Магнитная индукция проводника с током. Магнитная индукция в вакууме

Метод максимального правдоподобия (ММП) является одним из наиболее широко используемых методов в статистике и эконометрике. Для его применения необходимо знание закона распределения исследуемой случайной величины.

Пусть имеется некоторая случайная величина У с заданным законом распределения ДУ). Параметры этого закона неизвестны и их нужно найти. В общем случае величину Y рассматривают как многомерную, т.е. состоящую из нескольких одномерных величин У1, У2, У3 ..., У.

Предположим, что У – одномерная случайная величина и ее отдельные значения являются числами. Каждое из них (У],у 2, у3, ...,у„) рассматривается как реализация не одной случайной величины У, а η случайных величин У1; У2, У3 ..., У„. То есть:

уj – реализация случайной величины У];

у2 – реализация случайной величины У2;

уз – реализация случайной величины У3;

у„ – реализация случайной величины У„.

Параметры закона распределения вектора У, состоящего из случайных величин Y b Y 2, У3,У„, представляют как вектор Θ, состоящий из к параметров: θχ, θ2,в к. Величины Υ ν Υ 2, У3,..., Υ η могут быть распределены как с одинаковыми параметрами, так и с различными; некоторые параметры могут совпадать, а другие различаться. Конкретный ответ на этот вопрос зависит от той задачи, которую решает исследователь.

Например, если стоит задача определения параметров закона распределения случайной величины У, реализацией которой являются величины У1; У2, У3, У,„ то предполагают, что каждая из этих величин распределена так же, как величина У. Иначе говоря, любая величина У, описывается одним и тем же законом распределения/(У, ), причем с одними и теми же параметрами Θ: θχ, θ2,..., д к.

Другой пример – нахождение параметров уравнения регрессии. В этом случае каждая величина У, рассматривается как случайная величина, имеющая "собственные" параметры распределения, которые могут частично совпадать с параметрами распределения других случайных величин, а могут и полностью различаться. Более подробно применение ММП для нахождения параметров уравнения регрессии будет рассмотрено ниже.

В рамках метода максимального правдоподобия совокупность имеющихся значений У], у2, у3, ...,у„ рассматривается как некоторая фиксированная, неизменная. То есть закон /(У;) есть функция от заданной величиныу, и неизвестных параметров Θ. Следовательно, для п наблюдений случайной величины У имеется п законов /(У;).

Неизвестные параметры этих законов распределения рассматриваются как случайные величины. Они могут меняться, однако приданном наборе значений Уі,у2,у3, ...,у„ наиболее вероятны конкретные значения параметров. Иначе говоря, вопрос ставится таким образом: каковы должны быть параметры Θ, чтобы значения уj, у2, у3, ...,у„ были наиболее вероятны?

Для ответа на него нужно найти закон совместного распределения случайных величин У1; У2, У3,..., Уп –КУі, У 2, Уз, У„). Если предположить, что наблюдаемые нами величиныу^ у2,у3, ...,у„ независимы, то он равен произведению п законов/

(У;) (произведению вероятностей появления данных значений для дискретных случайных величин или произведению плотностей распределения для непрерывных случайных величин):

Чтобы подчеркнуть тот факт, что в качестве переменных рассматриваются искомые параметры Θ, введем в обозначение закона распределения еще один аргумент – вектор параметров Θ:

С учетом введенных обозначений закон совместного распределения независимых величин с параметрами будет записан в виде

(2.51)

Полученную функцию (2.51) называют функцией максимального правдоподобия и обозначают :

Еще раз подчеркнем тот факт, что в функции максимального правдоподобия значения У считаются фиксированными, а переменными являются параметры вектора (в частном случае – один параметр). Часто для упрощения процесса нахождения неизвестных параметров функцию правдоподобия логарифмируют, получая логарифмическую функцию правдоподобия

Дальнейшее решение по ММП предполагает нахождение таких значений Θ, при которых функция правдоподобия (или ее логарифм) достигает максимума. Найденные значения Θ; называют оценкой максимального правдоподобия.

Методы нахождения оценки максимального правдоподобия достаточно разнообразны. В простейшем случае функция правдоподобия является непрерывно дифференцируемой и имеет максимум в точке, для которой

В более сложных случаях максимум функции максимального правдоподобия не может быть найден путем дифференцирования и решения уравнения правдоподобия, что требует поиска других алгоритмов его нахождения, в том числе итеративных.

Оценки параметров, полученные с использованием ММП, являются:

  • состоятельными , т.е. с увеличением объема наблюдений разница между оценкой и фактическим значением параметра приближается к нулю;
  • инвариантными : если получена оценка параметра Θ, равная 0L, и имеется непрерывная функция q(0), то оценкой значения этой функции будет величина q(0L). В частности, если с помощью ММП мы оценили величину дисперсии какого-либо показателя (af ), то корень из полученной оценки будет оценкой среднего квадратического отклонения (σ,), полученной по ММП.
  • асимптотически эффективными ;
  • асимптотически нормально распределенными.

Последние два утверждения означают, что оценки параметров, полученные по ММП, проявляют свойства эффективности и нормальности при бесконечно большом увеличении объема выборки.

Для нахождения параметров множественной линейной регрессии вида

необходимо знать законы распределения зависимых переменных 7; или случайных остатков ε,. Пусть переменная Y t распределена по нормальному закону с параметрами μ, , σ, . Каждое наблюдаемое значение у, имеет, в соответствии с определением регрессии, математическое ожидание μ, = МУ„ равное его теоретическому значению при условии, что известны значения параметров регрессии в генеральной совокупности

где xfl, ..., x ip – значения независимых переменных в і -м наблюдении. При выполнении предпосылок применения МНК (предпосылок построения классической нормальной линейной модели), случайные величины У, имеют одинаковую дисперсию

Дисперсия величины определяется по формуле

Преобразуем эту формулу:

При выполнении условий Гаусса – Маркова о равенстве нулю математического ожидания случайных остатков и постоянстве их дисперсий можно перейти от формулы (2.52) к формуле

Иначе говоря, дисперсии случайной величины У,- и соответствующих ей случайных остатков совпадают.

Выборочную оценку математического ожидания случайной величины Yj будем обозначать

а оценку ее дисперсии (постоянной для разных наблюдений) как Sy.

Если предположить независимость отдельных наблюдений y it то получим функцию максимального правдоподобия

(2.53)

В приведенной функции делитель является константой и не оказывает влияния на нахождение ее максимума. Поэтому для упрощения расчетов он может быть опущен. С учетом этого замечания и после логарифмирования функция (2.53) примет вид

В соответствии с ММП найдем производные логарифмической функции правдоподобия по неизвестным параметрам

Для нахождения экстремума приравняем полученные выражения к нулю. После преобразований получим систему

(2.54)

Эта система соответствует системе, полученной по методу наименьших квадратов. То есть ММП и МНК дают одинаковые результаты, если соблюдаются предпосылки МНК. Последнее выражение в системе (2.54) дает оценку дисперсии случайной переменной 7, или, что одно и то же, дисперсии случайных остатков. Как было отмечено выше (см. формулу (2.23)), несмещенная оценка дисперсии случайных остатков равна

Аналогичная оценка, полученная с применением ММП (как следует из системы (2.54)), вычисляется по формуле

т.е. является смещенной .

Мы рассмотрели случай применения ММП для нахождения параметров линейной множественной регрессии при условии, что величина У, нормально распределена. Другой подход к нахождению параметров той же регрессии заключается в построении функции максимального правдоподобия для случайных остатков ε,. Для них также предполагается нормальное распределение с параметрами (0, σε). Нетрудно убедиться, что результаты решения в этом случае совпадут с результатами, полученными выше.

Магнитами называются тела, обладающие свойством при­тягивать железные предметы. Проявляемое магнитами свойство притяжения называется магнетизмом. Магниты бывают есте­ственными и искусственными. Добываемые железные руды, об­ладающие свойством притяжения, называются естественными магнитами, а намагниченные куски металла - искусственными магнитами, которые часто называют постоянными магнитами.

Свойства магнита притягивать железные предметы в наибольшей степени проявляются на его концах, которые называются магнитными полюсам и, или просто полюсами. Каждый магнит имеет два полюса: северный (N - норд) и южный (S- зюйд). Линия, проходящая через середину магнита, называется нейтральной л и н и е й, или нейтралью, так как по этой линии не обнаруживается магнитных свойств.

Постоянные магниты образуют магнитное поле, в котором действуют магнитные силы в определенных направлениях, называемых силовыми линиями. Силовые линии выходят из северного полюса и входят в южный.

Электрический ток, проходящий по проводнику, также образует вокруг проводника магнитное поле. Установлено, что магнитные явления неразрывно связаны с электрическим то­ком.

Магнитные силовые линии располагаются вокруг проводника с током по окружности, центром которых является сам проводник, при этом ближе к проводнику они располагаются гуще, а дальше от проводника - реже. Расположение магнитных силовых линий вокруг проводника с током зависит от формы его поперечного сечения.

Для определения направления силовых линий пользуются правилом буравчика, которое формулируется так: если ввинчивать буравчик по направлению тока в проводнике, то вращение рукоятки буравчика покажет направление магнитных силовых линий.

Магнитное поле прямого проводника представляет собой ряд концентрических окружностей (рис. 157, а). Для усиления маг­нитного поля в проводнике последний изготовляют в виде катушки (рис. 157, б).

если направление вращения рукоятки буравчика совпадает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.


Магнитное поле катушки с током аналогично полю постоянного магнита, поэтому катушка с током (соленоид) имеет все свойства магнита.

Здесь также направление магнитных силовых линий вокруг каждого витка катушки определяется правилом буравчика. Си­ловые линии соседних витков складываются, усиливая общее магнитное поле катушки. Как следует из рис. 158, силовые линии магнитного поля катушки выходят из одного конца и входят в другой, замыкаясь внутри катушки. Катушка, как и постоянные магниты, имеет полярность (южный и северный полюсы), кото­рая также определяется по правилу буравчика, если изложить его так: если направление вращения рукоятки буравчика совпа­дает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.

Для характеристики магнитного поля с количественной стороны введено понятие магнитной индукции.

Магнитной индукцией называется число магнитных силовых линий, приходящихся на 1 см 2 (или 1 м 2) поверхности, перпендикулярной направлению силовых линий. В системе СИ магнитная индукция измеряется в теслах (сокращенно Т) и обозначается буквой В (тесла = вебер/м2 = вольт секунда/м2

Вебер - единица измерения магнитного потока.

Магнитное поле можно усилить, если вставить в катушку железный стержень (сердечник). Наличие железного сердечника усиливает поле, так как, находясь в магнитном иоле катушки, железный сердечник намагничивается, создает свое поле, которое складывается с первоначальным и усиливается. Такое устройство называется электромагнитом.

Общее число силовых линий, проходящих через сечение сердечника, называется магнитным потоком. Величина маг­нитного потока электромагнита зависит от тока, проходящего по катушке (обмотке), числа се витков и сопротивления магнитной цепи.

Магнитной цепью, или магиитопроводом, называется путь, по которому замыкаются магнитные силовые линии. Магнитное сопротивление магнитопровода зависит от магнитной проницае­мости среды, по которой проходят силовые линии, длины этих ли­ний и поперечного сечения сердечника.

Произведение тока, проходящего по обмотке, на число ее витков носит название магнитодвижущей силы (м. д. с). Маг­нитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление цепи - так формулируется закон Ома для магнитной цепи. Так как число витков и магнитное сопротивление для данного электромагнита - величины постоянные, магнитный поток электромагнита можно изменять, регулируя ток в его обмотке.

Электромагниты находят самое широкое применение в различ­ных машинах и приборах (в электромашинах, электрических звонках, телефонах, измерительных приборах и т. д.).

Электрический ток в проводнике образует магнитное поле вокруг проводника. Электрический ток и магнитное поле - это две неотделимые друг от друга части единого физического процесса. Магнитное поле постоянных магнитов в конечном счете также порождается молекулярными электрическими токами, образованными движением электронов по орбитам и вращением их вокруг своих осей.

Магнитное поле проводника и направление его силовых линий можно определить при помощи магнитной стрелки. Магнитные линии прямолинейного проводника имеют форму концентрических окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление магнитных силовых линий зависит от направления тока в проводнике. Если ток в проводнике идет от наблюдателя, то силовые линии направлены по часовой стрелке.

Зависимость направления поля от направления тока определяется правилом буравчика: при совпадении поступательного движения буравчика с направлением тока в проводнике направление вращения ручки совпадает с направлением магнитных линий.

Правилом буравчика можно пользоваться и для определения направления магнитного поля в катушке, но в следующей формулировке: если направление вращения рукоятки буравчика совместить с направлением тока в витках катушки, то поступательное движение буравчика покажет направление силовых линий поля внутри катушки (рис. 4.4).

Внутри катушки эти линии идут от южного полюса к северному, а вне ее - от северного к южному.

Правилом буравчика можно пользоваться также и при определении направления тока, если известно направление силовых линий магнитного поля.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле;  - угол между вектором магнитного поля инаправлением тока впроводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

F = I·L·B

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Если и лежат в одной плоскости, то угол между и прямой, следовательно . Тогда сила, действующая на элемент тока ,

(разумеется, со стороны первого проводника на второй действует точно такая же сила).

Результирующая сила равна одной из этих сил. Если эти два проводника будут воздействовать на третий, тогда их магнитные поля и нужно сложить векторно.

Контур с током в магнитном поле

Рис. 4.13

Пусть в однородное магнитное поле помещена рамка с током (рис. 4.13). Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором и нормалью к площади :

Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.

Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям:

Это выражение также можно использовать для определения индукции магнитного поля:

Величину, равную произведению , называют магнитным моментом контура Р т . Магнитный момент есть вектор, направление которого совпадает с направлением нормали к контуру. Тогда вращательный момент можно записать

При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М , который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r, то

Полный ток через петлю есть просто ток / в проводе, поэтому

Напряженность магнитного поля спадает обратно пропорционально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем

Мы выделили множитель 1/4πε 0 с 2 , потому что он часто появляется. Стоит запомнить, что он равен в точности 10 - 7 (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии 1 м ток в 1 а создает магнитное поле, равное 2·10 - 7 вебер/м 2 .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,— они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» Г на рисунке. Эта кривая проходит расстояние L внутри соленоида, где поле, скажем, равно В о, затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от В вдоль этой кривой равен в точности В 0 L, и это должно равняться 1/ε 0 с 2 , умноженному на полный ток внутри Г, т. е. на NI (где N - число витков соленоида на длине L ). Мы имеем

Или же, вводя n - число витков на единицу длины соленоида (так что n = N/L ), мы получаем

Что происходит с линиями В, когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле В возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (16.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов уже учтенных членом j.

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,— у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,— однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картой толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).


Рис. 71. Определение направления магнитных линий вокруг проводника с током по "правилу буравчика"

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).


Рис. 72. Определение направления отклонения магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии r от бесконечно длинного прямолинейного проводника с током определяется выражением


где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μ а, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать μ 0 и называть абсолютной магнитной проницаемостью пустоты.


1 гн = 1 ом⋅сек.

Отношение μ а / μ 0 , показывающее, во сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто магнитным потоком, и обозначается буквой Φ (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мкс):

1 вб = 10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (а/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.



Понравилась статья? Поделитесь с друзьями!