коэффициентом сходства.

1.3. Методы кластерного анализа.

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х1, Х2,..., Хu) и квадрат евклидова расстояния между Х и Хj определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда.

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

4) Центроидный метод.

Расстояние между двумя кластерами определяется как евклидово расстояние между центрами (средними) этих кластеров:

d2 ij = (X –Y)Т(X –Y) Кластеризация идет поэтапно на каждом из n–1 шагов объединяют два кластера G и , имеющие минимальное значение d2ij Если n1 много больше n2, то центры объединения двух кластеров близки друг к другу и характеристики второго кластера при объединении кластеров практически игнорируются. Иногда этот метод иногда называют еще методом взвешенных групп.

2. Расстояние между объектами. Расстояние между кластерами.

2.1. Расстояние между объектами (кластерами) и мера близости

Наиболее трудным и наименее формализованным в задаче классификации является определение понятия однородности объектов. В общем случае понятие однородности объектов задается либо введение правила вычисления расстояний ρ(x i ,x j) между любой парой исследуемых объектов (х 1 , х 2 , ... , х n), либо заданием некоторой функции r(x i ,x j), характеризующей степень близости i-го и j-го объектов. Если задана функция ρ(x i ,x j), то близкие с точки зрения этой метрики объекты считаются однородными, принадлежащими к одному классу. Очевидно, что необходимо при этом сопоставлять ρ(х i ,x j) с некоторыми пороговыми значениями, определяемыми в каждом конкретном случае по-своему.

Аналогично используется и мера близости r(x i ,x j), при задании которой мы должны помнить о необходимости выполнения следующих условий: симметрии r(x i ,x j)= r(x j ,x i); максимального сходства объекта с самим собой r(x i ,x i)= r(x i ,x j), при 1≤ i,j≤n, и монотонного убывания r(x i ,x j) по мере увеличения ρ(x i ,x j), т.е. из ρ(x k ,x l)≥ρ (x i ,x j) должно следовать неравенство r(x k ,x l)≤r(x i ,x j).

Выбор метрики или меры близости является узловым моментом иссле-дования, от которого в основном зависит окончательный вариант разбиения объектов на классы при данном алгоритме разбиения. В каждом конкретном случае этот выбор должен производиться по-своему в зависимости от целей исследования, физической и статистической природы вектора наблюдений Х, априорных сведений о характере вероятностного распределения Х.

Рассмотрим наиболее широко используемые в задачах кластерного анализа расстояния и меры близости.

Обычное Евклидово расстояние

(1.1)

где х ie, x je - величина е-ой компоненты у i-го (j-го) объекта (е=1,2,...,к, i,j=1,2,...,n)

Использование этого расстояния оправдано в следующих случаях:

а) наблюдения берутся из генеральной совокупности, имеющей многомерное нормальное распределение с ковариационной матрицей вида σ 2 Е к, т.е. компоненты Х взаимно независимы и имеют одну и ту же дисперсию, где Е к - единичная матрица;

б) компоненты вектора наблюдений Х однородны по физическому смыслу и одинаково важны для классификации;

в) признаковое пространство совпадает с геометрическим пространством.

Естественное с геометрической точки зрения евклидово пространство может оказаться бессмысленным (с точки зрения содержательной интерпретации), если признаки измерены в разных единицах. Чтобы исправить положение, прибегают к нормированию каждого признака путем деления центрированной величины на среднее квадратическое отклонение и переходят от матрицы Х к нормированной матрице с элементами

где - значение e-го признака у i-го объекта

Среднее значение e-го признака;

Среднее квадратическое отклонение е-го признака.

Однако эта операция может привести к нежелательным последствиям. Если кластеры хорошо разделены по одному признаку и не разделены по другому, то после нормирования дискриминирующие возможности первого признака будут уменьшены в связи с увеличением “шумового” эффекта второго.

“Взвешенное” Евклидово пространство

(1.2)

применяется в тех случаях, когда каждой компоненте x l вектора наблюдений X удается приписать некоторый “вес” ω l , пропорционально степени важности признака в задаче классификации. Обычно принимают 0≤ω e ≤1, где e=1,2,...k.

Определение “весов”, как правило, связано с дополнительными исследованиями, например, организацией опроса экспертов и обработкой их мнений. Определение весов ω l только по данным выборки может привести к ложным выводам.

Хеммингово расстояние

Используется как мера различия объектов, задаваемых дихотомическими признаками. Это расстояние определяется по формуле

(1.3)

и равно числу несовпадений значений соответствующих признаков в рассматриваемых i-м и j-м объектах.

В некоторых задачах классификации объектов в качестве меры близости объектов можно использовать некоторые физические содержательные параметры, так или иначе характеризующие взаимоотношения между объектами. Например, задачу классификации отраслей народного хозяйства с целью агрегирования решают на основе матрицы межотраслевого баланса .

В данной задаче объектом классификации является отрасль народного хозяйства, а матрица межотраслевого баланса представлена элементами s ij , характеризующими сумму годовых поставок i-ой отрасли в j-ю в денежном выражении. В качестве меры близости {r ij } принимают симметризованную нормированную матрицу межотраслевого баланса. С целью нормирования денежное выражение поставок i-ой отрасли в j-ю заменяют долей этих поставок по отношению ко всем поставкам i-ой отрасли. Симметризацию же нормированной матрицы межотраслевого баланса можно проводить, выразив близость между i-й и j-й отраслями через среднее значение из взаимных поставок, так что в этом случае r ij =r ji .

Как правило, решение задач классификации многомерных данных предусматривает в качестве предварительного этапа исследования реализацию методов, позволяющих выбрать из компонент х 1 , х 2 , ..., х к наблюдаемых векторов Х сравнительно небольшое число наиболее существенно информативных, т.е. уменьшить размерность наблюдаемого пространства.

В ряде процедур классификации (кластер-процедур) используют понятия расстояния между группами объектов и меры близости двух групп объектов.

Пусть s i - i-я группа (класс, кластер), состоящая из n i объектов;

Їx i - среднее арифметическое векторных наблюдений s i группы, т.е. "центр тяжести" i-й группы; ρ(s l ,s m) - расстояние между группами s l и s m .

Наиболее употребительными расстояниями и мерами близости между классами объектов являются:

Расстояние, измеряемое по принципу “ближайшего соседа”

Расстояние, измеряемого по принципу “дальнего соседа”

Расстояние, измеряемое по “центрам тяжести” групп

Расстояние, измеряемое по принципу “средней связи”, определяется как среднее арифметическое всех попарных расстояний между представителями рассматриваемых групп

(1.7)

Академиком А.Н.Колмогоровым было предложено “обобщенное расстояние” между классами, которое включает в себя в качестве частных случаев все рассмотренные выше виды расстояний.

Расстояния между группами элементов особенно важно в так называемых агломеративных иерархических кластер-процедурах, так как принцип работы таких алгоритмов состоит в последовательном объединении элементов, а затем и целых групп, сначала самых близких, а затем все более и более отдаленных друг от друга.

При этом расстояние между классами s l и s (m,q) , являющиеся объединением двух других классов s m и s q , можно определить по формуле

Расстояния между классами s l , s m и s q ;

- α, β, δ и γ - числовые коэффициенты, значения которых определяют специфику процедуры, ее алгоритм.

Например, при α= β=-δ=1/2и γ=0 приходим к расстоянию, построенному по принципу “ближайшего соседа”. При α= β=δ=1/2 и γ=0 - расстояние между классами определяется по принципу “дальнего соседа”, то есть как расстояние между двумя самыми дальними элементами этих классов.

И, наконец, при

γ=δ=0

соотношение (1.8) приводит к расстоянию ρ ср между классами, вычисленному как среднее из расстояний между всеми парами элементов, один из которых берется из одного класса, а другой из другого.

Для вычисления расстояния между объектами используются различные меры сходства (меры подобия), называемые также метриками или функциями расстояний. В начале лекции мы рассмотрели евклидово расстояние, это наиболее популярная мера сходства.

Квадрат евклидова расстояния.

Для придания больших весов более отдаленным друг от друга объектам можем воспользоваться квадратом евклидова расстояния путем возведения в квадрат стандартного евклидова расстояния.

Манхэттенское расстояние (расстояние городских кварталов), также называемое "хэмминговым" или "сити-блок" расстоянием.

Это расстояние рассчитывается как среднее разностей по координатам. В большинстве случаев эта мера расстояния приводит к результатам, подобным расчетам расстояния евклида. Однако, для этой меры влияние отдельных выбросов меньше, чем при использовании евклидова расстояния, поскольку здесь координаты не возводятся в квадрат.

Расстояние Чебышева. Это расстояние стоит использовать, когда необходимо определить два объекта как "различные", если они отличаются по какому-то одному измерению.

Процент несогласия. Это расстояние вычисляется, если данные являются категориальными.

2.2. Расстояние между кластерами

Когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Возникает следующий вопрос - как определить расстояния между кластерами?

Существуют различные правила, называемые методами объединения или связи для двух кластеров.

Метод ближнего соседа или одиночная связь. Здесь расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Этот метод позволяет выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В результате работы этого метода кластеры представляются длинными "цепочками" или "волокнистыми" кластерами, "сцепленными вместе" только отдельными элементами, которые случайно оказались ближе остальных друг к другу.

Метод наиболее удаленных соседей или полная связь. Здесь расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Метод хорошо использовать, когда объекты действительно происходят из различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод не следует использовать.

Метод Варда (Ward"s method). В качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения (Ward, 1963). В отличие от других методов кластерного анализа для оценки расстояний между кластерами, здесь используются методы дисперсионного анализа. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров и "стремится" создавать кластеры малого размера.

Метод невзвешенного попарного среднего (метод невзвешенного попарного арифметического среднего - unweighted pair-group method using arithmetic averages, UPGMA (Sneath, Sokal, 1973)).

В качестве расстояния между двумя кластерами берется среднее расстояние между всеми парами объектов в них. Этот метод следует использовать, если объекты действительно происходят из различных "рощ", в случаях присутствия кластеров "цепочного" типа, при предположении неравных размеров кластеров.

Метод взвешенного попарного среднего (метод взвешенного попарного арифметического среднего - weighted pair-group method using arithmetic averages, WPGM A (Sneath, Sokal, 1973)). Этот метод похож на метод невзвешенного попарного среднего, разница состоит лишь в том, что здесь в качестве весового коэффициента используется размер кластера (число объектов, содержащихся в кластере).

Невзвешенный центроидный метод (метод невзвешенного попарного центроидного усреднения - unweighted pair-group method using the centroid average (Sneath and Sokal, 1973)).

В качестве расстояния между двумя кластерами в этом методе берется расстояние между их центрами тяжести.

Взвешенный центроидный метод (метод взвешенного попарного центроидного усреднения - weighted pair-group method using the centroid average, WPGMC (Sneath, Sokal 1973)). Этот метод похож на предыдущий, разница состоит в том, что для учета разницы между размерами кластеров (числе объектов в них), используются веса. Этот метод предпочтительно использовать в случаях, если имеются предположения относительно существенных отличий в размерах кластеров.

3. Применение кластерного анализа.

Рассмотрим некоторые приложения кластерного анализа.

Деление стран на группы по уровню развития.

Изучались 65 стран по 31 показателю (национальный доход на душу населения, доля населения занятого в промышленности в %, накопления на душу населения, доля населения, занятого в сельском хозяйстве в %, средняя продолжительность жизни, число автомашин на 1 тыс. жителей, численность вооруженных сил на 1 млн. жителей, доля ВВП промышленности в %, доля ВВП сельского хозяйства в %, и т.д.)

Каждая из стран выступает в данном рассмотрении как объект, характеризуемый определенными значениями 31 показателя. Соответственно они могут быть представлены в качестве точек в 31-мерном пространстве. Такое пространство обычно называется пространством свойств изучаемых объектов. Сравнение расстояния между этими точками будет отражать степень близости рассматриваемых стран, их сходство друг с другом. Социально-экономический смысл подобного понимания сходства означает, что страны считаются тем более похожими, чем меньше различия между одноименными показателями, с помощью которых они описываются.

Первый шаг подобного анализа заключается в выявлении пары народных хозяйств, учтенных в матрице сходства, расстояние между которыми является наименьшим. Это, очевидно, будут наиболее сходные, похожие экономики. В последующем рассмотрении обе эти страны считаются единой группой, единым кластером. Соответственно исходная матрица преобразуется так, что ее элементами становятся расстояния между всеми возможными парами уже не 65, а 64 объектами – 63 экономики и вновь преобразованного кластера – условного объединения двух наиболее похожих стран. Из исходной матрицы сходства выбрасываются строки и столбцы, соответствующие расстояниям от пары стран, вошедших в объедение, до всех остальных, но зато добавляются строка и столбец, содержащие расстояние между кластером, полученным при объединении и прочими странами.

Расстояние между вновь полученным кластером и странами полагается равным среднему из расстояний между последними и двумя странами, которые составляют новый кластер. Иными словами, объединенная группа стран рассматривается как целое с характеристиками, примерно равными средним из характеристик входящих в него стран.

Второй шаг анализа заключается в рассмотрении преобразованной таким путем матрицы с 64 строками и столбцами. Снова выявляется пара экономик, расстояние между которыми имеет наименьшее значение, и они, так же как в первом случае, сводятся воедино. При этом наименьшее расстояние может оказаться как между парой стран, так и между какой-либо страной и объединением стран, полученным на предыдущем этапе.

Дальнейшие процедуры аналогичны описанным выше: на каждом этапе матрица преобразуется так, что из нее исключаются два столбца и две строки, содержащие расстояние до объектов (пар стран или объединений – кластеров), сведенных воедино на предыдущей стадии; исключенные строки и столбцы заменяются столбцом и строкой, содержащими расстояния от новых объединений до остальных объектов; далее в измененной матрице выявляется пара наиболее близких объектов. Анализ продолжается до полного исчерпания матрицы (т. е. до тех пор, пока все страны не окажутся сведенными в одно целое). Обобщенные результаты анализа матрицы можно представить в виде дерева сходства (дендограммы), подобного описанному выше, с той лишь разницей, что дерево сходства, отражающее относительную близость всех рассматриваемых нами 65 стран, много сложнее схемы, в которой фигурирует только пять народных хозяйств. Это дерево в соответствии с числом сопоставляемых объектов включает 65 уровней. Первый (нижний) уровень содержит точки, соответствующие каждых стране в отдельности. Соединение двух этих точек на втором уровне показывает пару стран, наиболее близких по общему типу народных хозяйств. На третьем уровне отмечается следующее по сходству парное соотношение стран (как уже упоминалось, в таком соотношении может находиться либо новая пара стран, либо новая страна и уже выявленная пара сходных стран). И так далее до последнего уровня, на котором все изучаемые страны выступают как единая совокупность.

В результате применения кластерного анализа были получены следующие пять групп стран:

афро-азиатская группа;

латино-азиатская группа;

латино-среднеземнаморская группа;

группа развитых капиталистических стран (без США)

Введение новых индикаторов сверх используемого здесь 31 показателя или замена их другими, естественно, приводят к изменению результатов классификации стран.

2. Деление стран по критерию близости культуры.

Как известно маркетинг должен учитывать культуру стран (обычаи, традиции, и т.д.).

Посредством кластеризации были получены следующие группы стран:

арабские;

ближневосточные;

скандинавские;

германоязычные;

англоязычные;

романские европейские;

латиноамериканские;

дальневосточные.

3. Разработка прогноза конъюнктуры рынка цинка.

Кластерный анализ играет важную роль на этапе редукции экономико-математической модели товарной конъюнктуры, способствуя облегчению и упрощению вычислительных процедур, обеспечению большей компактности получаемых результатов при одновременном сохранении необходимой точности. Применение кластерного анализа дает возможность разбить всю исходную совокупность показателей конъюнктуры на группы (кластеры) по соответствующим критериям, облегчая тем самым выбор наиболее репрезентативных показателей.

Кластерный анализ широко используется для моделирования рыночной конъюнктуры. Практически основное большинство задач прогнозирования опирается на использование кластерного анализа.

Например, задача разработки прогноза конъюнктуры рынка цинка.

Первоначально было отобрано 30 основных показателей мирового рынка цинка:

Х1 - время

Показатели производства:

Х2 - в мире

Х4 - Европе

Х5 - Канаде

Х6 - Японии

Х7 - Австралии

Показатели потребления:

Х8 - в мире

Х10 - Европе

Х11 - Канаде

Х12 - Японии

Х13 - Австралии

Запасы цинка у производителей:

Х14 - в мире

Х16 - Европе

Х17 - других странах

Запасы цинка у потребителей:

Х18 - в США

Х19 - в Англии

Х10 - в Японии

Импорт цинковых руд и концентратов (тыс. тонн)

Х21 - в США

Х22 - в Японии

Х23 - в ФРГ

Экспорт цинковых руд и концентратов (тыс. тонн)

Х24 - из Канады

Х25 - из Австралии

Импорт цинка (тыс. тонн)

Х26 - в США

Х27 - в Англию

Х28 - в ФРГ

Экспорт цинка (тыс. Тонн)

Х29 - из Канады

Х30 - из Австралии

Для определения конкретных зависимостей был использован аппарат корреляционно-регрессионного анализа. Анализ связей производился на основе матрицы парных коэффициентов корреляции. Здесь принималась гипотеза о нормальном распределении анализируемых показателей конъюнктуры. Ясно, что rij являются не единственно возможным показателем связи используемых показателей. Необходимость использования кластерного анализа связано в этой задаче с тем, что число показателей влияющих на цену цинка очень велико. Возникает необходимость их сократить по целому ряду следующих причин:

а) отсутствие полных статистических данных по всем переменным;

б) резкое усложнение вычислительных процедур при введении в модель большого числа переменных;

в) оптимальное использование методов регрессионного анализа требует превышения числа наблюдаемых значений над числом переменных не менее, чем в 6-8 раз;

г) стремление к использованию в модели статистически независимых переменных и пр.

Проводить такой анализ непосредственно на сравнительно громоздкой матрице коэффициентов корреляции весьма затруднительно. С помощью кластерного анализа всю совокупность конъюнктурных переменных можно разбить на группы таким образом, чтобы элементы каждого кластера сильно коррелировали между собой, а представители разных групп характеризовались слабой коррелированностью.

Для решения этой задачи был применен один из агломеративных иерархических алгоритмов кластерного анализа. На каждом шаге число кластеров уменьшается на один за счет оптимального, в определенном смысле, объединения двух групп. Критерием объединения является изменение соответствующей функции. В качестве функции такой были использованы значения сумм квадратов отклонений вычисляемые по следующим формулам:

(j = 1, 2, …, m),

где j - номер кластера, n - число элементов в кластере.

rij - коэффициент парной корреляции.

Таким образом, процессу группировки должно соответствовать последовательное минимальное возрастание значения критерия E.

На первом этапе первоначальный массив данных представляется в виде множества, состоящего из кластеров, включающих в себя по одному элементу. Процесс группировки начинается с объединения такой пары кластеров, которое приводит к минимальному возрастанию суммы квадратов отклонений. Это требует оценки значений суммы квадратов отклонений для каждого из возможных
объединений кластеров. На следующем этапе рассматриваются значения сумм квадратов отклонений уже для
кластеров и т.д. Этот процесс будет остановлен на некотором шаге. Для этого нужно следить за величиной суммы квадратов отклонений. Рассматривая последовательность возрастающих величин, можно уловить скачок (один или несколько) в ее динамике, который можно интерпретировать как характеристику числа групп «объективно» существующих в исследуемой совокупности. В приведенном примере скачки имели место при числе кластеров равном 7 и 5. Далее снижать число групп не следует, т.к. это приводит к снижению качества модели. После получения кластеров происходит выбор переменных наиболее важных в экономическом смысле и наиболее тесно связанных с выбранным критерием конъюнктуры - в данном случае с котировками Лондонской биржи металлов на цинк. Этот подход позволяет сохранить значительную часть информации, содержащейся в первоначальном наборе исходных показателей конъюнктуры.

ЗАКЛЮЧЕНИЕ

Таким образом, кластерный анализ – один из методов многомерного анализа, предназначенный для группировки (кластеризации) совокупности элементов, которые характеризуются многими факторами, и получения однородных групп (кластеров). Разбиение на кластеры происходит с помощью некоторой метрики, например, евклидова расстояния. Задача кластерного анализа состоит в представлении исходной информации об элементах в сжатом виде без ее существенной потери.

В результате изучения кластерного анализа были изучены его задачи, достоинства и недостатки, сферы их применения и опыт использования анализа. В ходе выполнения работы ознакомились с ходом проведения кластерного анализа при классификации стран по признакам. Итогом работы стала группировка стран по кластерам, критерием которой стала сравнение значений показателей между объектами.

Список литературы

    Многомерные статистические методы, Алехин Е.И., 2007 г.

2. Многомерные статистические методы. Часть IV. Кластерный анализ: Учебно-методическое пособие/ Составители: Н.И.Гришакина, В.С.Дмитриева, Н.В.Манова, С.В.Мельникова, О.Д.Притула, Е.А.Антонова, А.В.Кякинен; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2005. – 54 с.

3.. Многомерные статистические методы. Часть V. Дискриминантный анализ: Учебно-методическое пособие/ Составители: Н.И.Гришакина, В.С.Дмитриева, Н.В.Манова, С.В.Мельникова; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2005. – 56 с.

4. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. Учебник. – М.- Финансы и статистика, 2008г.

5. Многомерный статистический анализ в экономике: Учеб. Пособие для ВУЗов/ под ред. Проф. В.Н. Тамашевича., 2009.

6. Многомерный статистический анализ, Дронов С.В., 2005г, 213с.

7. Эконометрика, В.С.Мхиторян, М.Ю.Архипова, В.П.Сиротин, 2008г, 144с

Между ...

  • Особенности метода кластерный анализ при большом количестве наблюдений кластерный анализ метод

    Реферат >> Государство и право

    ... объектов , и затем упорядочивающая объекты в сравнительно однородные группы (кластеры )(Q-кластеризация, или Q-техника, собственно кластерный анализ ). Кластер ... предполагают сравнение объектов между собой на... используется евклидово расстояние , вычисляемое по...

  • Многомерный статистический анализ

    Реферат >>

    Диагностических классов используют разнообразные методы кластерного анализа и группировки объектов . Наименее известен второй член... объединения отбрасывается. Таким образом, хотя расстояния между объектами в кластерах зависимы, но эта зависимость слаба...

  • Многомерный статистический анализ в системе SPSS

    Курсовая работа >> Экономико-математическое моделирование

    ... кластерным анализом и обратиться к таблице «Шаги агломерации» к столбцу «Коэффициенты». Эти коэффициенты подразумевают расстояние между двумя кластерами ...

  • Сходство или различие между объектами классификации устанавливается в зависимости от выбранного метрического расстояния между ними. Если каждый объект описывается свойствами (признаками), то он может быть представлен как точка в -мерном пространстве, и сходство с другими объектами будет определяться как соответствующее расстояние. При классификации используются различные меры расстояния между объектами.

    1. Евклидово расстояние

    Это, пожалуй, наиболее часто используемая мера расстояния. Она является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:

    Естественное, с геометрической точки зрения, евклидова мера расстояния может оказаться бессмысленной, если признаки измерены в разных единицах. Чтобы исправить положение, прибегают к нормированию каждого признака. Применение евклидова расстояния оправдано в следующих случаях:

    • свойства (признаки) объекта однородны по физическому смыслу и одинаково важны для классификации;
    • признаковое пространство совпадает с геометрическим пространством.

    2. Квадрат евклидова расстояния

    Данная мера расстояния используется в тех случаях, когда требуется придать больше значение более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом:

    3. Взвешенное евклидово расстояние

    Применяется в тех случаях, когда каждому -свойству удается приписать некоторый «вес» , пропорционально степени важности признака в задаче классификации:

    Определение весов, как правило, связано с дополнительными исследованиями, например, организацией опроса экспертов и обработкой их мнений.

    4. Хеммингово расстояние

    Также называется манхэттенским, сити-блок расстоянием или расстоянием городских кварталов. Это расстояние является разностью по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат). Хеммингово расстояние вычисляется по формуле:

    5. Расстояние Чебышева

    Принимает значение наибольшего модуля разности между значениями соответствующих свойств (признаков) объектов:

    6. Процент несогласия

    Эта мера расстояния используется в тех случаях, когда свойства (признаки) объекта являются категориальными:

    Title="P~=~VALUE~delim{|}{~A_{i}~~~B_{i}}{|}">

    Например, первый признак объекта – пол, второй – возраст, третий – место работы. Представим значения свойств (признаков) объекта в виде вектора значений. Первый вектор – (муж, 20 лет, учитель), второй вектор – (муж, 28 лет, менеджер). Процент несогласия равен 2/3. Эти вектора различаются на 66.6%.

    Выбор меры расстояния и весов для классифицирующих свойств – очень важный этап, так как от этих процедур зависят состав и количество формируемых классов, а также степень сходства объектов внутри классов.



    Понравилась статья? Поделитесь с друзьями!