Формула цилиндра в пространстве. Что нужно уметь на данный момент? Чем отличается этот справочный материал от аналогов

Определение 1. Цилиндрической поверхностью называется поверхность, образованная параллельными между собой прямыми, называемыми ее образующими .

Если какая-нибудь плоскость, пересекающая все образующие цилиндрические поверхности, пересекает ее по линии Р , то эта линия называется направляющей этой цилиндрической поверхности.

Теорема . Если в пространстве введена декартова система координат и уравнение в плоскостихОу является уравнением некоторой линии Р , то это уравнение в пространстве есть уравнение цилиндрической поверхности L с направляющей линией Р , а образующие параллельны оси Oz (рис.3.19, а).

Доказательство . Точка
лежит на цилиндрической поверхностиL тогда и только тогда, когда проекция
точкиМ на плоскость хОу параллельно оси Oz лежит на линии Р , т.е. тогда и только тогда, когда выполняется уравнение
.

Аналогичные заключения имеют место для уравнений вида
(рис. 3.19, б) и
(рис.3.19, в).

Определение 2 . Цилиндрические поверхности, направляющими которых есть линии второго порядка, называются цилиндрическими поверхностями второго порядка .

Существуют три типа цилиндров второго порядка: эллиптический (рис.3.20)

, (5.42)

гиперболический (рис.3.21)

, (5.43)

параболический (рис.3.22)

. (5.44)

Рис. 3.20 Рис. 3.21 Рис. 3.22

Для цилиндров, заданных уравнениями (5.42), (5.43) и (5.44), направляющими линиями являются соответственно эллипс

,

гипербола

,

парабола

,

а образующие параллельны оси Oz .

Замечание . Как мы видели, конические и цилиндрические поверхности второго порядка имеют прямолинейные образующие, причем каждая из этих поверхностей может быть образована движением прямой в пространстве.

Оказывается, что среди всех поверхностей второго порядка, кроме цилиндра и конуса, прямолинейными образующими обладают еще однополостный гиперболоид и гиперболический параболоид, причем, так же, как и в случае цилиндра и конуса, обе эти поверхности могут быть образованы движением прямой в пространстве (см. специальную литературу).

§4. Приведение общего уравнения поверхности второго порядка к каноническому виду

В общем уравнении поверхности второго порядка

а) квадратичная форма

где
;

б) линейная форма

где
;

в) свободный член .

Чтобы привести уравнение (5.45) к каноническому виду, необходимо, в первую очередь, осуществить такое преобразование координат
, а, следовательно, и связанный с ней ортонормированный базис
, которое преобразует квадратичную форму (5.46) к каноническому виду (см. кн.2, гл.8, §3, п.3.1).

Матрица этой квадратичной формы имеет вид

,

где , т.е. матрицаА – симметрическая. Обозначим через
собственные числа, а через
ортонормированный базис, составленный из собственных векторов матрицыА. Пусть

матрица перехода от базиса
к базису
, а
– связанная с этим базисом новая система координат.

Тогда при преобразовании координат

(5.48)

квадратичная форма (5.46) примет канонический вид

где
.

Теперь, применяя преобразование координат (5.48) к линейной форме (5.47), получим

где
,
– новые коэффициенты формы (5.47).

Таким образом, уравнением (5.45) принимает вид

+.

Это уравнение может быть приведено к канонической форме с помощью параллельного переноса системы координат по формулам

или (5.49)

После осуществления преобразования системы координат путем параллельного переноса (5.49), общее уравнение поверхности второго порядка (5.45) относительно декартовой системы координат
будет выражать одну из следующих семнадцати поверхностей:

1) эллипсоид

2) мнимый эллипсоид

3) однополостный гиперболоид

4) двуполостной гиперболоид

5) конус

6) мнимый конус

7) эллиптический параболоид

8) гиперболический параболоид

9) эллиптический цилиндр

10) мнимый эллиптический цилиндр

11) две мнимые пересекающиеся плоскости

12) гиперболический цилиндр

13) две пересекающиеся плоскости

14) параболический цилиндр

15) две параллельные плоскости

16) две мнимые параллельные плоскости

17) две совпадающие плоскости

Пример. Определить вид и расположение поверхности, заданной относительно декартовой прямоугольной системы координат
и связанным с ней ортонормированным базисом
уравнением

Приведем квадратичную форму

(5.51)

к каноническому виду. Матрица этой формы имеет вид

.

Определим собственные числа этой матрицы из характеристического уравнения

Отсюда 1 = 2, 2 = 0, 3 = 3.

Теперь находим собственные векторы матрицы А : 1) пусть
, тогда из уравнения
или в координатной форме



находим , где
– любое число, и, следовательно,
, а
. Из всего множества коллинеарных вектороввыбираем вектор
, модуль которого
, т.е. нормируем вектор.

2) для
имеем




.

Отсюда
, где
– любое число. Тогда
, а
. Нормируя вектор, находим единичный вектор:

,

где
.

3)
, тогда для компонент
вектораимеем систему

Откуда , где
– любое число, и, следовательно,
, а
. Нормируя вектор, находим единичный вектордля направления, задаваемого вектором:

где
.

Перейдем теперь от ортонормированного базиса
к ортонормированному базису
, составленного из собственных векторов матрицыА и свяжем с последним базисом новую декартову прямоугольную систему координат
. Матрица перехода для такого преобразования имеет вид

,

а координаты преобразуются по формулам

(5.52)

Применяя данное преобразование координат к квадратичной форме (5.51), приведем ее к каноническому виду

, где
.

Определим теперь, какой вид имеет линейная формула

, где
,

если координаты преобразуются по формулам (5.52). Имеем

Таким образом, если систему координат
преобразовать по формулам (5.52), то относительно новой системы координат
рассматриваемая поверхность второго порядка задается уравнением

Уравнение (5.53) приводим к канонической форме с помощью параллельного переноса системы координат по формулам

после чего, уравнение поверхности относительно системы координат
принимает вид

или

Это уравнение выражает эллиптический цилиндр, направляющий эллипс которого расположен в координатной плоскости
, а образующие прямые параллельны оси

Замечание . Схема приведения общего уравнения поверхности второго порядка к каноническому виду, изложенная в этом параграфе, может быть примененена и к приведению общего уравнения кривой второго порядка к каноническому виду.

Эллиптическое уравнение:

Частным случаем эллиптического цилиндра является круговой цилиндр , его уравнение x 2 + y 2 = R 2 . Уравнение x 2 =2pz определяет в пространстве параболический цилиндр .

Уравнение: определяет в пространстве гиперболический цилиндр .

Все эти поверхности называются цилиндрами второго порядка , так как их уравнения есть уравнения второй степени относительно текущих координат x, y, z.

18.Действительные числа, комплексные числа Действия над комплексными числами. Комплексные числа. Формулы Муавра.
Комплексным числом назыв. выражение вида z=x+iy, где xи y - действительные числа, а i– так назыв. мнимая единица, . Если x=0, то число 0+iy=iyназыв. числом мнимым; если y=0, то число x+i0=xотождествляется с действительным числом х, а это означает, что множество Rвсех действит. чисел явл. подмножеством множества С всех комплексных чисел, т.е. .Число х назыв. действительной частью z, .Два комплексных числа и называются равными (z1=z2) тогда и только тогда, когда равны их действительные части и равны их мнимые части: x1=x2, y1=y2. В частности, комплексное число Z=x+iyравно нулю тогда и только тогда, когда x=y=0. Понятия «больше» и «меньше» для комплексных чисел не вводятся. Два комплексных числа z=x+iyи , отличающиеся лишь знаком мнимой части, называются сопряженными.

Геометрическое изображение комплексных чисел.

Всякое комплексное число z=x+iy можно изобразить точкой M(x,y) плоскости Oxyтакой, что x=Rez, y=Imz. И, наоборот, каждую точку M(x;y) координатной плоскости можно рассматривать как образ комплексного числа z=x+iy. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью, т.к. на ней лежат действительные числа z=x+0i=x. Ось ординат называется мнимой осью, так как на ней лежат чисто мнимые комплексные числа z=0+iy. Комплексное число Z=x+iyможно задать с помощью радиус-вектора r=OM=(x,y). Длина вектора r, изображающего комплексное число z, называется модулем этого числа и обозначается |z| или r. Величина угла между положит. Направлением действительной оси и вектором r, изображающим комплексное число, называется аргументом этого комплексного числа, обозначается Argzили .Аргумент комплексного числа Z=0 не определен. Аргумент комплексного числа - величина многозначная и определяется с точностью до слагаемого гдеargz - главное значение аргумента, заключенное в промежутке (), т.е. - (иногда в кач-ве главного значения аргумента берут величину, принадлежащую промежутку (0; )).

Запись числа zв виде z=x+iyназывают алгебраической формой комплексного числа.

С поверхностями 2-го порядка студент чаще всего встречается на первом курсе. Сначала задачи на эту тему могут казаться простыми, но, по мере изучения высшей математики и углубления в научную сторону, можно окончательно перестать ориентироваться в происходящем. Для того чтобы такого не произошло, надо не просто заучить, а понять, как получается та или иная поверхность, как изменение коэффициентов влияет на нее и ее расположение относительно изначальной системы координат и как найти новую систему (такую, в которой ее центр совпадает с началом координат, а параллельна одной из координатных осей). Начнем с самого начала.

Определение

Поверхностью 2 порядка называется ГМТ, координаты которого удовлетворяют общему уравнению следующего вида:

Ясно, что каждая точка, принадлежащая поверхности, должна иметь три координаты в каком-либо обозначенном базисе. Хотя в некоторых случаях геометрическое место точек может вырождаться, например, в плоскость. Это лишь значит, что одна из координат постоянна и равна нулю во всей области допустимых значений.

Полная расписанная форма упомянутого выше равенства выглядит так:

A 11 x 2 +A 22 y 2 +A 33 z 2 +2A 12 xy+2A 23 yz+2A 13 xz+2A 14 x+2A 24 y+2A 34 z+A 44 =0.

A nm - некоторые константы, x, y, z - переменные, отвечающие аффинным координатам какой-либо точки. При этом хотя бы один из множителей-констант должен быть не равен нулю, то есть не любая точка будет отвечать уравнению.

В подавляющем большинстве примеров многие числовые множители все же тождественно равняются нулю, и уравнение значительно упрощается. На практике определение принадлежности точки к поверхности не затруднено (достаточно подставить ее координаты в уравнение и проверить, соблюдается ли тождество). Ключевым моментом в такой работе является приведение последней к каноническому виду.

Написанное выше уравнение задает любые (все указанные далее) поверхности 2 порядка. Примеры рассмотрим далее.

Виды поверхностей 2 порядка

Уравнения поверхностей 2 порядка различаются только значениями коэффициентов A nm . Из общего вида при определенных значениях констант могут получиться различные поверхности, классифицируемые следующим образом:

  1. Цилиндры.
  2. Эллиптический тип.
  3. Гиперболический тип.
  4. Конический тип.
  5. Параболический тип.
  6. Плоскости.

У каждого из перечисленных видов есть естественная и мнимая форма: в мнимой форме геометрическое место вещественных точек либо вырождается в более простую фигуру, либо отсутствует вовсе.

Цилиндры

Это самый простой тип, так как относительно сложная кривая лежит только в основании, выступая в качестве направляющей. Образующими являются прямые, перпендикулярные плоскости, в которой лежит основание.

На графике показан круговой цилиндр - частный случай эллиптического цилиндра. В плоскости XY его проекция будет эллипсом (в нашем случае - кругом) - направляющей, а в XZ - прямоугольником - так как образующие параллельны оси Z. Чтобы получить его из общего уравнения, необходимо придать коэффициентам следующие значения:

Вместо привычных обозначений икс, игрек, зет использованы иксы с порядковым номером - это не имеет никакого значения.

По сути, 1/a 2 и другие указанные здесь постоянные являются теми самыми коэффициентами, указанными в общем уравнении, но принято записывать их именно в таком виде - это и есть каноническое представление. Далее будет использоваться исключительно такая запись.

Так задается гиперболический цилиндр. Схема та же - направляющей будет гипербола.

Параболический цилиндр задается несколько иначе: его канонический вид включает в себя коэффициент p, называемый параметром. На самом деле, коэффициент равен q=2p, но принято разделять его на представленные два множителя.

Есть еще один вид цилиндров: мнимые. Такому цилиндру не принадлежит ни одна вещественная точка. Его описывает уравнение эллиптического цилиндра, но вместо единицы стоит -1.

Эллиптический тип

Эллипсоид может быть растянут вдоль одной из осей (вдоль которой именно зависит от значений постоянных a, b, c, указанных выше; очевидно, что большей оси будет соответствовать больший коэффициент).

Также существует и мнимый эллипсоид - при условии, что сумма координат, помноженная на коэффициенты, равна -1:

Гиперболоиды

При появлении минуса в одной из констант уравнение эллипсоида превращается в уравнение однополостного гиперболоида. Надо понимать, что этот минус не обязательно должен располагаться перед координатой x 3 ! Он лишь определяет, какая из осей будет осью вращения гиперболоида (или параллельна ей, так как при появлении дополнительных слагаемых в квадрате (например, (x-2) 2) смещается центр фигуры, как следствие, поверхность перемещается параллельно осям координат). Это относится ко всем поверхностям 2 порядка.

Кроме этого, надо понимать, что уравнения представлены в каноническом виде и они могут быть изменены с помощью варьирования констант (с сохранением знака!); при этом их вид (гиперболоид, конус и так далее) останется тем же.

Такое уравнение задает уже двуполостный гиперболоид.

Коническая поверхность

В уравнении конуса единица отсутствует - равенство нулю.

Конусом называется только ограниченная коническая поверхность. На картинке ниже видно, что, по сути, на графике окажется два так называемых конуса.

Важное замечание: во всех рассматриваемых канонических уравнениях константы по умолчанию принимаются положительными. В ином случае знак может повлиять на итоговый график.

Координатные плоскости становятся плоскостями симметрии конуса, центр симметрии располагается в начале координат.

В уравнении мнимого конуса стоят только плюсы; ему принадлежит одна единственная вещественная точка.

Параболоиды

Поверхности 2 порядка в пространстве могут принимать различные формы даже при схожих уравнениях. К примеру, параболоиды бывают двух видов.

x 2 /a 2 +y 2 /b 2 =2z

Эллиптический параболоид, при расположении оси Z перпендикулярно чертежу, будет проецироваться в эллипс.

x 2 /a 2 -y 2 /b 2 =2z

Гиперболический параболоид: в сечениях плоскостями, параллельными ZY, будут получаться параболы, а в сечениях плоскостями, параллельными XY - гиперболы.

Пересекающиеся плоскости

Есть случаи, когда поверхности 2-ого порядка вырождаются в плоскости. Эти плоскости могут располагаться различными способами.

Сначала рассмотрим пересекающиеся плоскости:

x 2 /a 2 -y 2 /b 2 =0

При такой модификации канонического уравнения получаются просто две пересекающиеся плоскости (мнимые!); все вещественные точки находятся на оси той координаты, которая отсутствует в уравнении (в каноническом - оси Z).

Параллельные плоскости

При наличии только одной координаты поверхности 2-го порядка вырождаются в пару параллельных плоскостей. Не забывайте, на месте игрека может стоять любая другая переменная; тогда будут получаться плоскости, параллельные другим осям.

В этом случае они становятся мнимыми.

Совпадающие плоскости

При таком простом уравнении пара плоскостей вырождается в одну - они совпадают.

Не забывайте, что в случае трехмерного базиса представленное выше уравнение не задает прямую y=0! В нем отсутствуют две другие переменные, но это всего лишь значит, что их значение постоянно и равно нулю.

Построение

Одной из самых сложных задач для студента является именно построение поверхностей 2 порядка. Еще более затруднительно переходить от одной системы координат к другой, учитывая углы наклона кривой относительно осей и смещение центра. Давайте повторим, как последовательно определить будущий вид чертежа аналитическим способом.

Чтобы построить поверхность 2 порядка, необходимо:

  • привести уравнение к каноническому виду;
  • определить вид исследуемой поверхности;
  • построить, опираясь на значения коэффициентов.

Ниже представлены все рассмотренные виды:

Для закрепления подробно распишем один пример такого типа задания.

Примеры

Допустим, имеется уравнение:

3(x 2 -2x+1)+6y 2 +2z 2 +60y+144=0

Приведем его к каноническому виду. Выделим полные квадраты, то есть скомпонуем имеющиеся слагаемые таким образом, чтобы они были разложением квадрата суммы или разности. Например: если (a+1) 2 =a 2 +2a+1, то a 2 +2a+1=(a+1) 2 . Мы будем проводить вторую операцию. Скобки в данном случае раскрывать не обязательно, так как это только усложнит вычисления, а вот вынести общий множитель 6 (в скобке с полным квадратом игрека) необходимо:

3(x-1) 2 +6(y+5) 2 +2z 2 =6

Переменная зэт встречается в этом случае только один раз - ее можно пока не трогать.

Анализируем уравнение на данном этапе: перед всеми неизвестными стоит знак «плюс»; при делении на шесть остается единица. Следовательно, перед нами уравнение, задающее эллипсоид.

Заметьте, что 144 было разложено на 150-6, после чего -6 перенесли вправо. Почему надо было сделать именно так? Очевидно, что самый большой делитель в данном примере -6, следовательно, чтобы после деления на него справа осталась единица, необходимо «отложить» от 144 именно 6 (о том, что справа должна оказаться единица, говорит наличие свободного члена - константы, не помноженной на неизвестную).

Поделим все на шесть и получим каноническое уравнение эллипсоида:

(x-1) 2 /2+(y+5) 2 /1+z 2 /3=1

В использованной ранее классификации поверхностей 2 порядка рассматривается частный случай, когда центр фигуры находится в начале координат. В данном примере он смещен.

Полагаем, что каждая скобка с неизвестными - это новая переменная. То есть: a=x-1, b=y+5, c=z. В новых координатах центр эллипсоида совпадает с точкой (0,0,0), следовательно, a=b=c=0, откуда: x=1, y=-5, z=0. В изначальных координатах центр фигуры лежит в точке (1,-5,0).

Эллипсоид будет получаться из двух эллипсов: первого в плоскости XY и второго в плоскости XZ (или YZ - это не имеет значения). Коэффициенты, на которые делятся переменные, стоят в каноническом уравнении в квадрате. Следовательно, в приведенном примере правильнее было бы делить на корень из двух, единицу и корень из трех.

Меньшая ось первого эллипса, параллельная оси Y, равняется двум. Большая ось, параллельная оси X - двум корням из двух. Меньшая ось второго эллипса, параллельная оси Y, остается той же - она равна двум. А большая ось, параллельная оси Z, равняется двум корням из трех.

С помощью полученных из первоначального уравнения путем преобразования к каноническому виду данных мы можем начертить эллипсоид.

Подводя итоги

Освещенная в этой статье тема довольно обширная, но, на самом деле, как вы можете теперь видеть, не очень сложная. Ее освоение, по сути, заканчивается на том моменте, когда вы заучиваете названия и уравнения поверхностей (и, конечно, как они выглядят). В примере выше мы подробно рассматривали каждый шаг, но приведение уравнения к каноническому виду требует минимальных познаний в высшей математике и не должно вызывать никаких затруднений у студента.

Анализ будущего графика по имеющемуся равенству уже более сложная задача. Но для ее удачного решения достаточно понимать, как строятся соответствующие кривые второго порядка - эллипсы, параболы и прочие.

Случаи вырождения - еще более простой раздел. Из-за отсутствия некоторых переменных упрощаются не только вычисления, как уже было сказано ранее, но и само построение.

Как только вы сможете уверенно назвать все виды поверхностей, варьировать постоянные, превращая график в ту или иную фигуру - тема будет освоена.

Успехов в обучении!



Понравилась статья? Поделитесь с друзьями!