Шкала наименований и ее свойства. Типы шкал и правила их построения

Квадратичные формы.
Знакоопределённость форм. Критерий Сильвестра

Прилагательное «квадратичный» сразу наталкивает на мысль, что что-то здесь связано с квадратом (второй степенью), и очень скоро мы узнаем это «что-то» и что такое форма. Прямо скороговоркой получилась:)

Приветствую вас на своём новом уроке, и в качестве незамедлительной разминки мы рассмотрим форму в полосочку линейную . Линейной формой переменных называют однородный многочлен 1-й степени:

– какие-то конкретные числа* (предполагаем, что хотя бы одно из них отлично от нуля) , а – переменные, которые могут принимать произвольные значения.

* В рамках данной темы будем рассматривать только действительные числа .

С термином «однородный» мы уже сталкивались на уроке об однородных системах линейных уравнений , и в данном случае он подразумевает, что у многочлена нет приплюсованной константы .

Например: – линейная форма двух переменных

Теперь форма квадратичная. Квадратичной формой переменных называют однородный многочлен 2-й степени, каждое слагаемое которого содержит либо квадрат переменной, либо парное произведение переменных. Так, например, квадратичная форма двух переменных имеет следующий вид:

Внимание! Это стандартная запись, и что-то менять в ней не нужно! Несмотря на «страшный» вид, тут всё просто – двойные подстрочные индексы констант сигнализируют о том, какие переменные входят в то или иное слагаемое:
– в этом слагаемом находится произведение и (квадрат);
– здесь произведение ;
– и здесь произведение .

– сразу упреждаю грубую ошибку, когда теряют «минус» у коэффициента, не понимая, что он относится к слагаемому:

Иногда встречается «школьный» вариант оформления в духе , но то лишь иногда. Кстати, заметьте, что константы нам тут вообще ни о чем не говорят, и поэтому запомнить «лёгкую запись» труднее. Особенно, когда переменных больше.

И квадратичная форма трёх переменных содержит уже шесть членов:

…почему в «смешанных» слагаемых ставятся множители-«двойки»? Это удобно, и скоро станет понятно, почему.

Однако общую формулу запишем, её удобно оформить «простынёй»:


– внимательно изучаем каждую строчку – ничего страшного тут нет!

Квадратичная форма содержит слагаемых с квадратами переменных и слагаемых с их парными произведениями (см. комбинаторную формулу сочетаний ) . Больше ничего – никаких «одиноких иксов» и никакой приплюсованной константы (тогда уже получится не квадратичная форма, а неоднородный многочлен 2-й степени).

Матричная запись квадратичной формы

В зависимости от значений рассматриваемая форма может принимать как положительные, так и отрицательные значения, и то же самое касается любой линейной формы – если хотя бы один из её коэффициентов отличен от нуля, то она может оказаться как положительной, так и отрицательной (в зависимости от значений ).

Такая форма называется знакопеременной . И если с линейной формой всё прозрачно, то с формой квадратичной дела обстоят куда более интересно:

Совершенно понятно, что данная форма может принимать значения любого знака, таким образом, квадратичная форма тоже может быть знакопеременной .

А может и не быть:

– всегда, если только одновременно не равны нулю.

– для любого вектора , кроме нулевого .

И вообще, если для любого ненулевого вектора , , то квадратичную форму называют положительно определённой ; если же – то отрицательно определённой .

И всё бы было хорошо, но определённость квадратичной формы виднА лишь в простых примерах, и эта видимость теряется уже при небольшом усложнении:
– ?

Можно предположить, что форма определена положительно, но так ли это на самом деле? Вдруг существуют значения , при которых она меньше нуля?

На этот счёт существует теорема : если ВСЕ собственные числа матрицы квадратичной формы положительны* , то она определена положительно. Если все отрицательны – то отрицательно.

* В теории доказано, что все собственные числа действительной симметрической матрицы действительны

Запишем матрицу вышеприведённой формы:
и из уравнения найдём её собственные значения :

Решаем старое доброе квадратное уравнение :

, значит, форма определена положительно, т.е. при любых ненулевых значениях она больше нуля.

Рассмотренный метод вроде бы рабочий, но есть одно большое НО. Уже для матрицы «три на три» искать собственные числа – есть занятие долгое и неприятное; с высокой вероятностью получится многочлен 3-й степени с иррациональными корнями.

Как быть? Существует более простой путь!

Критерий Сильвестра

Нет, не Сильвестра Сталлоне:) Сначала напомню, что такое угловые миноры матрицы. Это определители которые «разрастаются» из её левого верхнего угла:

и последний из них в точности равен определителю матрицы.

Теперь, собственно, критерий :

1) Квадратичная форма определена положительно тогда и только тогда, когда ВСЕ её угловые миноры больше нуля: .

2) Квадратичная форма определена отрицательно тогда и только тогда, когда её угловые миноры знакочередуются, при этом 1-й минор меньше нуля: , , если – чётное или , если – нечётное.

Если хотя бы один угловой минор противоположного знака, то форма знакопеременна . Если угловые миноры «того» знака, но среди них есть нулевые, то это особый случай, который я разберу чуть позже, после того, как мы перещёлкаем более распространённые примеры.

Проанализируем угловые миноры матрицы :

И это сразу говорит нам о том, что форма не определена отрицательно.

Вывод : все угловые миноры больше нуля, значит, форма определена положительно.

Есть разница с методом собственных чисел? ;)

Запишем матрицу формы из Примера 1 :

первый её угловой минор , а второй , откуда следует, что форма знакопеременна, т.е. в зависимости от значений , может принимать как положительные, так и отрицательные значения. Впрочем, это и так очевидно.

Возьмём форму и её матрицу из Примера 2 :

тут вообще без озарения не разобраться. Но с критерием Сильвестра нам всё нипочём:
, следовательно, форма точно не отрицательна.

, и точно не положительна (т.к. все угловые миноры должны быть положительными) .

Вывод : форма знакопеременна.

Разминочные примеры для самостоятельного решения:

Пример 4

Исследовать квадратичные формы на знакоопределенность

а)

В этих примерах всё гладко (см. конец урока), но на самом деле для выполнения такого задания критерия Сильвестра может оказаться не достаточно .

Дело в том, что существуют «краевые» случаи, а именно: если для любого ненулевого вектора , то форма определена неотрицательно , если – то неположительно . У этих форм существует ненулевые векторы , при которых .

Здесь можно привести такой «баян»:

Выделяя полный квадрат , сразу видим неотрицательность формы: , причём, она равна нулю и при любом векторе с равными координатами, например: .

«Зеркальный» пример неположительно определённой формы:

и ещё более тривиальный пример:
– здесь форма равна нулю при любом векторе , где – произвольное число.

Как выявить неотрицательность или неположительнось формы?

Для этого нам потребуется понятие главных миноров матрицы. Главный минор – это минор, составленный из элементов, которые стоят на пересечении строк и столбцов с одинаковыми номерами. Так, у матрицы существуют два главных минора 1-го порядка:
(элемент находится на пересечении 1-й строки и 1-го столбца);
(элемент находится на пересечении 2-й строки и 2-го столбца),

и один главный минор 2-го порядка:
– составлен из элементов 1-й, 2-й строки и 1-го, 2-го столбца.

У матрицы «три на три» главных миноров семь, и тут уже придётся помахать бицепсами:
– три минора 1-го порядка,
три минора 2-го порядка:
– составлен из элементов 1-й, 2-й строки и 1-го, 2-го столбца;
– составлен из элементов 1-й, 3-й строки и 1-го, 3-го столбца;
– составлен из элементов 2-й, 3-й строки и 2-го, 3-го столбца,
и один минор 3-го порядка:
– составлен из элементов 1-й, 2-й, 3-й строки и 1-го, 2-го и 3-го столбца.
Задание на понимание: записать все главные миноры матрицы .
Сверяемся в конце урока и продолжаем.

Критерий Шварценеггера :

1) Ненулевая* квадратичная форма определена неотрицательно тогда и только тогда, когда ВСЕ её главные миноры неотрицательны (больше либо равны нулю).

* У нулевой (вырожденной) квадратичной формы все коэффициенты равны нулю .

2) Ненулевая квадратичная форма с матрицей определена неположительно тогда и только тогда, когда её:
– главные миноры 1-го порядка неположительны (меньше либо равны нулю);
– главные миноры 2-го порядка неотрицательны ;
– главные миноры 3-го порядка неположительны (пошло чередование);

– главный минор -го порядка неположителен , если – нечётное либо неотрицателен , если – чётное.

Если хотя бы один минор противоположного знака, то форма знакопеременна.

Посмотрим, как работает критерий в вышеприведённых примерах:

Составим матрицу формы, и в первую очередь вычислим угловые миноры – а вдруг она определена положительно или отрицательно?

Полученные значения не удовлетворяют критерию Сильвестра, однако второй минор не отрицателен , и это вызывает надобность проверить 2-й критерий (в случае 2-й критерий будет не выполнен автоматически, т.е. сразу делается вывод о знакопеременности формы) .

Главные миноры 1-го порядка:
– положительны,
главный минор 2-го порядка:
– не отрицателен.

Таким образом, ВСЕ главные миноры не отрицательны, значит, форма неотрицательна .

Запишем матрицу формы , для которой, очевидно, не выполнен критерий Сильвестра. Но и противоположных знаков мы тоже не получили (т.к. оба угловых минора равны нулю). Поэтому проверяем выполнение критерия неотрицательности / неположительности. Главные миноры 1-го порядка:
– не положительны,
главный минор 2-го порядка:
– не отрицателен.

Таким образом, по критерию Шварценеггера (пункт 2), форма определена неположительно.

Теперь во всеоружии разберём более занятную задачку:

Пример 5

Исследовать квадратичную форму на знакоопределенность

Данную форму украшает орден «альфа», который может равняться любому действительному числу. Но это ж только веселее будет, решаем .

Сначала запишем матрицу формы, наверное, многие уже приноровились это делать устно: на главную диагональ ставим коэффициенты при квадратах, а на симметричные места – споловиненные коэффициенты соответствующих «смешанных» произведений:

Вычислим угловые миноры:

третий определитель я раскрою по 3-й строке:

С. Стивенсом предложена классификация из четырех типов шкал измерения: номинальная, порядковая, интервальная и шкала отношений.

Номинальная шкала (шкала наименований, номинативная шкала) состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа (численного, буквенного и т.д.). По сути это- классификация свойств, группирование объектов, объединение их в классы при условии, что объекты, принадлежащие к одному классу, идентичны (или аналогичны) друг другу в отношении какого-либо признака или свойства, тогда как объекты, различающиеся по этому признаку, попадают в разные классы.

Пример: а) классификация вкусовых качеств: А - сладкое, В - горь­кое, С - кислое; б) цвета видимого спектра: красный, зеленый, синий и пр.; в) национальность: А белорус, В - русский, С - украинец; г) раз­биение людей по четырем типам темперамента: сангвиник, флегматик, меланхолик, холерик.

Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга. Привычные операции с числами - упорядочивание, сложение-вычитание, деление - при измерении в номинативной шкале теряют смысл. Так, для признаков, измеренных по этой шкале, нельзя сказать, что какой-то из них больше, а какой-то меньше, какой-то лучше, а какой-то хуже. То есть при сравнении объектов мы можем делать вывод только о том, принадлежат они к одному или разным классам, тождественны или нет по измеренному свойству.

Следует подчеркнуть, что присваиваемые объектам в номинативной шкале символы являются условными и допускаются любые замены или перестановки буквенных (численных) обозначений.

Простейший случай номинативной шкалы - дихотомическая шкала. При измерениях по этой шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1 или 3 и 5, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным.

В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет. Например, в конкретном исследовании признак «леворукости» проявился у 8 испытуемых из 20, то есть 8 испытуемым можно поставить цифру 1, соответствующую признаку «леворукость», остальным цифру 0, соответствующую признаку «праворукость».

Пример: а) классификация по полу: 1 - мужской, 0 - женский;
б) ответы на опросник: 1 - да, 0 - нет; в) состав семьи: А - полная семья, Б -неполная семья.

В номинативной шкале можно подсчитать частоту встречаемости признака, то есть число испытуемых, явлений и т.п., попавших в данный класс и обладающих данным свойством. Допустим, мы выясняем число мальчиков и девочек в классе. Для этого мы кодируем мальчиков, например, цифрой 1, а девочек - цифрой 0. После этого подсчитываем общее количество цифр (кодов) 1 и 0. Это и есть подсчет частоты признака.


Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т.п.), или частота. Точнее, единица измерения - это одно наблюдение. Общее число наблюдений (испытуемых, реакций, выборов и т.п.) принимается за 100%, и тогда можно вычислить процентное соотношение, например, мальчиков и девочек в классе.

К результатам измерений, полученным в номинативной шкале, возможно применить небольшое число статистических методов. Такие данные могут быть обработаны, например, с помощью метода %, биномиального критерия m, углового преобразования Фишера φ и др.

Порядковая шкала (ранговая шкала) - это шкала, классифицирующая по принципу «больше - меньше», «выше - ниже», «сильнее - слабее». Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой шкале все признаки располагаются по рангу - от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т. п.) или наоборот. Типичный и очень хорошо известный всем пример порядковой шкалы - это школьные оценки: от 5 до 1 балла или от 0 до 10 баллов.

В порядковой шкале должно быть не менее трех классов, например «положительная реакция - нейтральная реакция - отрицательная реак­ция» или «высокий - средний - низкий» и т. п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку.

Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более - во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.

Пример: а) места, занятые студентами в соревновании (1, 2, 3); б) ранг студента по среднему баллу успеваемости (1, 2, 3, 4, 5, 6 и т.д.); в) ответы на тест: 1 - никогда, 2 - иногда, 3 - часто, 4 - всегда.

В порядковой шкале мы не знаем истинного расстояния между классами, а знаем лишь, что они образуют последовательность. От классов можно просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей, Например, необходимо закодировать уровень тревожности по пяти градациям: самый низкий - 1, низкий - 2, средний - 3, высокий - 4, самый высокий - 5. Можно использовать и другие способы кодировки (например, 14, 23, 34, 45, 56 соответственно), однако предложенный первоначально способ кодировки является наиболее привычным и поэтому наиболее предпочтительным. Числа в ранговых шкалах обозначают лишь порядок следования признаков, а операции с числами в этой шкале - это операция с рангами.

При ранжировании необходимо учитывать два обстоятельства:
1. Установите для себя и запомните порядок ранжирования. Можно ранг 1 присваивать тому, у которого 1-е место по выраженности данного признака (например, «самый сильный»). Или можно ранг 1 присваивать тому, у которого наименьшая выраженность признака, и далее - увеличение ранга по мере увеличения уровня признака. Строгих правил выбора здесь нет, но важно помнить, в каком направлении производилось ранжирование. 2. Соблюдайте правило ранжирования для связанных рангов, когда двое или более испытуемых имеют одинаковую выраженность измеряемого свойства. В этом случае таким испытуемым присваивается один и тот же, средний ранг. Например, если вы ранжируете испытуемых по «месту в группе» и двое имеют одинаковые самые высокие исходные оценки, то обоим присваивается средний ранг 1,5: (1+2)/2=1,5. Следующему за этой парой испытуемому присваивается ранг 3 и т.д. Это правило основано на соглашении соблюдения одинаковой суммы рангов для связанных или несвязанных рангов. В соответствии с этим правилом сумма всех присвоенных рангов для группы численностью N должна равняться N(N+1)/2, вне зависимости от наличия или отсутствия связей в рангах.

В порядковой шкале применяется множество разнообразных статистических методов. Наиболее часто к измерениям, полученным в этой шкале, применяются коэффициенты корреляции Спирмена и Кендалла, кроме того, применительно к данным, полученным в этой шкале, используют разнообразные критерии различий.

Интервальная шкала (шкала интервалов) - это шкала, классифицирующая по принципу «больше на определенное количество единиц -меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии. Главное понятие этой шкалы - интервал, который можно определить как долю или часть измеряемого свойства между двумя соседними позициями на шкале. Размер интервала - величина фиксированная и постоянная на всех участках шкалы. Для измерения посредством шкалы интервалов устанавливаются специальные единицы измерения (в психологии, например, стены и стенайны). Объекту присваивается число единиц измерения, пропорциональное выраженности измеряемого свойства. Важной особенностью шкалы интервалов является то, что у нее нет естественной точки отсчета (нуль условен и не указывает на отсутствие измеряемого свойства). Следовательно, применяя эту шкалу, мы можем судить, насколько больше или насколько меньше выражено свойство при сравнении объектов, но не можем судить о том, во сколько раз больше или меньше выражено свойство.

Пример: а) измерение температуры по шкале Цельсия (°С); б) тесты интеллекта (условная единица измерения IQ); в) 16-факторный опросник Кеттелла (сырые баллы переведены в стены).

К экспериментальным данным, полученным по этой шкале, применимо достаточно большое число статистических методов.

Шкала отношений - это шкала, классифицирующая объекты или субъекты пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета, поэтому при сравнении объектов мы можем сказать не только о том, насколько больше или меньше выражено свойство, но и о том, во сколько раз (на сколько процентов и т.д.) больше или меньше оно выражено. Измерив время решения задачи парой испытуемых, мы можем сказать не только о том, кто и на сколько секунд (минут) решил задачу быстрее, но и о том, во сколько раз быстрее.

Следует отметить, что, несмотря на привычность и обыденность абсолютной шкалы, в психологии она используется не часто. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной.

Пример: а) измерение времени реакции (обычно в миллисекундах); б) измерение абсолютных порогов чувствительности.

Перечисленные шкалы полезно характеризовать по признаку их дифференцирующей способности (мощности). В этом отношении шкалы по мере возрастания мощности располагаются следующим образом: номинальная, порядковая, интервальная, шкала отношений. Таким образом, неметрические шкалы заведомо менее мощные - они отражают меньше информации о различии объектов (испытуемых) по измеренному свойству, и, напротив, метрические шкалы более мощные, так как они лучше дифференцируют испытуемых. Поэтому если у исследователя есть возможность выбора, необходимо применить более мощную шкалу. Другое дело, что чаще такого выбора нет, и приходится использовать доступную измерительную шкалу.

Определение того, в какой шкале измерено явление (представлен признак), - ключевой момент анализа данных: от этого зависит выбор метода и интерпретация результатов.

Обычно идентификация номинативной шкалы, ее дифференциация от ранговой, а тем более от метрической шкалы не вызывает проблем.

Пример: рассмотрим вопрос анкеты «Насколько Вы уверены в своих силах?» для ответа, на который испытуемые выбирают один из предложенных вариантов:

1) совершенно уверен;

2) затрудняюсь ответить;

3) совершенно неуверен.

Если исследователя интересует, в какой степени испытуемые уверены или не уверены в своих силах, то логично предполагать, что признак представлен в порядковой шкале. Если же исследователя интересует то, как распределились ответы по вариантам или чем характеризуется каждая из трех соответствующих групп, то разумнее рассматривать этот признак как номинальный.

Значительно сложнее определить различие между порядковой и метрической шкалами. Проблема связана с тем, что измерения в психологии, как правило, косвенные. Непосредственно мы измеряем некоторые наблюдаемые явления или события: количество ответов на вопросы или заданий, решенных за отведенное время, или время решения набора заданий и т.д. Но при этом выносим суждения о некотором скрытом, латентном свойстве, недоступном прямому наблюдению: об агрессивности, общительности, способности и т.д.

Количество заданий, решенных за отведенное время, - это, конечно, измерение в метрической шкале. Но само по себе это количество нас интересует лишь в той мере, в какой оно отражает некоторую изучаемую нами способность. Соответствуют ли равные разности решенных задач равным разностям выраженности изучаемого свойства (способности)? Если ответ «да» - шкала метрическая (интервальная или равных отношений), если «нет» - шкала порядковая.

В подобных ситуациях проще всего согласиться с тем, что признак представлен в порядковой шкале. Но при этом мы существенно ограничиваем себя в выборе методов последующего анализа. Более того, переход к менее мощной шкале обрекает нас на утрату части ценной для нас эмпирической информации. Следствием этого может являться падение статистической достоверности результатов исследования. Поэтому исследователь стремиться все же найти свидетельство того, что используемая шкала - более мощная.

Задания:

Определите, в какой шкале представлено каждое из приведенных ниже измерений; наименований, порядка, интервалов, отношений.

1. Упорядочивание испытуемых по времени решения тестовой задачи.

2. Предпочтение домашних животных: собаки, кошки, крысы, никакие.

3. Воинское звание (рядовой, ефрейтор, сержант, лейтенант, капитан) как мера продвижения по службе.

4. Количество агрессивных реакций за день.

5. Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории.

6. Упорядочивание испытуемым 18 инструментальных ценностей (по Рокичу) по степени их значимости для него.

7. Цвет волос (блондинки, брюнетки, шатенки, рыжие).

8. Время решения задачи.

9. Статус ученика в группе (звезда, предпочитаемый, принятый, непринятый).

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов /
О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Наследов, А.Д. Математические методы в психологическом исследовании. Анализ и интерпретация данных / А.Д. Наследов. - СПб.: Речь. - 2004.

3. Сидоренко, Е.В. Методы математической обработки в психологии. – СПб.: ООО «Речь» - 2004. – 350с.

4. Бурлачук, Л.Ф., Морозов С.М. Словарь – справочник по психодиагностике / Л.Ф. Бурлачук, С.М. Морозов – СПб: Питер Ком. - 1999. – 528с.

5. Суходольский, Г. В. Математические методы в психологии / Г.В. Суходольский. - Харьков: Изд-во Гуманитарный Центр. - 2006. – 512с.

6. Тарасов, С.Г. Основы применения математических методов в психологии. / С.Г. Тарасов. - СПб.: Изд-во: Санкт - Петербург. ун-та. - 1999. – 326с.

7. Глинский, В. В., Ионин, В. Г. Статистический анализ данных /
В.В. Глинский, В.Г. Ионин. - М.: Филин. - 2008. – 265 с.

Измерение – это совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах величин.

В более широком понимании измерение представляет собой процедуру количественной или качественной оценки того или иного свойства. Измерение становится возможным, если удается сформировать шкалу рассматриваемого свойства с учетом множества его различных проявлений. Слово «шкала» происходит от латинского «scala – лестница», и означает ряд последовательных значений измеряемой величины в восходящем или нисходящем порядке, которые приняты для измерения.

Свойство рассматривают как некую систему, между элементами которой действуют различные отношения: отношения эквивалентности (равенства), отношения порядка (больше, меньше), отношения аддитивности (суммирования).

В теории измерений рассматривают 5 различных типов шкал:

- шкалы наименований ;

- шкалы интервалов (шкалы разностей);

- шкалы отношений ;

- шкалы порядка (шкалы рангов);

- абсолютные шкалы .

Шкалы наименований – это качественные шкалы, которые соответствуют свойствам только с отношениями эквивалентности . К этим свойствам нельзя применить термин «размер», но они могут быть определены и идентифицированы. Например, наименование или обозначение цвета по атласу цветов.

Шкалы порядка – соответствуют свойствам, для которых могут быть установлены отношения эквивалентности и отношения порядка по возрастанию или уменьшению количественного проявления свойства, но единицы измерения ввести нельзя. Это шкалы с балльной оценкой (сила землетрясения, сила ветра, твердость минералов и металлов).

Шкалы интервалов – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы интервалов имеют условный ноль, заданные значения интервалов и единицу измерения.

Например, шкала времени имеет условный ноль и установленные интервалы. Единица измерения воспроизводится непосредственно как интервал времени – с, мин, час, сутки и т.д. К шкале интервалов относится температурные шкалы Цельсия и Фаренгейта. Шкала Цельсия имеет условный ноль (температуру замерзания воды или таяния льда) и заданный интервал (100 градусов Цельсия – температура кипения воды). В шкале Фаренгейта началом отсчета является температура смеси льда, поваренной соли и нашатыря. В качестве второй опорной точки выбрана температура тела человека. Единица температуры по Фаренгейту – градус Фаренгейта, определяется как одна девяносто шестая часть полученного интервала. Температура таяния льда по Фаренгейту равна 32 градусам, температура кипения воды – 212 градусов.



Шкалы отношений – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы отношений считаются наиболее совершенными, так как имеют естественный ноль и единицы измерения, которые принимают по согласованию. Например, температурная шкала Кельвина имеет физически определенный ноль (абсолютный ноль – наиболее низкая возможная температура). Кельвин является одной из основных единиц СИ (до 1968 г. называлась градус Кельвина). 1 К = 1 градусу Цельсия (по определению Кельвин – это единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, то есть точки сосуществования трех агрегатных состояний воды – жидкого, твердого и газообразного. Тройная точка воды соответствует 0,01 градуса Цельсия. Шкалами отношений также являются шкалы многих физических величин – массы, длины, силы электрического тока и др. С помощью шкал отношений возможны все арифметические операции с измеряемыми величинами: сложение, вычитание, умножение и деление.

Шкалы порядка – соответствуют свойствам с отношениями эквивалентности и порядка (по возрастанию или уменьшению количественного проявления свойства), но единицы измерения ввести нельзя. Эти величины не измеряют, а оценивают. Шкалы порядка имеют балльную оценку. Например, шкала силы землетрясения, шкалы твердости минералов и металлов, шкалы серых и синих эталонов оценки устойчивости окраски и др.

Абсолютные шкалы - соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности , имеющие естественное однозначное определение единицы измерения. Например, шкала измерения плоских углов в радианах (радиан – это центральный угол, соответствующий дуге, длина которой равна ее радиусу).



Измерения классифицируют по нескольким классификационным признакам.

По числу выполненных наблюдений или снятых показаний измерения делят на однократные и многократные .

Однократным называют измерение, выполненное один раз. Например, снятие размерных признаков тела человека.

Многократным называют измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений). Многократное измерение выполняют с целью снижения погрешности. Например, определение Рр и Ер ткани по стандартной методике предусматривает использование 3 проб по основе и 4 проб по утку.

В зависимости от способа получения результата измерения делят на прямые, косвенные, совместные и совокупные.

Прямыми называют измерения, в которых искомое значение находят непосредственно из опытных данных. Например, измерение длины, массы и т.д.

Косвенными называют измерения, в которых искомое значение находят по результатам прямых измерений других величин, которые связаны с искомой определенной зависимостью. Например, определение линейной плотности нитей:

Т=m/L, текс.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин для установления функциональной зависимости между ними. Например, одновременное определение Р и l для построения кривой «деформация – усилие» и нахождения зависимости Р=f(l).

Совокупными называют измерения, в которых значения измеряемых величин находят решением системы уравнений, составленной по данным измерений нескольких одноименных величин . Примером является определение масс отдельных гирь в наборе по известной массе одной из них и по результатам определения масс различных сочетаний гирь.

По характеру зависимости измеряемой величины от времени измерения подразделяют на статические и динамические .

Статическими называют измерения, при которых измеряемая величина принимается за неизменную на время проведения измерения. Например, измерение Рр и Ер является статическим.

Динамическими называют измерения, при которых измеряемая величина изменяется со скоростью, превышающей возможности средства измерений отслеживать ее изменения. В этом случае возникает дополнительная динамическая составляющая погрешности, обусловленная инерционными свойствами измерительного прибора. Например, измерение дискретных значений Р и Е при растяжении пробы; измерение нарастающей влажности воздуха в корпусе установки при определении паропроницаемости материалов.

По уровню точности измерения делят на измерения максимально возможной точности, контрольные и технические (рабочие).

Измерения максимально возможной точности выполняют в метрологических центрах при создании и эксплуатации эталонов, а также в научных исследованиях по определению значений констант, стандартных справочных данных и т.д.

Контрольные измерения выполняют при поверке и калибровке средств измерений. Погрешность таких измерений не должна превышать некоторое заданное контрольное значение.

Технические (рабочие) измерения выполняют в промышленности с помощью рабочих средств измерений.

По особенностям обработки результатов измерения делят на равноточные и неравноточные .

Равноточными называют измерения, выполненные одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточными называют измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях.

Системы единиц

Система единиц – совокупность основных (независимых) и производных единиц величин.

Впервые принцип построения такой системы разработал немецкий ученый Гаусс в 1832 г. Разработанная им система получила название абсолютной и включала три основные единицы – миллиметр, миллиграмм и секунду. Абсолютная система не получила широкого распространения, но принцип ее построения используется до настоящего времени.

Принцип построения систем единиц заключается в том, что выбираются независимые друг от друга основные физические величины. Их единицы измерения называются основнымиединицами величин . Остальные величины называются производными, их единицы измерений - производными единицами величин . Производные единицы величин устанавливают через основные с использованием известных физических законов и соотношений. Эти соотношения в метрологии называют уравнениями связи между величинами.

Международная система единиц СИ разработана по решению ГКМВ и первоначально (в 1960 г.) включала шесть основных единиц. Позднее была добавлена седьмая основная единица – количество вещества – моль, а затем две дополнительные единицы – радиан и стерадиан. Система СИ нашла свое отражение в международных стандартах ИСО и государственном стандарте РФ.

Основные единицы СИ:

- метр (м) – единица длины (L) , равная пути, пройденному в вакууме светом за интервал времени 1/299 792 458 с;

- килограмм (кг) – единица массы (М) , равная массе международного прототипа килограмма (прототип килограмма представляет собой гирю в виде прямого цилиндра диаметром и высотой 39 мм из сплава платины и иридия);

- секунда (с) – единица времени (Т) , равная 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

- ампер (А) – единица силы электрического тока (I) . Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2*10 -7 Н;

- кельвин (К) – единица термодинамической температуры – греч, тэта) , равная 1/273,16 части термодинамической температуры тройной точки воды (то есть точки сосуществования льда, воды и пара, которая соответствует 0,01 градуса Цельсия или 273,16 К);

- кандела (кд) – единица силы света (J) . Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540,10 12 Гц, электрическая сила света которого в этом направлении составляет 1/683 Вт/ср (Ватт на стерадиан);

- моль (моль) – единица количества вещества (N) . Моль – это количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Дополнительные единицы :

- радиан (рад) – единица измерения плоского угла, равная внутреннему углу между двумя радиусами окружности, длина дуги между которыми равна радиусу;

- стерадиан (ср) – единица измерения телесного угла. Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности этой сферы площадь, равной площади квадрата со стороной, равной радиусу.

Одновременно с принятием системы СИ ГКМВ приняла десятичные кратные и дольные приставки к единицам. Приставка означает, что единица умножена на десять в целой положительной или отрицательной степени. Новая единица называется кратной или дольной (кратно превышающей или составляющей долю от исходной единицы). Из многообразия кратных и дольных единиц выбирают единицу, позволяющую получать числовые значения, удобные для применения на практике – в диапазоне от 0,1 до 1000.

Множители и приставки для образования десятичных кратных и дольных единиц, и их наименования

Примеры: МПа, кН, гПа, даН, дм, см, мм, мкм, нм.

ГКМВ признало использование некоторых внесистемных единиц наравне с единицами СИ из-за их практической важности – минута (мин), час (ч), литр (л) и некоторые другие.

На практике для удобства применяются не только системные и допущенные внесистемные единицы величин. Например, значение атмосферного давления и кровяное давление человека привычно указывают в миллиметрах ртутного столба, а не в Па; мощность двигателей автомобилей - в лошадиных силах, а не в киловаттах и т.д.

Вопросы для самоконтроля

1. С помощью каких шкал можно выполнить наибольшее количество действий:

- шкал наименований ;

- шкал интервалов ;

- шкал отношений ;

- шкал порядка ;

- абсолютных шкалы .

2. Физической величиной, на множестве значений которой возможно выполнение операций, подобных сложению и вычитанию, является:

- сила электрического тока;

- коэффициент линейного расширения;

- твердость минералов;

- сила ветра.

3. Измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях, называются:

- однократными ;

- многократными;

- прямыми;

- косвенными;

- неравноточными.

4. Измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений):

- многократное;

- прямое;

- косвенное;

- совместное;

- совокупное.

5. Из приведенных единиц измерения основнымиединицами величин являются:

- метр, м

- килограмм, кг

- джоуль, Дж

- ампер, А

- градус, град

- кельвин, К

- секунда, с

- моль

- кандела, кд

Средства измерений

Средство измерений – техническое средство, которое предназначено для измерений и имеет нормированные метрологические характеристики. К метрологическим характеристикам относят характеристики средства измерений, которые влияют на результат измерений и его погрешность.

Средства измерений выполняют одну из двух функций:

Воспроизводят величину заданного размера (гири, линейки);

Вырабатывают сигнал (показание), несущий информацию о значении измеряемой величины.

Показания средства измерений могут непосредственно восприниматься органами чувств человека (например, показания стрелочного или цифрового прибора), либо преобразуются другими техническими средствами в сигнал, удобный для восприятия (например, записывающими устройствами).

Средства измерений подразделяют на меры, измерительные преобразователи (датчики), измерительные приборы, измерительные установки, измерительные системы .

Мера – средство измерений, предназначенное для воспроизведения и/или хранения величины одного или нескольких размеров, значения которых выражены в установленных единицах с необходимой точностью. Например, гиря воспроизводит один размер, штриховая мера длины – линейка – воспроизводит несколько размеров.

Измерительный преобразователь (датчик) – это средство измерений, предназначенное для преобразования сигналов измерительной информации в форму, удобную для восприятия или дальнейшего преобразования. Например, температурные полоски, тензометрические датчики.

Измерительный прибор – это средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне и выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия. По форме представления измерительной информации различают показывающие и регистрирующие приборы . Показывающие приборы позволяют производить отсчет или считывание показаний. Например, стрелочные или цифровые приборы. Регистрирующие приборы записывают информацию на каком-либо носителе. Например, гигрограф записывает кривую изменения влажности воздуха на специальной бумаге в течение суток.

По форме преобразования измерительных сигналов приборы подразделяют на аналоговые и цифровые . Аналоговые приборы имеют показания в виде непрерывной функции изменения измеряемой величины. Например, к аналоговым относятся разрывные машины с маятниковым силоизмерителем, стрелочные тонометры и др. Цифровые приборы автоматически преобразуют результаты измерения непрерывной величины в дискретные сигналы, которые отображаются в виде чисел на цифровом индикаторе (в силу этого существуют отличия в определении и нормировании метрологических характеристик цифровых приборов по сравнению с аналоговыми). Например, разрывные машины с цифровой индикацией, цифровые тонометры и др.

Измерительная установка – это совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте. Например, установка с эксикаторами для определения паропроницаемости.

Измерительная система - это совокупность функционально объединенных средств измерений и вспомогательных устройств, размещенных в разных точках контролируемого объекта и соединенных между собой каналами связи, предназначенная для измерения одной или нескольких величин.

Вопросы для самоконтроля

1. Совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте – это средство измерений, которое называется:

- мера,

- измерительный преобразователь (датчик),

- измерительный прибор,

- измерительная установка,

- измерительная система

2. Разрывная машина Р-50, которая имеет цифровые табло для отображения значений нагрузки и деформации проб и самописец для построения кривой «нагрузка-деформация» относится к:

- показывающим измерительным приборам,

- регистрирующим измерительным приборам ,

- аналоговым измерительным приборам,

- цифровым измерительным прибором.

Переменные различаются между собой тем, «насколько хорошо» они могут быть измерены или, другими словами, как много измеряемой информации обеспечивает шкала их измерений. Известно, что в каждом измерении присутствует некоторая ошибка, определяющая границы «количества информации», которое можно получить в данном измерении. Тип шкалы, в которой проведено измерение, является еще одним фактором, определяющим количество информации, содержащейся в переменной. Различают следующие типы шкал: номинальная, порядковая (ординальная), интервальная относительная (шкала отношения). Соответственно мы имеем четыре типа переменных.

Шкала наименований (номинальная шкала) фактически не связана с понятием «величина» и используется только для качественной классификации с целью отличить один объект от другого: номер животного в группе или присвоенный ему уникальный шифр и т.п. Данные переменные могут быть измерены только как принадлежность к некоторым, существенно различным классам; при этом вы не сможете упорядочить эти классы. Например, индивидуумы принадлежат к разным национальностям. Типичные примеры номинальных переменных - пол, национальность, цвет, город и т.д. Часто номинальные переменные называют категориальными. Категориальные переменные часто представляют в виде частот наблюдений, попавших в определенные категории и классы. Если классов всего два, то переменная будет называться дихотомической. Например, при исследовании выборки было установлено, что к первой категории Пол женский отнесено 30 испытуемых с повышенным АД, а ко второй категории Пол мужской отнесено 25 испытуемых с повышенным АД. Возможности обработки переменных, относящихся к номинальной шкале, очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Пол , совершенно бессмыслен.

Порядковая шкала (шкала рангов) – шкала, относительно значений которой нельзя говорить ни о том, во сколько раз измеряемая величина больше (меньше) другой, ни на сколько она больше (меньше). Такая шкала только упорядочивает объекты, приписывая им те или иные баллы (результатом измерений является нестрогое упорядочение объектов). При этом указывается, какие из них в большей или меньшей степени обладают качеством, выраженным данной переменной. Однако они не позволяют сказать «на сколько больше» или «на сколько меньше». Порядковые переменные иногда также называют ординальными. Номера домов на улице измерены в порядковой шкале. Типичный пример порядковой переменной - социоэкономический статус семьи. Для размера одежды используют следующую порядковую шкалу: S, M, L, XL,XXL, XXXL, XXXXL. Шкала твердости минералов Мооса также является порядковой. Аналогично построены шкалы силы ветра Бофорта и землетрясений Рихтера. Шкалы порядка широко используются в педагогике, психологии, медицине и других науках, не столь точных, как, скажем, физика и химия. В частности, повсеместно распространенная шкала школьных отметок в баллах (пятибалльная, двенадцати балльная и т.д.) может быть отнесена к шкале порядка. В медико-биологических исследованиях шкалы порядка встречаются сплошь и рядом и подчас весьма искусно замаскированы. Например, для анализа свертывания крови используется тромботест: 0 – отсутствие свертывания в течение времени теста, 1 –«слабые нити», 2 – желеподобный сгусток, 3 – сгусток, легко деформируемый, 4 – плотный, упругий, 5 – плотный, занимающий весь объем и т.п. Понятно, что интервалы между этими плохо отличимыми и очень субъективными позициями произвольны. В этом случае сравнивать средние значения в двух выборках не имеет смысла!! Масса подобных шкал все еще встречается в экспериментальной токсикологии, экспериментальной хирургии, экспериментальной морфологии. Порядковыми шкалами в медицине являются шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону), и т.д. Все эти шкалы построены по схеме: заболевание не обнаружено; первая стадия заболевания; вторая стадия; третья стадия. Каждая стадия имеет свойственную только ей медицинскую характеристику. При описании групп инвалидности числа используются в противоположном порядке: самая тяжелая - первая группа инвалидности, затем - вторая, самая легкая - третья. Кроме частотного анализа, переменные с порядковой шкалой допускают также вычисление определенных статистических характеристик, таких как медианы. В некоторых случаях возможно вычисление среднего значения. Для сравнения различных выборок переменных, относящихся к порядковой шкале, могут применяться непараметрические тесты, формулы которых оперируют рангами.

Интервальные переменные позволяют не только упорядочивать объекты измерения, но и численно выразить и сравнить различия между ними. Например, температура, измеренная в градусах Фаренгейта или Цельсия, образует интервальную шкалу. Шкала Цельсия, как известно, была установлена следующим образом: за ноль была принята точка замерзания воды, за 100 градусов – точка ее кипения, и, соответственно, интервал температур между замерзанием и кипением воды поделен на 100 равных частей. Здесь утверждение, что температура 40°С в два раза больше, чем 20°С, будет неверным. В шкале интервалов сохраняется отношение длин интервалов. Вы можете не только сказать, что температура 40°С выше, чем температура 30°С, но и что увеличение температуры с 20°С до 40 градусов вдвое больше увеличения температуры от 30 до 40 градусов. Такие переменные могут обрабатываться любыми статистическими методами без ограничений. Так, к примеру, среднее значение является полноценным статистическим показателем для характеристики таких переменных.

Шкалами отношений измеряются почти все физические величины – время, линейные размеры, площади, объемы, сила тока, мощность и т.д. Это самая мощная шкала. К этой шкале относятся все интервальные переменные, которые имеют абсолютную нулевую точку. В медико-биологических исследованиях шкала отношений будет иметь место, например, когда измеряется время появления того или иного признака после начало воздействия (порог времени, в секундах, минутах), интенсивность воздействия до появления какого-либо признака (порог силы воздействия в вольтах, рентгенах и т.п.). Естественно, к шкале отношений относятся все данные в биохимических и электрофизиологических исследованиях (концентрации веществ, вольтажи, временные показатели электрокардиограммы и т.п.). Сюда же, например, относятся и количество правильно или неправильно выполненных «заданий» в различных тестах по изучению высшей нервной деятельности у животных. Например, температура по Кельвину образует шкалу отношения, и при этом можно утверждать, что температура 200 градусов не только выше, чем 100 градусов, но при этом она вдвое выше. Интервальные шкалы (например, шкала Цельсия) не обладают данным свойством шкалы отношения. Заметим, что в большинстве статистических процедур не делается различия между свойствами интервальных шкал и шкал отношения. Для двух последних шкал возможно вычисление таких числовых показателей, как среднее значение, стандартное отклонение.

Рассмотрим еще несколько конкретных примера переменных в эмпирическом исследовании. Пусть они кодируются следующим образом:

Таблица 1.1

Типы шкал

Мы видим, что кодирование переменной пол с помощью цифр 1 и 2 абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами. Это не значит, что женщины стоят на ступеньку ниже мужчин. В этом случае говорят о переменных, относящихся к номинальной шкале. Такая же ситуация и с переменной семейное положение . Здесь также соответствие между числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от пола, эта переменная не является дихотомической - у нее четыре кодовых цифры вместо двух.

Переменная курение отсортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий - больше, чем умеренный курильщик и т.д. Эти переменные относятся к порядковой шкале. Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего, редко курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим, изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты. Классическими примерами переменных с порядковой шкалой являются также переменные, полученные в результате объединения величин в классы, такие, как месячный доход в нашем примере.

Рассмотрим теперь коэффициент интеллекта (IQ). И его абсолютные значения отображают порядковое отношение между респондентами, и разница между двумя значениями также имеет эмпирическую значимость. Например, если у Федора IQ равен 80, у Петра – 120 и у Ивана – 160, можно сказать, что Петр в сравнении с Федором настолько же интеллектуальнее насколько Иван в сравнении с Петром (а именно – на 40 единиц IQ). Однако, основываясь только на том, что значение IQ у Федора в два раза меньше, чем у Ивана, нельзя сделать вывод, что Иван вдвое умнее Федора. Такие переменные относятся к интервальной шкале.

Наивысшей статистической шкалой, на которой эмпирическую значимость приобретает и отношение двух значений, является шкала отношений. Примером переменной, относящейся к такой шкале, является возраст: если Андрею 30 лет, а Алексею 60, можно сказать, что Алексей вдвое старше Андрея. Шкалой отношений является температурная шкала Кельвина с абсолютным нулём температур.

На практике, в том числе при обработке данных в пакете Statistica, различие между переменными, относящимися к интервальной шкале и шкале отношений обычно несущественно.

От более богатой или мощной шкалы всегда можно перейти к более бедной. Так, непрерывные переменные можно категоризировать. Например, непрерывную случайную величину (СВ) Рост можно из шкалы отношений перевести в порядковую шкалу с градациями: низкий, средний, высокий.

Допустим, весь диапазон изменения интервальной переменной был разделен на область высоких, средних и низких значений и каждое наблюдение было отнесено к одной из трех категорий. Это означает, что явление, которое вначале описывалось в интервальной шкале, может быть описано также и в шкале наименований, а, следовательно, можно использовать для анализа этого явления все те статистические методы, которые требуют использования переменных в шкале наименований. Но надо учитывать, что при переходе к шкале наименований от шкал более высокого порядка, мы теряем часть информации о наблюдениях. Наблюдения, которые отличались друг от друга при описании их в интервальной шкале, могут восприниматься как одинаковые при описании их в шкале наименований. Поэтому рекомендуется применять шкалу наименований лишь тогда, когда нет возможности использовать шкалу более высокого порядка.

В системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих. Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

Оценка сложных систем может проводиться для разных целей:

4) для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы;

5) для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях;

6) для принятия решений по управлению системой.

Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание . Т.е. с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.

Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. Выделяют два типа целей: качественные и количественные, достижение которых выражаются в соответствующих шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

2.1.1. Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов , j , Y>, где Х - реальный объект, Y - шкала, j - гомоморфное отображение X на Y .

В современной теории измерений определено:

X= {x 1 , х 2 ,…x i ,…, х п , R x } - эмпирическая система с отношением, включающая множество свойств x i , на которых в соответствии с целями измерения задано некоторое отношение R x . В процессе измерения необходимо каждому свойству х i ÎX поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы х i рассматриваются как альтернативы, а отношение R x позволяет сравнивать эти альтернативы; Y ={j (x 1),…, j(х п), R y } знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе; j Î Ф - гомоморфное отображение X на Y , устанавливающее соответствие между X и Y так, что {j (x 1),…, j(х п), R y R y только тогда, когда (х 1 ,..., х п, ) Î R x .

Тип шкалы определяется по множеству допустимых преобразований Ф.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением R x состоит в определении знаковой системы Y с отношением R , соответствующей измеряемой системе. Предпочтения R x на множестве Х ´Х в результате измерения переводятся в знаковые (в том числе и количественные) соотношения R y на множестве Y ´Y.

2.1.2. Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований , классификационная шкала ), по которой объектам или их неразличимым группам дается некоторый признак. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.2.1 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С. Здесь эмпирическую систему представляют четыре элемента: а ÎA, b ÎВ, {с, d} ÎС. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1, 2,..., n и сохраняющей отношение равенства. Гомоморфное отображение φ ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Номинальные шкалы имеют две особенности:

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

2.1.3. Шкалы порядка

Шкала называется ранговой (шкалой порядка ), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование φ (х ), которое удовлетворяет условию: если х 1 > х 2 , то и φ (х 1) > φ (х 2) для любых шкальных значений из области определения. Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам.

Ситуации для применения ранговой шкалы:

Необходимо упорядочить объекты во времени или пространстве. При этом интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением объектов;

Нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;

Какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примеры шкал порядка: шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе; шкалы силы ветра, силы землетрясения, сортности товаров в торговле, социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

2.1.4. Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов . Этот тип содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида φ (х ) = ах + b, где х ÎY Y; а > 0; b - любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Примеры применения шкал интервалов:

1) Шкалы температур. Переход от одной шкалы к эквивалентной, например от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:
t °F = 1,8 t °С + 32.

2) Измерение признака «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари - две конкретизации шкал интервалов.

При переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись означает, что расстояние между х 1 и х 2 в K раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными.

Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта приводит к неверным результатам.

2.1.5. Шкалы отношений

Шкалой отношений (подобия) называется шкала, если Ф состоит из преобразований подобия j(х) = ах, а >0, где х Î Y- шкальные значения из области определения Y; а - действительные числа. В шкалах отношений остаются неизменными отношения численных оценок объектов: .

Примерами измерений в шкалах отношений являются измерения массы и длины объектов. При установлении массы используется большое разнообразие численных оценок: производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b : b = 0. Это соответствует заданию нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

2.1.6. Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х ) = х + b, где х ÎY шкальные значения из области определения Y; b - вещественные числа. Т.е. при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств: φ (х 1) - φ (х 2) = х 1 - х 2 .

Примеры измерений в шкалах разностей:

3) Измерение прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым;

4) Увеличение численности учреждений, количество приобретенной техники за год и т. д.

5) Летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а : (а = 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной. Шкалы разностей сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

2.1.7. Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования: φ (х ) = {е }, где е(х) = х.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и вещественные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, например, степенная шкала φ(х) = ах b ; а >0, b >0, а ¹1, b ¹1, и ее разновидность логарифмическая шкала φ(х) = х b ; b >0, b ¹1.



Изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис.2.2). Стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ(х) . Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.

Понравилась статья? Поделитесь с друзьями!