Из чего состоит хрящевая ткань человека. Типы ткани и их особенности строения и месторасположение в организме

Классификация хрящевых тканей основана на особенностях строения его межклеточного вещества - матрикса. Такая классификация видов хрящевой ткани далеко не совершенна, поскольку не содержит в себе общего единого принципа. Так, термин «фиброзный» указывает на содержание волокнистых структур, а термин «эластический» - уже на определенную конкретную характеристику белка - эластина, входящего в состав хряща. Термин «гиалиновый» информирует лишь о том, что матрикс хряща внешне однородный, а о структуре и характере белков, составляющих его структуру, вообще не упоминается.
).

Хрящевая ткань присутствует во внескелетных образованиях - гортани, носовых перегородках, бронхах, стромальных компонентах сердца.

Внеклеточный матрикс хрящевой ткани отличается от матрикса других разновидностей соединительной ткани существенными особенностями своих структурных макромолекулярных компонентов. Эти особенности обусловливают выраженное своеобразие архитектоники матрикса и его уникальные функциональные (биомеханические) характеристики.

Волокнистые структуры матрикса образованы особыми, специфическими для хрящевой ткани коллагеновыми белками - «большим» фибриллярным коллагеном II типа и сопутствующими ему «малыми» (минорными) коллагенами IX, XI, а также X и некоторых других типов. Главным компонентом межуточного вещества матрикса является также специфический для хрящевой ткани «большой» протеогликан агрекан, макромолекулы которого образуют огромные (их размеры превышают размеры клеток), занимающие большое пространство агрегаты. В состав макромолекул агрекана, составляя значительную часть их массы, входят сульфатированные гликозаминогликаны - хондроитинсульфаты и кератансульфат.

Клетки хрящевой ткани

Дифферон хрящевой ткани может быть представлен следующим образом: прехондробласты-хондробласты-хондроциты. Опираясь на описание дифферона клеток хрящевых тканей, а также из дидактических соображений, мы опишем три формы хондроцитов: прехондробласты, хондробласты и хондроциты.

Прехондробласты

В диффероне хрящевых клеток выделяют клетки-предшественники хондробластов - прехондробласты. Выделение прехондробластов в определенной мере является условным, так как предполагают, что у хряща и кости имеются единые полустволовые клетки - общие для хондробластов и остеобластов.

Хондробласты

Основные процессы формирования хрящевой ткани происходят в эмбриогенезе, где хондроцит функционирует в качестве своей бластной формы и называется хондробластом. По-видимому, целесообразно говорить о единой популяции клеток хондробласт-хондроцит, которая обеспечивает как формирование хрящевой ткани, так и функционирование ее в зрелом состоянии. Источником пополнения популяции таких клеток являются прехондробласты.

Хондробласт можно определить как клетку, находящуюся в стадии перехода от прехондробласта к зрелому хондроциту. Такая клетка обладает секреторными потенциями, необходимыми для синтеза компонентов матрикса, но сохраняет еще способность к пролиферации. Многие исследователи отмечают, что хондробласт и хондроцит не имеют отчетливых морфологических различий, т.е. в морфологической характеристике хондробластов и хондроцитов еще не удалось определить ту меру специфичности, которая позволила бы уверенно различать эти два типа клеток.

Роль хондробластов-хондроцитов как, возможно, единственной клетки в жизнедеятельности хряща настолько важна, что их назвали «архитекторами хряща». Это название отражает тот факт, что она является единственным продуцентом всех макромолекулярных компонентов матрикса хрящевой ткани. Формирование хряща происходит преимущественно в эмбриогенезе и заканчивается в очень молодом возрасте. Таким образом, этот процесс почти целиком происходит на хондробластической стадии дифференцировки клетки.

Хондроциты

Хондроциты - это высокоспециализированная и метаболически активная клетка. Синтетическая деятельность хондроцита специфична и дифференцирована в направлении продукции и секреции коллагена II типа, минорных коллагенов, агрекана, характерных для хрящевой ткани гликопротеинов, эластина (в эластических хрящах). Ультраструктура зрелого хондроцита соответствует высокому уровню его метаболической активности.

Тот факт, что хондроциты служат источником коллагена хрящевой ткани, документируется и биохимическими, и морфологическими методами. Хондроциты в монослойной клеточной культуре дают внутриклеточную иммунофлюоресценцию с сывороткой, меченной к коллагену II типа. Таким же методом удалось локализовать коллаген II типа внутри клеток хрящевой метафизарной пластинки у детей на биопсийном материале.

Не менее убедительны и данные, относящиеся к синтезу протеогликанов. В хондроцитах при ТЭМ выявляются окрашиваемые рутениевым красным гранулы, которые заполняют весь внеклеточный матрикс хрящевой ткани и представляют собой не что иное, как уплотненные в процессе фиксации агрегаты протеогликанов. Эти гранулы обнаруживаются в везикулах комплекса Гольджи, но они отсутствуют в ГЭС. Это означает, что агрекан приобретает свой полианионный характер (рутениевый красный окрашивает полианионные макромолекулы избирательно) при прохождении через комплекс Гольджи. Эти данные согласуются с результатами радиоавтографических исследований, в которых показано, что S35 избирательно концентрируется в комплексе Гольджи. Таким образом, был не только установлен факт биосинтеза хондроцитами агрекана, но и выявлена точная внутриклеточная локализация центрального звена процесса его биосинтеза.

Сопоставление габаритов хондроцита и агреканового агрегата (первый значительно меньше по занимаемому объему, чем второй) позволило заключить, что внутри хондроцита происходит только синтез мономерных макромолекул агрекана, которые секретируются за пределы клетки в матрикс, где и происходит сборка агрекановых агрегатов.

Синтез хондроцитами тканевых структурных гликопротеинов хрящевой ткани доказан биохимическими методами. Получить морфологические подтверждения этого синтеза трудно. Полагают, что он маскируется выраженными процессами синтеза коллагена и протеогликанов. Способность хондроцитов к синтезу белка эластина была показана при исследовании культивируемых хондроцитов ушной раковины кролика.

Согласно современным представлениям, процесс обызвествления хряща происходит при активном участии в нем хондроцитов. Минерализации предшествуют изменения - как в матриксе, так и в клетках хряща.

Гетерогенность хондроцитов

Хондроциты нормальной хрящевой ткани фенотипически представляют собой гетерогенную популяцию клеток.

В гиалиновом хряще выявляются разные по своим морфологическим и функциональным характеристикам хондроциты. Основными являются три их разновидности.

Хондроциты I типа - относительно немногочисленные клетки с неровными отростчатыми краями, крупным ядром, относительно слабо выраженным ГЭС. Клеткам этого типа, например, в суставном хряще, приписывается возможность митотического деления, т.е. функции, необходимой для осуществление физиологической регенерации в процессе естественной смены популяции хондроцитов.

Хондроциты II типа составляют основную массу клеток и характерны для любой разновидности гиалинового хряща. Такой хондроцит - клетка (15- 20 мкм в диаметре) с крупным ядром и многими мелкими отростками, так называемыми цитоплазматическими «ножками». Ядерный хроматин частично конденсирован и сосредоточен в основном на внутренней поверхности ядерной мембраны. В цитоплазме хорошо развита ГЭС, ее каналы местами расширены и наполнены продуктами синтеза. Комплекс Гольджи всегда хорошо развит. Митохондрии немногочисленны.

Хондроциты III типа - это также высокодифференцированные клетки.

Фенотип хондроцита и закономерности его поддержания

Вопрос о том, каковы возможности и необходимые условия для поддержания фенотипа хондроцита в зрелом хряще в норме и при экстремальных ситуациях, являлся в последние годы предметом как изучения, так и дискуссий. Хондроцит и окружающий его матрикс представляют собой единое в функциональном отношении целое - хондроцит продуцирует матрикс, матрикс обеспечивает поддержание фенотипа хондроцита. Соответственно в нормальном хряще in vivo имеются условия, обеспечивающие поддержание стабильности фенотипа хондроцита.

Полагают, что фенотип хондроцита более лабилен, чем фенотип других клеток соединительной ткани. Он приобретается на определенном этапе хондрогенной дифференцировки мезенхимальных клеток и утрачивается в условиях патологии, что, несомненно, имеет патогенетическое значение. Утрата фенотипа хондроцитов происходит также после изолирования их из хрящевой ткани для последующего культивирования в условиях монослойной клеточной культуры. В этом случае на фоне выраженной пролиферации хондроцитов наблюдается угнетение биосинтеза хрящевого матрикса. Этот феномен обычно называют процессом дедифференциации.

Однако при определенных условиях фенотип хондроцитов (например, после перенесения клеток из монослойной в суспензионную культуру) может быстро восстанавливаться. Происходит редифференциация, при которой активируется ряд генов, участвующих в процессе дифференцировки клеток, в том числе гены, кодирующие компоненты системы передачи сигналов одного из цитокинов - IL-6. Напротив, экспрессия некоторых других генов угнетается. В частности, угнетение затрагивает ген фактора роста соединительной ткани (CTGF). Главным признаком редифференциации является возобновление экспрессии специфических компонентов экстрацеллюлярного матрикса, хотя при этом могут частично сохраняться как появившаяся при дедифференциации экспрессия неспецифических продуктов биосинтеза, в частности, коллагена I типа, так и измененная структура хондроцита.

Для поддержания фенотипа зрелого хондроцита необходимо присутствие нормального полноценного хрящевого матрикса. В норме именно структурные особенности матрикса стабилизируют фенотип клеток. Это заключение подтверждается тем фактом, что при культивировании срезов хряща, т.е. при сохранении матрикса, фенотип хондроцитов не изменяется на протяжении длительного времени культивирования (до 9 недель). В условиях патологии фенотип хондроцита изменяется, а задачей терапии является его восстановление.

Метаболические процессы в клетках хрящевой ткани

Хондроциты, как было указано выше, - это единственная разновидность клеток, представленная в зрелой хрящевой ткани, и именно поэтому только они могут служить источником для формирования внеклеточного матрикса. Продукция матрикса и поддержание его структурной целостности на протяжении жизни организма - основные функции хондроцитов. Именно хондроциты осуществляют биосинтез всех специфических компонентов матрикса. Кроме того, хондроциты контролируют протекающие в матриксе процессы сборки надмолекулярных структур (например, агрегатов агрекана и коллагеновых фибрилл) и течение катаболических реакций.

Как мы уже подчеркивали, численность хондроцитов относительно невелика. Они могут обеспечить формирование матрикса только за счет высокой метаболической (анаболической и катаболической) активности каждой клетки. Эта активность, наиболее выраженная в эмбриональном и раннем постнатальном онтогенезе, является одним из характерных свойств хондроцитов.

Метаболическая активность хондроцитов, за исключением общих для всех клеток процессов, обеспечивающих их собственную жизнедеятельность, направлена на построение и поддержание матрикса. Ее целесообразно рассмотреть после того, как будет представлена характеристика структурных компонентов матрикса и действующих в нем ферментов. Здесь мы лишь обратим внимание на те условия, в которых осуществляются метаболические функции хрящевых клеток.

Относительно немногочисленные клетки хрящевой ткани (хондробласты-хондроциты) должны обеспечить образование и последующее поддержание в состоянии динамического равновесия больших масс экстрацеллюлярного матрикса. Свою задачу клетки хряща выполняют в особых условиях: они функционируют в ткани, бедной кровеносными сосудами, а в суставных хрящах взрослых организмов - в бессосудистой ткани. Если хрящи других локализаций, например межреберные, получают необходимые для метаболизма материалы из капилляров надхрящницы (перихондрия), то в суставном хряще, лишенном перихондрия и отделенным пограничной линией от субхондральной кости, возможности получения этих материалов из крови отсутствуют.

Это означает, что в зрелом суставном хряще хондроциты, удаленные от кровеносных сосудов, получают исходные материалы для метаболических процессов только из омывающей суставную поверхность СЖ за счет их проникновения сквозь толщу матрикса. Физическим механизмом, осуществляющим такое проникновение, является диффузия - перемещение находящихся в растворе молекул из области с более высокой концентрацией в область более низкой концентрации до достижения равномерного распределения молекул растворенного вещества среди молекул растворителя.

Скорость диффузии между полярными и неполярными молекулами отчетливо различается. Но интенсивность диффузии всех низкомолекулярных веществ вполне достаточна для того, чтобы обеспечить метаболические потребности хондроцитов по всей толщине суставного хряща, даже в наиболее массивных участках хрящей тазобедренного сустава человека, где толщина хряща достигает 3,5-5 мм. Исключение составляет кислород; его концентрация в СЖ очень низкая. При реально существующей в синовии концентрации кислорода (3-10 х Ю-8 моль/мл) диффузия обеспечивает проникновение кислорода только до глубины около 1,8 мм. Клетки, расположенные в более удаленных от суставной поверхности слоях хряща, оказываются в условиях дефицита кислорода. Вследствие этого метаболические процессы в хондроцитах различных слоев хряща протекают с неодинаковой активностью. Это - еще одно проявление метаболической неоднородности суставных хрящей.

Метаболизм хондроцитов носит преимущественно анаэробный характер, ибо он осуществляется за счет гликолиза. Такая особенность энергетического обеспечения ткани хряща - приспособительный механизм, позволяющий клеткам функционировать в условиях очень низких концентраций кислорода. Если в межклеточных пространствах мягких тканей парциальное давление кислорода составляет 15-20 мм рт. ст., то в суставном хряще оно не превышает 5-8 мм рт. ст. При этом в базальной зоне хряща оно примерно в 10 раз ниже, чем в поверхностных. Чем ниже концентрация кислорода в матриксе хряща, тем выше интенсивность гликолиза и соответственно - продукция молочной кислоты.

Хондроциты фенотипически адаптированы к анаэробным условиям функционирования. Эксперименты in vitro показали, что по мере повышения степени гипоксии анаболические процессы не только не угнетаются, но даже активируются. Повышается эффективность утилизации глюкозы, что обеспечивает более экономное расходование энергии. Однако при слишком выраженной тканевой гипоксии (такое состояние наблюдается при РА, когда очень резко падает содержание кислорода в СЖ) происходит угнетение экспрессии хондроцитами ряда генов. Уровни мРНК, кодирующих структурные макромолекулы матрикса (коллаген II типа), количество некоторых цитокинов и интегринов в хондроцитах при этом снижается.

В то же время в отличие от клеток других тканей хондроциты дают парадоксальную реакцию на увеличение парциального давления кислорода: угнетением биосинтетических процессов, в частности снижением биосинтеза ДНК и протеогликанов. С возрастом потребление кислорода хондроцитами еще более снижается. Потребление кислорода хондроцитами, особенно поверхностного слоя хряща, понижается при избыточной концентрации глюкозы в СЖ.

Биомеханические свойства хряща

Суставные хрящи выполняют две основные биомеханические функции:

  1. принимают на себя действие сил сжатия (компрессии), обусловленных тяжестью и развивающимися при движениях нагрузками, способствуя их равномерному распределению и переводу аксиально направленных сил в тангенциальные;
  2. образуют устойчивые к износу поверхности сочленяющихся элементов скелета.

Поскольку хрящевая ткань содержит очень мало клеток - около 1 % массы ткани, эти свойства практически полностью зависят от внеклеточного матрикса.

С точки зрения биомеханики матрикс хрящевой ткани представляет собой материал, состоящий из двух различных фаз - твердой и жидкой. Твердая фаза включает в себя неволокнистые структурные макромолекулы, в числе которых преобладают агрегаты агрекана и волокнистые структурные макромолекулы, среди которых преобладает коллаген II типа. Жидкая фаза составляет примерно 80 % массы ткани.

Коллагеновые волокна образуют прочную сеть, которая фиксирует агрегаты агрекана и, ограничивая в пространстве отрицательно заряженные макромолекулы агрекана, не позволяет им распространиться в максимальном объеме. Эта сеть (каркас) мало растяжима и обеспечивает прочность хряща на разрыв.

Композитная твердая фаза матрикса функционирует как пористый, проницаемый, скрепленный волокнами материал, набухший водой. Молекулы воды располагаются внутри пространств, занимаемых диффузными агрегатами агрекана, и именно вода, как несжимаемая жидкость, обеспечивает прочность хряща на сжатие. Протеогликановый компонент матрикса, в силу своих полианионных свойств, ответствен за гипергидратированное состояние хряща и, следовательно, играет определяющую роль в формировании прочности к сдавливающим нагрузкам. Существует выраженная положительная корреляция между концентрацией в хряще агрекана и его прочностью на сжатие.

Только менее 1 % молекул воды прочно удерживается коллагеновыми волокнами. Остальные (более 99%) молекулы воды, располагающиеся в межволокнистой субстанции матрикса, достаточно свободны и подвижны. При компрессионных нагрузках эти свободные молекулы вместе с растворенными в воде низкомолекулярными веществами могут перемещаться по матриксу и «выжиматься» из хряща в СЖ. При уменьшении давления происходит движение в обратном направлении - из СЖ в матрикс. Этим объясняется способность хряща к обратимой деформации (упругость).

При движении воды в пористом материале, каким является матрикс, возникает трение, которое в сочетании с некоторыми особенностями твердой фазы (в основном речь идет о сложной системе межмолекулярных связей компонентов матрикса) обусловливает определенную вязкость хрящевой ткани.

Таким образом, двухфазная модель в целом объясняет вязкоупругие биомеханические свойства хряща. Вместе с тем она встречает и возражения. Главное из них - неправомерность объединения всех твердых компонентов в одну фазу. Эксперименты N.D. Broom, Н. Silyn-Roberts показали, что разрушение значительной части агрекановых агрегатов (с помощью гиалуронидазы) практически не отражается на прочности хряща на разрыв и, следовательно, коллагеновые волокна в этой биомеханической функции независимы от агрекана. Вероятно, укрепление коллагеновых волокон за счет взаимодействия коллагенов различных типов более существенно, чем связи между коллагенами и агреканом, поэтому появляются основания рассматривать агрекан и коллагены как две отдельные фазы, что означает переход к трехфазной биомеханической модели хряща (коллагены-агрекан-вода).

Вполне возможно, что на биомеханических свойствах хряща сказывается влияние гликопротеинов. Это означает, что и трехфазная модель недостаточно учитывает всю многокомпонентность хрящевого матрикса. Но независимо от того, какая биомеханическая модель окажется окончательной, очевидно, что нормальное функционирование хряща возможно только при оптимальных количественных и структурных взаимоотношений всех компонентов матрикса.

Здравствуйте, друзья мои!

В этой статье мы разберём, что такое хрящ коленного сустава . Рассмотрим из чего состоят хрящи и какая у них функция. Как Вы понимаете, во всех суставах нашего организма хрящевая ткань одинаковая, и всё нижеописанное относится и к другим суставам.

Концы наших костей в коленном суставе покрыты хрящом, между ними лежат два мениска – это тоже хрящи, но только немного отличающиеся по своему составу. О менисках читайте в статье « ». Я только скажу, что хрящи и мениски отличаются видом хрящевой ткани: хрящи кости – это гиалиновый хрящ , а мениски – волокнистый хрящ . Это мы сейчас и разберём.

Толщина хряща, покрывающего концы кости, в среднем 5-6 мм, состоит он из нескольких слоёв. Хрящ плотный и гладкий, что позволяет костям легко скользить относительно друг друга при сгибательных и разгибательных движениях. Обладая упругостью, хрящ выполняет роль амортизатора при движениях.

В здоровом суставе, в зависимости от его величины, жидкости от 0,1 до 4 мл, расстояние между хрящами (суставная щель) - от 1,5 до 8 мм, кислотно-щелочное равновесие 7,2-7,4, воды 95%, белка 3%. Состав хряща подобен сыворотке крови: лейкоцитов 200-400 в 1 мл, из них лимфоцитов 75%.

Хрящи являются одним из видов соединительной ткани нашего организма. Основное отличие хрящевой ткани от других – это отсутствие нервов и кровеносных сосудов, непосредственно питающих эту ткань. Кровеносные сосуды не выдержали бы нагрузок и постоянного давления, а наличие там нервов отдавалось бы болью при каждом нашем движении.

Хрящи предназначены для снижения трения в местах соединения костей. Покрывают обе головки кости и внутреннюю сторону надколенника (коленной чашечки). Постоянно омываемые синовиальной жидкостью, они, в идеале, снижают процессы трения в суставах до нуля.

Хрящи не имеют доступа к кровеносным сосудам и питанию соответственно, а если нет питания, то нет ни роста, ни восстановления. Но хрящ тоже состоит из живых клеток и им тоже нужно питание. Получают они питание за счёт всё той же синовиальной жидкости.

Хрящ мениска пронизан волокнами, поэтому он называется волокнистым хрящом и по структуре плотнее и твёрже гиалинового, поэтому имеет большую прочность на разрыв и может противостоять давлению.

Отличаются хрящи соотношением волокон: . Всё это придаёт хрящу ни сколько твёрдости, сколько упругости. Работая, как губка при нагрузках, хрящи и мениски сжимаются, разжимаются, сплющиваются, растягиваются, как хотите. Они постоянно вбирают в себя новую порцию жидкости и отдают старую, заставляют её постоянно циркулировать; при этом жидкость обогащается питательными веществами и снова несёт их хрящам. Про синовиальную жидкость мы поговорим позже.

Основные составляющие хряща

Суставной хрящ - это сложная по своей структуре ткань. Рассмотрим основные составляющие этой ткани. составляют почти половину межклеточного пространства в суставных хрящах. Коллаген по своей структуре состоит из очень крупных молекул, переплетенных в тройные спирали. Такое строение коллагеновых волокон позволяет хрящу противодействовать любым видам деформации. Коллаген придаёт ткани упругость. придают эластичность, возможность возвращаться в первоначальное состояние.

Второй имеющий огромное значение элемент хрящей – вода , которая в большом количестве содержится в межклеточном пространстве. Вода – уникальный природный элемент, она не подвержена никаким деформациям, её нельзя ни растянуть, ни сжать. Это прибавляет хрящевой ткани жёсткости и упругости. Кроме того, чем больше воды, тем лучше и функциональнее межсуставная жидкость. Она легко распределяется и циркулирует. При недостатке воды суставная жидкость становится более вязкой, менее текучей и, понятное дело, хуже выполняет свою роль в обеспечении питания хряща. !

Гликозамины – вещества, вырабатываемые хрящевой тканью суставов, также входят в состав синовиальной жидкости. По своей структуре, глюкозамин является полисахаридом, служит в качестве важной составляющей хряща.

Глюкозамин является предшественником гликозаминогликанов (основной компонент суставных хрящей), поэтому считается, что его дополнительное применение извне может способствовать восстановлению хрящевой ткани.

У нас в организме глюкозамин связывает клетки и входит в состав клеточных мембран и белков, делая ткани более прочными и более устойчивыми к растяжению. Тем самым, глюкозамин поддерживает и укрепляет наши суставы и связки. При снижении количества глюкозаминов уменьшается также сопротивляемость хрящевой ткани нагрузкам, хрящ становится более чувствительным к повреждениям.

Вопросами восстановления хрящевой ткани и выработки необходимых соединений и веществ занимаются хондроциты .

Хондроциты , по своей природе, не отличаются от других клеток в плане развития и регенерации, скорость их метаболизма достаточна велика. Но проблема в том, что этих самых хондроцитов очень мало. В суставном хряще количество хондроцитов составляет всего 2-3 % от массы хряща. Поэтому восстановление хрящевой ткани так ограничено.

Итак, питание хрящей происходит трудно, обновление хрящевой ткани тоже очень долговременный процесс, а уж восстановление и того проблематичнее. Что же делать?

Учитывая всё вышесказанное, приходим к выводу, что для того, чтобы хрящ коленного сустава восстановился, необходимо добиться высокой численности и активности клеток хондроцитов. И наша задача состоит в их обеспечении полноценным питанием, которое они могут получить только через синовиальную жидкость. Но, даже если питание будет богатейшим, оно не достигнет свой цели без движения сустава. Поэтому, больше двигаетесь – лучше идёт восстановление!

При долгом обездвиживании сустава или всей ноги (гипс, лангеты и т.п.), уменьшаются и атрофируются не только мышцы; установлено, что уменьшается и хрящевая ткань, так как она не получает достаточно питания без движения. Я повторюсь уже сотый раз, но это ещё одно доказательство необходимости в постоянном движении. Человек создан природой таким образом, что постоянно должен бегать за едой и убегать от мамонта, как и другие животные. Уж извините, если я этим обижу некоторых «Венцов творения природы». В масштабе эволюционного развития, мы прошли слишком малый путь, чтобы организм вёл себя по-другому, не приспособился он пока к другим условиям существования. А если организм чувствует, что в его составе что-то не нужно или плохо работает, он избавляется от этого. Зачем кормить то, что не приносит пользы? Перестали ходить ногами – ноги атрофируются, перестал культурист качаться (использовать всю свою мышечную массу) – сразу сдулся. Ну, это я отвлёкся.

В других статьях мы, конечно, коснёмся вопросов (операционными методами и консервативными), их питанием и движением. Что я, со своей травмой хряща и пытаюсь внедрять. Расскажу и Вам.

Ну а пока мои наставления: , ПОЛНОЦЕННОЕ РАЗНООБРАЗНОЕ ПИТАНИЕ, .

Можете приступать сию минуту.

Всего доброго, не болейте!

Основой опорно-двигательной системы являются хрящевые ткани. Она также входит в состав структур лица, становясь местом крепления мышц и связок. Гистология хряща представлена небольшим количеством клеточных структур, волокнистыми образованиями и питающим веществом. Благодаря этому обеспечивается достаточная амортизационная функция.

Что собой представляет?

Хрящ относится к разновидности соединительной ткани. Особенности строения заключаются в повышенной упругости и плотности, благодаря чему она способна выполнять опорную и механическую функцию. Суставной хрящ состоит из клеток, которые носят название «хондроциты» и основного вещества, где расположены волокна, обеспечивающие эластичность хряща. Клетки в толще этих структур образуют группы или размещены по отдельности. Местоположение обычно около костей.

Разновидности хрящей

В зависимости от особенностей структуры и локализации в организме человека, существует такая классификация хрящевых тканей:

  • Гиалиновый хрящ содержит в составе хондроциты, размещены в виде розеток. Межклеточное вещество значительнее по объему, чем волокнистое, а нити представлены только коллагеном.
  • Эластический хрящ содержит два вида волокон - коллагеновые и эластичные, а клетки расположены столбиками или колонами. Этот вид ткани обладает меньшей плотностью и прозрачностью, имея достаточную эластичность. Эта материя составляет хрящи лица, а также структуры средних образований в бронхах.
  • Волокнистый хрящ - это соединительная ткань, которая выполняет функции крепких амортизационных элементов и имеет в составе значительное количество волокон. Локализация волокнистого вещества находится по всему опорно-двигательному аппарату.

Свойства и особенности строения хрящевой ткани


На гистологическом препарате видно, что клетки такни располагаются рыхло, находясь в обилии межклеточного вещества.

Все виды хрящевой ткани способны принимать на себя и противодействовать силам сжатия, которые возникают во время движений и нагрузки. Благодаря этому обеспечивается равномерное распределение тяжести и уменьшение нагрузки на кость, что приостанавливает ее разрушение. Скелетные зоны, где постоянно происходят процессы трения, также покрыты хрящом, что позволяет уберечь их поверхности от чрезмерного износа. Гистология этого вида ткани отличается от других структур большим количеством межклеточного вещества, а клетки расположены в ней рыхло, образуют скопления или находятся по отдельности. Основное вещество хрящевой структуры задействовано в процессах углеводного обмена в организме.

Этот вид материала в теле человека, как и остальные, имеет в своем составе клетки и межклеточное вещество хряща. Особенность в небольшом количестве клеточных структур, благодаря чему обеспечиваются свойства ткани. Зрелый хрящ относится к рыхлой структуре. Эластичные и коллагеновые волокна выполняют в нем опорную функцию. Общий план строения включает только 20% клеток, а все остальное - волокна и аморфное вещество. Это связано с тем, что вследствие динамической нагрузки сосудистое русло ткани выражено слабо и поэтому она вынуждена питаться за счет основного вещества хрящевой ткани. Кроме этого, количество влаги, что находится в нем, выполняет амортизационные функции, плавно снимая напряжение костных тканей.

Из чего состоят?


Трахея и бронхи состоят их гиалинового хряща.

Каждая разновидность хряща обладает уникальными свойствами, что вызвано отличием в расположении. Строение гиалинового хряща отличается от остальных меньшим количеством волокон и большим наполнением аморфным веществом. В связи с этим он не способен выдерживать сильные нагрузки, так как его ткани разрушаются от трения костей, однако, имеет довольно плотную и твердую структуру. Поэтому характерно, что их этого вида хряща состоят бронхи, трахеи и гортань. Скелетная и опорно-двигательные структуры образованы преимущественно волокнистым веществом. К его разновидности относятся часть связок, соединенная с гиалиновым хрящом. Эластичная структура занимает промежуточное местонахождение относительно этих двух тканей.

Клеточный состав

Хондроциты не обладают четкой и упорядоченной структурой, а чаще располагаются полностью хаотично. Иногда их скопления напоминают островки с большими областями отсутствия клеточных элементов. При этом вместе расположены зрелый тип клеток и молодой, который называется хондробласты. Они образуются надхрящницей и имеют интерстициальный рост, а в процессе своего развития продуцируют различные вещества.

Хондроциты - это источник компонентов межклеточного пространства, именно благодаря им имеется такая химическая таблица элементов в составе аморфного вещества:


Гиалуроновая кислота содержится в аморфном веществе.
  • белки;
  • глюкозаминогликаны;
  • протеогликаны;
  • гиалуроновая кислота.

В эмбриональный период большинство костей представляет собой гиалиновые ткани.

Строение межклеточного вещества

Оно состоит из двух частей - это волокна и аморфное вещество. При этом фибриллярные структуры расположены в ткани хаотично. На гистологию хряща влияет выработка его клетками химических веществ, ответственных за плотность прозрачность и упругость. Особенности строения гиалинового хряща заключаются в наличии только коллагеновых волокон в его составе. Если выделяется недостаточное количество гиалуроновой кислоты, то это разрушает ткани вследствие дегенеративно-дистрофических процессов в них.

Кровоток и нервы

Структуры хрящевой ткани не имеют нервных окончаний. Болевые реакции в них представлены только с помощью костных элементов, при этом хрящ уже будет разрушен. Это обуславливает большое количество нелеченных заболеваний этой ткани. На поверхности надхрящницы представлено немного нервных волокон. Кровоснабжение представлено плохо и сосуды не проникают вглубь хряща. Поэтому питательные вещества поступают в клетки посредством основного вещества.

Функции структур


Из этой ткани формируется ушная раковина.

Хрящ является связующей частью опорно-двигательного аппарата человека, однако иногда встречается и в других частях тела. Гистогенез хрящевой ткани проходит несколько этапов развития, благодаря чему она способна обеспечивать опору, в то же время быть полностью эластичной. Они также входят в состав наружных образований тела таких как, хрящи носа и ушных раковин. К ним крепятся к кости связки и сухожилия.

Возрастные изменения и болезни

Строение хрящевой ткани с возрастом изменяется. Причины этого кроются в недостаточном поступлении к ней питательных веществ, вследствие нарушения трофики возникают заболевания, способные разрушить волокнистые структуры и вызвать перерождение клеток. У молодого организма намного больше запас жидкости, поэтому питание данных клеток достаточное. Однако возрастные изменения вызывают «высыхание» и окостенение. Воспаление из-за бактериальных или вирусных агентов способно вызвать дистрофию хряща. Такие изменения называются «хондроз». При этом он становится менее гладкий и не способен выполнять свои функции, так как его природа изменяется.

Признаки того, что ткань разрушена, видны во время анализа на гистологию.

Как ликвидировать воспалительные и возрастные изменения?

Чтобы вылечить хрящи, используются препараты, способные восстановить самостоятельное развитие хрящевой ткани. К ним относятся хондропротекторы, витамины и средства, которые содержат гиалуроновую кислоту. Важна правильная диета с достаточным количеством белка, ведь это стимулятор регенерации организма. Показано поддерживать организм в тонусе, ведь избыточная масса тела и недостаточная физическая нагрузка вызывают разрушение структур.

Хрящевая ткань , как и костная, относится к скелетным тканям с опорно-механической функцией. По классификации выделяют три разновидности хрящевой ткани — гиалиновую, эластическую и волокнистую. Особенности строения различных видов хрящевой ткани зависят от места расположения ее в организме, механических условий, возраста индивидуума.

Виды хрящевой ткани: 1 - гиалиновый хрящ; 2 - эластический хрящ; 3 - волокнистый хрящ


Наиболее широкое распространение у человека получила гиалиновая хрящевая ткань .

Она входит в состав трахеи, некоторых хрящей гортани, крупных бронхов, темафизов костей, встречается в местах соединения ребер с грудиной и в некоторых других областях тела. Эластическая хрящевая ткань входит в состав ушной раковины, бронхов среднего калибра, некоторых хрящей гортани. Волокнистый хрящ обычно встречается в местах перехода сухожилий и связок в гиалиновый хрящ, например в составе межпозвоночных дисков.

Строение всех видов хрящевой ткани в общих чертах сходно: они имеют в своем составе клетки и межклеточное вещество (матрикс). Одной из особенностей межклеточного вещества хрящевой ткани является его высокая обводненность: содержание воды в норме колеблется от 60 д 80 %. Площадь, занимаемая межклеточным веществом, значительно больше площади, занятой клетками. Межклеточное вещество хрящевой ткани вырабатывается клетками (хондробластами и молодыми хондроцитами) и имеет сложный химический состав. Оно подразделяется на основное аморфное вещество и фибриллярный компонент, который составляет примерно 40 % сухой массы межклеточного вещества и представлен в гиалиновой хрящевой ткани коллагеновыми фибриллами, образованными коллагеном II типа, идущими диффузно в различных направлениях. На гистологических препаратах фибриллы незаметны, так как имеют одинаковый с аморфным веществом показатель преломления. В эластической хрящевой ткани наряду с коллагеновыми фибриллами имеются многочисленные эластические волокна, состоящие из белка эластина, который тоже продуцируется хрящевыми клетками. Волокнистая хрящевая ткань содержит большое количество пучков коллагеновых волокон, состоящих из коллагена I и II типа.

Ведущими химическими соединениями, образующими основное аморфное вещество хрящевых тканей (хондромукоид), являются сульфатированные гликозаминогликаны (кератосульфаты и хондроитинсульфаты А и С) и нейтральные мукополисахариды, большинство из которых представлено сложными надмолекулярными комплексами. В хрящах получили широкое распространение соединения молекул гиалуроновой кислоты с протеогликанами и со специфическими сульфатированными гликозаминогликанами. Этим обеспечиваются особые свойства хрящевых тканей - механическая прочность и в то же время проницаемость для органических соединений, воды и других веществ, необходимых для обеспечения жизнедеятельности клеточных элементов. Маркерными, наиболее специфичными для межклеточного вещества хряща соединениями являются кератосульфаты и определенные разновидности хондроитинсульфатов. Они составляют около 30 % сухой массы хряща.

Основные клетки хрящевой ткани - хондробласты и хондроциты .

Хондробласты представляют собой молодые, малодифференцированные клетки. Они располагаются вблизи надхрящницы, лежат поодиночке и характеризуются округлой или овальной формой с неровными краями. Крупное ядро занимает значительную часть цитоплазмы. Среди клеточных органелл преобладают органеллы синтеза - рибосомы и полисомы, гранулярная эндоплазматическая сеть, комплекс Гольджи, митохондрии; характерны включения гликогена. При общегистологической окраске препаратов гематоксилином и эозином хондробласты слабобазофильны. Структура хондробластов указывает на то, что эти клетки обнаруживают высокую метаболическую активность, в частности, связанную с синтезом межклеточного вещества. Показано, что в хондробластах синтез коллагеновых и неколлагеновых белков пространственно разделен. Весь цикл синтеза и выведения высокомолекулярных компонентов межклеточного вещества в функционально активных хондробластах у человека занимает менее суток. Новообразованные белки, протеогликаны и гликозаминогликаны не располагаются непосредственно вблизи поверхности клетки, а распространяются диффузно на значительном расстоянии от клетки в образовавшемся ранее межклеточном веществе. Среди хондробластов встречаются и функционально неактивные клетки, строение которых характеризуется слабым развитием синтетического аппарата. Кроме того, часть хондробластов, находящаяся сразу под надхрящницей, не утратила способность к делению.



Хондроциты - зрелые клетки хрящевой ткани - занимают, главным образом, центральные участки хряща. Синтетические способности этих клеток значительно ниже, чем у хондробластов. Дифференцированные хондроциты чаще всего лежат в хрящевых тканях не поодиночке, а группами, включающими по 2, 4, 8 клеток. Это так называемые изогенные группы клеток, которые образовались в результате деления одной хрящевой клетки. Структура зрелых хондроцитов указывает на то, что они не способны к делению и заметному синтезу межклеточного вещества. Но некоторые исследователи считают, что при определенных условиях митотическая активность в этих клетках все же возможна. Функция хондроцитов заключается в поддержании на определенном уровне обменных метаболических процессов в хрящевых тканях.

Изогенные группы клеток находятся в хрящевых полостях, окруженных матриксом. Форма хрящевых клеток в изогенных группах может быть различной - округлой, овальной, веретеновидной, треугольной - в зависимости от положения на том или ином участке хряща. Хрящевые полости окружены узкой, более светлой, чем основное вещество, полоской, образующей как бы оболочку хрящевой полости. Эта оболочка, отличающаяся оксифильностью, называется клеточной территорией, или территориальным матриксом. Более удаленные участки межклеточного вещества называются интерстициальным матриксом. Территориальный и интерстициальный матриксы - участки межклеточного вещества с различными структурно-функциональными свойствами. В пределах территориального матрикса коллагеновые фибриллы ориентированы вокруг поверхности изогенных клеточных групп. Переплетения коллагеновых фибрилл образуют стенку лакун. Пространства между клетками внутри лакун заполнены протеогликанами. Интерстициальный матрикс характеризуется слабобазофильной или оксифильной окраской и соответствует наиболее старым участкам межклеточного вещества.

Таким образом, дефинитивная хрящевая ткань характеризуется строго поляризованным распределением клеток в зависимости от степени их дифференцировки. Вблизи надхрящницы находятся наименее дифференцированные клетки - хондробласты, имеющие вид вытянутых параллельно надхрящнице клеток. Они активно синтезируют межклеточное вещество и сохраняют митотическую способность. Чем ближе к центру хряща, тем клетки более дифференцированы, они располагаются изогенными группами и характеризуются резким снижением синтеза компонентов межклеточного вещества и отсутствием митотической активности.

В современной научной литературе описан еще один тип клеток хрящевой ткани - хондрокласты . Они встречаются только при разрушении хрящевой ткани, а в условиях ее нормальной жизнедеятельности не обнаруживаются. По своим размерам хондрокласты значительно крупнее, чем хондроциты и хондробласты, так как содержат в цитоплазме несколько ядер. Функция хондрокластов связана с активацией процессов дегенерации хряща и участием в фагоцитозе и лизисе фрагментов разрушенных хрящевых клеток и компонентов хрящевого матрикса. Иными словами, хондрокласты - это макрофаги хрящевой ткани, входящие в единую макрофагально-фагоцитарную систему организма.


Болезни суставов
В.И. Мазуров

3. Строение кости

4. Остеогистогенез

1. К скелетным соединительным тканям относятся хрящевые и костные ткани, выполняющие опорную, защитную и механическую функции, а также принимающие участие в обмене минеральных веществ в организме.

Хрящевая ткань состоит из клеток - хондроцитов, хондробластов и плотного межклеточного вещества, состоящего из аморфного и волокнистого компонентов. Хондробласты располагаются одиночно по периферии хрящевой ткани. Представляют собой вытянутые уплощенные клетки с базофильной цитоплазмой, содержащей хорошо развитую зернистую эндоплазматическую сеть и аппарат Гольджи. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду и постепенно дифференцируются в дефинитивные клетки хрящевой ткани - хондроциты. Хондробласты обладают способностью митотического деления. В надхрящнице, окружающей хрящевую ткань, содержатся неактивные, малодифференцированные формы хондробластов, которые при определенных условиях дифференцируются в хондробласты, синтезирующие межклеточное вещество, а затем и в хондроциты.

Хондроциты по степени зрелости , по морфологии и функции подразделяются на клетки I, II и III типа. Все разновидности хондроцитов локализуются в более глубоких слоях хрящевой ткани в особых полостях - лакунах . Молодые хондроциты (I типа) митотически делятся, однако дочерние клетки оказываются в одной лакуне и образуют группу клеток - изогенную группу. Изогенная группа является общей структурно-функциональной единицей хрящевой ткани. Расположение хондроцитов в изогенных группах в разных хрящевых тканях неодинаково.

Межклеточное вещество хрящевой ткани состоит из волокнистого компонента (коллагеновых или эластических волокон) и аморфного вещества, в котором содержатся главным образом сульфатированные гликозоаминогликаны (прежде всего хондроитинсерные кислоты), а также протеогликаны. Гликозоаминогликаны связывают большое количество воды и обуславливают плотность межклеточного вещества. Кроме того, в аморфном веществе содержится значительное количество минеральных веществ, не образующих кристаллы. Сосуды в хрящевой ткани в норме отсутствуют.

В зависимости от строения межклеточного вещества хрящевые ткани подразделяются на гиалиновую, эластическую и волокнистую хрящевую ткань.

Гиалиновая хрящевая ткань характеризуется наличием в межклеточном веществе только коллагеновых волокон. При этом коэффициент преломления волокон и аморфного вещества одинаков и потому на гистологических препаратах волокна в межклеточном веществе не видны. Этим же объясняется определенная прозрачность хрящей, состоящих из гиалиновой хрящевой ткани. Хондроциты в изогенных группах гиалиновой хрящевой ткани располагаются в виде розеток. По физическим свойствам гиалиновая хрящевая ткань характеризуется прозрачностью, плотностью и малой эластичностью. В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани (щитовидный и перстневидный), трахеи и крупных бронхов, составляет хрящевые части ребер, покрывает суставные поверхности костей. Кроме того, почти все кости организма в процессе своего развития проходят через стадию гиалинового хряща.

Эластическая хрящевая ткань характеризуется наличием в межклеточном веществе как коллагеновых, так и эластических волокон. При этом коэффициент преломления эластических волокон отличается от преломления аморфного вещества и потому эластические волокна хорошо видны в гистологических препаратах. Хондроциты в изогенных группах в эластической ткани располагаются в виде столбиков или колонок. По физическим свойствам эластическая хрящевая ткань непрозрачна, эластична, менее плотная и менее прозрачная, чем гиалиновая хрящевая ткань. Она входит в состав эластических хрящей : ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов, а также составляет основу надгортанника.

Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. При этом хондроциты располагаются между пучками волокон в виде цепочек. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков (фиброзное кольцо), а также локализуется в местах прикрепления связок и сухожилий к гиалиновым хрящам. В этих случаях четко прослеживается постепенный переход фиброцитов соединительной ткани в хондроциты хрящевой ткани.

Различают следующие два понятия, которые нельзя путать - хрящевая ткань и хрящ. Хрящевая ткань - это разновидность соединительной ткани, строение которой изложено выше. Хрящ - это анатомический орган, который состоит из хрящевой ткани и надхрящницы . Надхрящница покрывает хрящевую ткань снаружи (за исключением хрящевой ткани суставных поверхностей) и состоит из волокнистой соединительной ткани.

В надхрящнице выделяют два слоя :

    наружный - фиброзный;

    внутренний - клеточный или камбиальный (ростковый).

Во внутреннем слое локализуются малодифференцированные клетки - прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты. В фиброзном слое располагается сеть кровеносных сосудов. Следовательно, надхрящница, как составная часть хряща, выполняет следующие функции: обеспечивает трофикой бессосудистую хрящевую ткань; защищает хрящевую ткань; обеспечивает регенерацию хрящевой ткани при ее повреждении.

Трофика гиалиновой хрящевой ткани суставных поверхностей обеспечивается синовиальной жидкостью суставов, а также из сосудов костной ткани.

Развитие хрящевой ткани и хрящей (хондрогистогенез) осуществляется из мезенхимы. Вначале мезенхимные клетки в местах закладки хрящевой ткани усиленно пролиферируют, округляются и образуют очаговые скопления клеток - хондрогенные островки . Затем эти округленные клетки дифференцируются в хондробласты, синтезируют и выделяют в межклеточную среду фибриллярные белки. Затем хондробласты дифференцируются в хондроциты I типа, которые синтезируют и выделяют не только белки, но и гликозоаминогликаны и протеогликаны, то есть формируют межклеточное вещество. Следующей стадией развития хрящевой ткани является стадия дифференцировки хондроцитов, при этом появляются хондроциты II, III типа и формируются лакуны. Из мезенхимы, окружающей хрящевые островки, формируется надхрящница. В процессе развития хряща отмечается два вида роста хряща: интерстициальный рост - за счет размножения хондроцитов и выделения ими межклеточного вещества; оппозиционный рост - за счет деятельности хондробластов надхрящницы и наложения хрящевой ткани по периферии хряща.

Возрастные изменения в большей степени отмечаются в гиалиновой хрящевой ткани. В пожилом и старческом возрасте в глубоких слоях гиалинового хряща отмечается отложение солей кальция (омеление хряща), прорастание в эту область сосудов, а затем замещение обызвествленной хрящевой ткани костной тканью - оссификация . Эластическая хрящевая ткань не подвергается обызвествлению и окостенению, однако эластичность хрящей в пожилом возрасте также снижается.

2. Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70 % от костной ткани, органические - 30 %.

Функции костных тканей:

  • механическая;

    защитная;

    участие в минеральном обмене организма - депо кальция и фосфора.

Клетки костной ткани : остеобласты, остеоциты, остеокласты. Основными клетками в сформированной костной ткани являются остеоциты . Это клетки отростчатой формы с крупным ядром и слабовыраженной цитоплазмой (клетки ядерного типа). Тела клеток локализуются в костных полостях - лакунах, а отростки - в костных канальцах. Многочисленные костные канальцы, анастомозируя между собой, пронизывают всю костную ткань, сообщаясь с периваскулярными пространствами, и образуют дренажную систему костной ткани. В этой дренажной системе содержится тканевая жидкость, посредством которой обеспечивается обмен веществ не только между клетками и тканевой жидкостью, но и межклеточным веществом. Для ультраструктурной организации остеоцитов характерно наличие в цитоплазме слабовыраженной зернистой эндоплазматической сети, небольшого числа митохондрий и лизосомы, центриоли отсутствуют. В ядре преобладает гетерохроматин. Все эти данные свидетельствуют о том, что остеоциты обладают незначительной функциональной активностью, которая заключается в поддержании обмена веществ между клетками и межклеточным веществом. Остеоциты являются дефинитивными формами клеток и не делятся. Образуются они из остеобластов.

Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. В развивающейся костной ткани они охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу, образуя подобие эпителиального пласта. Форма таких активно функционирующих клеток может быть кубической, призматической, угловатой. В цитоплазме остеобластов содержится хорошо развитая зернистая эндоплазматическая сеть и пластинчатый комплекс Гольджи, много митохондрий. Такая ультраструктурная организация свидетельствует о том, что эти клетки являются синтезирующими и секретирующими. Действительно, остеобласты синтезируют белок коллаген и гликозоаминогликаны, которые затем выделяют в межклеточное пространство. За счет этих компонентов формируется органический матрикс костной ткани. Затем эти же клетки обеспечивают минерализацию межклеточного вещества посредством выделения солей кальция. Постепенно, выделяя межклеточное вещество, они как бы замуровываются и превращаются в остеоциты. При этом внутриклеточные органеллы в значительной степени редуцируются, синтетическая и секреторная активность снижается и сохраняется функциональная активность, свойственная остеоцитам. Остеобласты, локализующиеся в камбиальном слое надкостницы, находятся в неактивном состоянии, синтетические и транспортные органеллы слабо развиты. При раздражении этих клеток (в случае травм, переломов костей и так далее) в цитоплазме быстро развивается зернистая эндоплазматическая сеть и пластинчатый комплекс, происходит активный синтез и выделение коллагена и гликозоаминогликанов, формирование органического матрикса (костная мозоль) , а затем и формирование дефинитивной костной ткани. Таким способом за счет деятельности остеобластов надкостницы, происходит регенерация костей при их повреждении.

Отеокласты - костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве. Остеокласты имеют характерную морфологию: во-первых, эти клетки являются многоядерными (3-5 и более ядер), во-вторых, это довольно крупные клетки (диаметром около 90 мкм), в-третьих, они имеют характерную форму - клетка имеет овальную форму, но часть ее, прилежащая к костной ткани, является плоской. При этом, в плоской части выделяют две зоны:

    центральная часть - гофрированная содержит многочисленные складки и островки;

    периферическая (прозрачная) часть тесно соприкасается с костной тканью.

В цитоплазме клетки, под ядрами, располагаются многочисленные лизосомы и вакуоли разной величины. Функциональная активность остеокласта проявляется следующим образом: в центральной (гофрированной) зоне основания клетки из цитоплазмы выделяются угольная кислота и протеолитические ферменты. Выделяющаяся угольная кислота вызывает деминерализацию костной ткани, а протеолитические ферменты разрушают органический матрикс межклеточного вещества. Фрагменты коллагеновых волокон фагоцитируются остеокластами и разрушаются внутриклеточно. Посредством этих механизмов происходит резорбция (разрушение) костной ткани и потому остеокласты обычно локализуются в углублениях костной ткани. После разрушения костной ткани за счет деятельности остеобластов, выселяющихся из соединительной ткани сосудов, происходит построение новой костной ткани.

Межклеточное вещество костной ткани состоит из основного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей. Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из гликозоаминогликанов и протеогликанов, однако химический состав этих веществ отличается. В частности в костной ткани содержится меньше хондроитинсерных кислот, но больше лимонной и других кислот, которые образуют комплексы с солями кальция. В процессе развития костной ткани вначале образуется органический матриксосновное вещество и коллагеновые (оссеиновые, коллаген II типа) волокна, а затем уже в них откладываются соли кальция (главным образом фосфорнокислые). Соли кальция образуют кристаллы гидроксиаппатита, откладывающиеся как в аморфном веществе, так и в волокнах, но небольшая часть солей откладывается аморфно. Обеспечивая прочность костей, фосфорнокислые соли кальция одновременно являются депо кальция и фосфора в организме. Поэтому костная ткань принимает участие в минеральном обмене.

Классификация костных тканей

Различают две разновидности костных тканей:

    ретикулофиброзную (грубоволокнистую);

    пластинчатую (параллельно волокнистую).

В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

3. Кость - это анатомический орган, основным структурным компонентом которого является костная ткань . Кость как орган состоит из следующих элементов :

    костная ткань;

    надкостница;

    костный мозг (красный, желтый);

    сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань. Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена только пластинчатой формой, однако в разных костях, в разном участке одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы) , составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки прилежат друг к другу и образуют компактное вещество. Однако и в компактном веществе одни пластинки образуют остеоны, другие пластинки являются общими.

Строение диафиза трубчатой кости

На поперечном срезе диафиза трубчатой кости различают следующие слои :

    надкостница (периост);

    наружный слой общих или генеральных пластин;

    слой остеонов;

    внутренний слой общих или генеральных пластин;

    внутренняя фиброзная пластинкаэндост.

Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя однако полные кольца. Между пластинками располагаются в лакунах остеоциты. Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды. С помощью прободающих сосудов в костной ткани обеспечивается трофика, а прободающие волокна связывают надкостницу с костной тканью.

Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними. Остеон - является структурной единицей компактного вещества трубчатой кости. Каждый остеон состоит из :

    5-20 концентрически наслоенных пластин;

    канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы).

Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым и гравитационным линиям и обеспечивают выполнение опорной функции. При изменении направления силовых линий в результате перелома или искривления костей остеоны не несущие нагрузку разрушаются остеокластами. Однако такие остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется и такие оставшиеся части остеонов называются вставочными пластинками . На протяжении постнатального онтогенеза постоянно происходит перестройка костной ткани - одни остеоны разрушаются (резорбируются), другие образуются и потому всегда между остеонами находятся вставочные пластины, как остатки предшествующих остеонов.

Внутренний слой общих пластинок имеет строение аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.

Эндост - тонкая соединительно-тканная пластинка , выстилающая полость канала диафиза. Слои в эндосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.



Понравилась статья? Поделитесь с друзьями!