Even and odd functions table. Graph of even and odd functions

A function is called even (odd) if for any and the equality

.

The graph of an even function is symmetrical about the axis
.

The graph of an odd function is symmetrical about the origin.

Example 6.2. Examine whether a function is even or odd

1)
; 2)
; 3)
.

Solution.

1) The function is defined when
. We'll find
.

Those.
. Means, this function is even.

2) The function is defined when

Those.
. Thus, this function is odd.

3) the function is defined for , i.e. For

,
. Therefore the function is neither even nor odd. Let's call it a function of general form.

3. Study of the function for monotonicity.

Function
is called increasing (decreasing) on ​​a certain interval if in this interval each higher value argument corresponds to a larger (smaller) value of the function.

Functions increasing (decreasing) over a certain interval are called monotonic.

If the function
differentiable on the interval
and has a positive (negative) derivative
, then the function
increases (decreases) over this interval.

Example 6.3. Find intervals of monotonicity of functions

1)
; 3)
.

Solution.

1) This function is defined on the entire number line. Let's find the derivative.

The derivative is equal to zero if
And
. Scope – number axis, divided by dots
,
at intervals. Let us determine the sign of the derivative in each interval.

In the interval
the derivative is negative, the function decreases on this interval.

In the interval
the derivative is positive, therefore, the function increases over this interval.

2) This function is defined if
or

.

We determine the sign of the quadratic trinomial in each interval.

Thus, the domain of definition of the function

Let's find the derivative
,
, If
, i.e.
, But
. Let us determine the sign of the derivative in the intervals
.

In the interval
the derivative is negative, therefore, the function decreases on the interval
. In the interval
the derivative is positive, the function increases over the interval
.

4. Study of the function at the extremum.

Dot
called the maximum (minimum) point of the function
, if there is such a neighborhood of the point that's for everyone
from this neighborhood the inequality holds

.

The maximum and minimum points of a function are called extremum points.

If the function
at the point has an extremum, then the derivative of the function at this point is equal to zero or does not exist (a necessary condition for the existence of an extremum).

The points at which the derivative is zero or does not exist are called critical.

5. Sufficient conditions for the existence of an extremum.

Rule 1. If during the transition (from left to right) through the critical point derivative
changes sign from “+” to “–”, then at the point function
has a maximum; if from “–” to “+”, then the minimum; If
does not change sign, then there is no extremum.

Rule 2. Let at the point
first derivative of a function
equal to zero
, and the second derivative exists and is different from zero. If
, That – maximum point, if
, That – minimum point of the function.

Example 6.4 . Explore the maximum and minimum functions:

1)
; 2)
; 3)
;

4)
.

Solution.

1) The function is defined and continuous on the interval
.

Let's find the derivative
and solve the equation
, i.e.
.From here
– critical points.

Let us determine the sign of the derivative in the intervals ,
.

When passing through points
And
the derivative changes sign from “–” to “+”, therefore, according to rule 1
– minimum points.

When passing through a point
the derivative changes sign from “+” to “–”, so
– maximum point.

,
.

2) The function is defined and continuous in the interval
. Let's find the derivative
.

Having solved the equation
, we'll find
And
– critical points. If the denominator
, i.e.
, then the derivative does not exist. So,
– third critical point. Let us determine the sign of the derivative in intervals.

Therefore, the function has a minimum at the point
, maximum in points
And
.

3) A function is defined and continuous if
, i.e. at
.

Let's find the derivative

.

Let's find critical points:

Neighborhoods of points
do not belong to the domain of definition, therefore they are not extrema. So, let's examine the critical points
And
.

4) The function is defined and continuous on the interval
. Let's use rule 2. Find the derivative
.

Let's find critical points:

Let's find the second derivative
and determine its sign at the points

At points
function has a minimum.

At points
the function has a maximum.

Graphs of even and Not even function have the following features:

If a function is even, then its graph is symmetrical about the ordinate. If a function is odd, then its graph is symmetrical about the origin.

Example. Construct a graph of the function \(y=\left|x \right|\).

Solution. Consider the function: \(f\left(x \right)=\left|x \right|\) and substitute the opposite \(-x \) instead of \(x \). As a result of simple transformations we get: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ In other words, if replace the argument with the opposite sign, the function will not change.

This means that this function is even, and its graph will be symmetrical with respect to the ordinate axis ( vertical axis). The graph of this function is shown in the figure on the left. This means that when constructing a graph, you can only draw half, and the second part (to the left of the vertical axis, draw symmetrically to the right part). By determining the symmetry of a function before starting to plot its graph, you can greatly simplify the process of constructing or studying the function. If it is difficult to perform a check in general form, you can do it simpler: substitute in the equation same values different signs. For example -5 and 5. If the function values ​​turn out to be the same, then we can hope that the function will be even. WITH mathematical point From a practical standpoint, this approach is not entirely correct, but from a practical standpoint it is convenient. To increase the reliability of the result, you can substitute several pairs of such opposite values.


Example. Construct a graph of the function \(y=x\left|x \right|\).

Solution. Let's check the same as in the previous example: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right) $$ This means that the original function is odd (the sign of the function has changed to the opposite).

Conclusion: the function is symmetrical about the origin. You can build only one half, and draw the second symmetrically. This kind of symmetry is more difficult to draw. This means that you are looking at the chart from the other side of the sheet, and even upside down. Or you can do this: take the drawn part and rotate it around the origin 180 degrees counterclockwise.


Example. Construct a graph of the function \(y=x^3+x^2\).

Solution. Let's perform the same check for sign change as in the previous two examples. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ As a result, we get that: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ And this means, that the function is neither even nor odd.

Conclusion: the function is not symmetrical either with respect to the origin or the center of the coordinate system. This happened because it is the sum of two functions: even and odd. The same situation will happen if you subtract two different functions. But multiplication or division will lead to a different result. For example, the product of an even and an odd function produces an odd function. Or the quotient of two odd numbers leads to an even function.

Hide Show

Methods for specifying a function

Let the function be given by the formula: y=2x^(2)-3. By assigning any values ​​to the independent variable x, you can calculate, using this formula, the corresponding values ​​of the dependent variable y. For example, if x=-0.5, then, using the formula, we find that the corresponding value of y is y=2 \cdot (-0.5)^(2)-3=-2.5.

Taking any value taken by the argument x in the formula y=2x^(2)-3, you can calculate only one value of the function that corresponds to it. The function can be represented as a table:

x−2 −1 0 1 2 3
y−4 −3 −2 −1 0 1

Using this table, you can see that for the argument value −1 the function value −3 will correspond; and the value x=2 will correspond to y=0, etc. It is also important to know that each argument value in the table corresponds to only one function value.

More functions can be specified using graphs. Using a graph, it is established which value of the function correlates with a certain value x. Most often, this will be an approximate value of the function.

Even and odd function

The function is even function, when f(-x)=f(x) for any x from the domain of definition. Such a function will be symmetrical about the Oy axis.

The function is odd function, when f(-x)=-f(x) for any x from the domain of definition. Such a function will be symmetric about the origin O (0;0) .

The function is not even, neither odd and is called function general view , when it does not have symmetry about the axis or origin.

Let us examine the following function for parity:

f(x)=3x^(3)-7x^(7)

D(f)=(-\infty ; +\infty) with a symmetric domain of definition relative to the origin. f(-x)= 3 \cdot (-x)^(3)-7 \cdot (-x)^(7)= -3x^(3)+7x^(7)= -(3x^(3)-7x^(7))= -f(x).

This means that the function f(x)=3x^(3)-7x^(7) is odd.

Periodic function

The function y=f(x) , in the domain of which the equality f(x+T)=f(x-T)=f(x) holds for any x, is called periodic function with period T \neq 0 .

Repeating the graph of a function on any segment of the x-axis that has length T.

The intervals where the function is positive, that is, f(x) > 0, are segments of the abscissa axis that correspond to the points of the function graph lying above the abscissa axis.

f(x) > 0 on (x_(1); x_(2)) \cup (x_(3); +\infty)

Intervals where the function is negative, that is, f(x)< 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x)< 0 на (-\infty; x_(1)) \cup (x_(2); x_(3))

Limited function

Bounded from below It is customary to call a function y=f(x), x \in X when there is a number A for which the inequality f(x) \geq A holds for any x \in X .

An example of a function bounded from below: y=\sqrt(1+x^(2)) since y=\sqrt(1+x^(2)) \geq 1 for any x .

Bounded from above a function y=f(x), x \in X is called when there is a number B for which the inequality f(x) \neq B holds for any x \in X .

An example of a function bounded below: y=\sqrt(1-x^(2)), x \in [-1;1] since y=\sqrt(1+x^(2)) \neq 1 for any x \in [-1;1] .

Limited It is customary to call a function y=f(x), x \in X when there is a number K > 0 for which the inequality \left | f(x)\right | \neq K for any x \in X .

Example limited function: y=\sin x is limited on the entire number axis, since \left | \sin x \right | \neq 1.

Increasing and decreasing function

It is customary to speak of a function that increases on the interval under consideration as increasing function then, when a larger value of x corresponds to a larger value of the function y=f(x) . It follows that taking two arbitrary values ​​of the argument x_(1) and x_(2) from the interval under consideration, with x_(1) > x_(2) , the result will be y(x_(1)) > y(x_(2)).

A function that decreases on the interval under consideration is called decreasing function then when the larger value of x corresponds to lower value functions y(x) . It follows that, taking from the interval under consideration two arbitrary values ​​of the argument x_(1) and x_(2) , and x_(1) > x_(2) , the result will be y(x_(1))< y(x_{2}) .

Function Roots It is customary to call the points at which the function F=y(x) intersects the abscissa axis (they are obtained by solving the equation y(x)=0).

a) If for x > 0 an even function increases, then it decreases for x< 0

b) When an even function decreases at x > 0, then it increases at x< 0

c) When an odd function increases at x > 0, then it also increases at x< 0

d) When an odd function decreases for x > 0, then it will also decrease for x< 0

Extrema of the function

Minimum point of the function y=f(x) is usually called a point x=x_(0) whose neighborhood will have other points (except for the point x=x_(0)), and for them the inequality f(x) > f will then be satisfied (x_(0)) . y_(min) - designation of the function at the min point.

Maximum point of the function y=f(x) is usually called a point x=x_(0) whose neighborhood will have other points (except for the point x=x_(0)), and for them the inequality f(x) will then be satisfied< f(x^{0}) . y_{max} - обозначение функции в точке max.

Prerequisite

According to Fermat's theorem: f"(x)=0 when the function f(x) that is differentiable at the point x_(0) will have an extremum at this point.

Sufficient condition

  1. When the derivative changes sign from plus to minus, then x_(0) will be the minimum point;
  2. x_(0) - will be a maximum point only when the derivative changes sign from minus to plus when passing through stationary point x_(0) .

The largest and smallest value of a function on an interval

Calculation steps:

  1. The derivative f"(x) is sought;
  2. Stationary and critical points of the function are found and those belonging to the segment are selected;
  3. The values ​​of the function f(x) are found in stationary and critical points and the ends of the segment. The smaller of the results obtained will be lowest value functions, and more - the largest.

Which were familiar to you to one degree or another. It was also noted there that the stock of function properties will be gradually replenished. Two new properties will be discussed in this section.

Definition 1.

The function y = f(x), x є X, is called even if for any value x from the set X the equality f (-x) = f (x) holds.

Definition 2.

The function y = f(x), x є X, is called odd if for any value x from the set X the equality f (-x) = -f (x) holds.

Prove that y = x 4 is an even function.

Solution. We have: f(x) = x 4, f(-x) = (-x) 4. But(-x) 4 = x 4. This means that for any x the equality f(-x) = f(x) holds, i.e. the function is even.

Similarly, it can be proven that the functions y - x 2, y = x 6, y - x 8 are even.

Prove that y = x 3 ~ an odd function.

Solution. We have: f(x) = x 3, f(-x) = (-x) 3. But (-x) 3 = -x 3. This means that for any x the equality f (-x) = -f (x) holds, i.e. the function is odd.

Similarly, it can be proven that the functions y = x, y = x 5, y = x 7 are odd.

You and I have already been convinced more than once that new terms in mathematics most often have an “earthly” origin, i.e. they can be explained somehow. This is the case with both even and odd functions. See: y - x 3, y = x 5, y = x 7 are odd functions, while y = x 2, y = x 4, y = x 6 are even functions. And in general, for any function of the form y = x" (below we will specifically study these functions), where n is a natural number, we can conclude: if n is not even number, then the function y = x" is odd; if n is an even number, then the function y = xn is even.

There are also functions that are neither even nor odd. Such, for example, is the function y = 2x + 3. Indeed, f(1) = 5, and f (-1) = 1. As you can see, here, therefore, neither the identity f(-x) = f ( x), nor the identity f(-x) = -f(x).

So, a function can be even, odd, or neither.

Studying the question of whether given function even or odd is usually called the study of a function for parity.

In definitions 1 and 2 we're talking about about the values ​​of the function at points x and -x. This assumes that the function is defined at both point x and point -x. This means that point -x belongs to the domain of definition of the function simultaneously with point x. If number set X, together with each of its elements x, also contains the opposite element -x, then X is called a symmetric set. Let's say, (-2, 2), [-5, 5], (-oo, +oo) are symmetric sets, while )

Did you like the article? Share with your friends!