Функции и графики решение линейных неравенств. Видеоурок «Графическое решение модульного линейного неравенства

Пусть задано линейное неравенство с двумя переменными и


(1)

Если величины ирассматривать как координаты точки плоскости, то совокупность точек плоскости, координаты которых удовлетворяют неравенству (1), называется областью решений данного неравенства. Следовательно, областью решений неравенства (1) является полуплоскость с граничной прямой линией
.

Пример 1.

.

Решение. Строим прямую
по двум точкам, например, по точкам пересечения с осями координат (0; 4) и (6; 0). Эта линия делит плоскость на две части, т.е. на две полуплоскости. Берем любую точку плоскости, не лежащую на построенной прямой. Если координаты точки удовлетворяют заданному неравенству, то областью решений является та полуплоскость, в которой находится эта точка. Если же получаем неверное числовое неравенство, то областью решений является та полуплоскость, которой эта точка не принадлежит. Обычно для контроля берут точку (0; 0).

Подставим
и
в заданное неравенство. Получим
. Следовательно, полуплоскость «к нулю» является областью решений данного неравенства (заштрихованная часть рис. 1).

Пример 2. Найти полуплоскость, определяемую неравенством

.

Решение. Строим прямую
, например, по точкам (0; 0) и (1; 3). Т.к. прямая проходит через начало координат, точку (0; 0), то нельзя брать ее для контроля. Возьмем, например, точку (– 2; 0) и подставим ее координаты в заданное неравенство. Получим
. Это неверно. Значит, областью решений данного неравенства будет та полуплоскость, которой не принадлежит контрольная точка (заштрихованная часть рис. 2).

2. Область решений системы линейных неравенств.

Пример. Найти область решений системы неравенств:

Решение. Находим область решений I-го неравенства (рис. 1) и II-го неравенства (рис. 2).

Все точки части плоскости, где штриховка наложилась, будут удовлетворять и первому и второму неравенству. Таким образом, получена область решений заданной системы неравенств (рис. 3).

Если к заданной системе неравенств добавить условия
и
, то область решений системы неравенств
будет находиться только вI координатной четверти (рис. 4).

Принцип нахождения решения системы линейных неравенств не зависит от количества неравенств, входящих в систему.

Примечание : Область допустимых решений (ОДР) если существует, то представляет собой замкнутый или незамкнутый выпуклый многоугольник.

3. Алгоритм графического метода решения злп

Если задача линейного программирования содержит только две переменные, то ее можно решить графическим методом, выполняя следующие операции:


Пример. Решить задачу линейного программирования графическим методом

max

Решение. Третье и четвертое ограничения системы – двойные неравенства, преобразуем их к более привычному для подобных задач виду
, это
и
, т.о. первое из полученных неравенств
(или
) относится к условию неотрицательности, а второе
к системе ограничений. Аналогично,
это
и
.

Т.о. задача примет вид

max

,

Заменив знаки неравенств на знаки точных равенств, построим область допустимых решений по уравнениям прямых:

;
;
;
.

Областью решений неравенств является пятиугольник ABCDE .

Построим вектор
. Через начало координат перпендикулярно вектору проведем линию уровня. И затем будем перемещать ее параллельно самой себе в направлении векторадо точки выхода из области допустимых решений. Это будет точкаС . Найдем координаты этой точки, решив систему, состоящую из уравнений первой и четвертой прямых:






.

Подставим координаты точки С в целевую функцию и найдем ее максимальное значение
Пример. Построить линии уровня
и
для задачи линейного программирования:

max (min )

Решение. Область допустимых решений – открытая область (рис. 6). Линия уровня
проходит через точкуВ . Функция Z имеет минимум в этой точке. Линию уровня
построить нельзя, так как нет точки выхода из области допустимых решений, это значит, что
.

Задания для самостоятельной работы .

    Найти область решений системы неравенств:

а)б)

    Решить графически задачу линейного программирования

min

    Составить экономико-математическую модель и решить графически задачу линейного программирования

Фирма выпускает изделия двух видов А и В. Изделия каждого вида обрабатывают на двух станках (I и II). Время обработки одного изделия каждого вида на станках, время работы станков за рабочую смену, прибыль фирмы от реализации одного изделия вида А и вида В занесены в таблицу:

Изучение рынка сбыта показало, что ежедневный спрос на изделия вида В никогда не превышает спрос на изделия вида А более чем на 40 единиц, а спрос на изделия вида А не превышает 90 единиц в день.

Определить план производства изделий, обеспечивающий наибольшую прибыль.

Система состоит из неравенств от двух переменных:

Для решения системы необходимо:

1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.

2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.

3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.

4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна. Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Пример 3. Решить графически систему:

Рассмотрим уравнения x + y–1 = 0 и –2x – 2y + 5 = 0, соответствующие неравенствам. Построим прямые, задающиеся этими уравнениями (Рис. 3).

Рисунок 3 – Изображение прямых

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x+ y– 1 ≤ 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y – 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.

Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 4. Найти графически решения системы неравенств:

1. Выпишем уравнения, соответствующие неравенствам, и построим прямые (Рис. 4).

x + 2y– 2 = 0 x 2 0

y – x – 1 = 0 x 0 2

y + 2 = 0; y = –2.

Рисунок 4 – Изображение прямых

2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:

0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y– 2 ≤ 0 в полуплоскости ниже прямой;

0 – 0 – 1 ≤ 0, т.е. y –x– 1 ≤ 0 в полуплоскости ниже прямой;

0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.


3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых

Таким образом, А(–3; –2), В(0; 1), С(6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы неограничена.

Пример 5. Решить графически систему

Выпишем уравнения, соответствующие неравенствам, и построим прямые (Рис. 5).

Рисунок 5 – Изображение прямых

x + y – 1 = 0 x 0 1

y – x – 1 = 0 x 0 –1

Определим знаки в полуплоскостях. Выберем точку (0; 0):

0 – 0 – 1 ≤ 0, т.е. y – x – 1 ≤ 0 ниже прямой;

0 + 0 – 1 ≤ 0, т.е. x + y – 1 ≤ 0 ниже прямой.

Пересечением двух полуплоскостей является угол с вершиной в точке А(0;1). Эта неограниченная область является решением исходной системы неравенств.



Понравилась статья? Поделитесь с друзьями!