Максимальное значение энтропии. Энтропия в нашей жизни

Теория информации

У истоков теории информации стоит Клод Шеннон, который в 1947-48 годах работал над вопросом эффективности систем связи. В результате этого была сформулирована цель данной теории – повышение пропускной способности канала связи. Эффективна та система, которая при прочих равных условиях и затратах передает большее количество информации. Обычно при анализе рассматривается объекта: источник информации и канал передачи информации.

Итак, имеются какие-то события. Информация о них в знаковой форме, в виде сигнала передается по каналу связи. Можно утверждать, что канал хороший, если он отвечает двум условиям. Во-первых, по нему передается информация с высокой скоростью и во-вторых помехи, воздействующие на передачу, снижают качество информации незначительно. Для того чтобы найти условия для такой передачи необходимо ввести какие-то информационные характеристики.

Наиболее наглядно основные положения теории информации проявляются при дискретном источнике и таком же канале. Поэтому знакомство с темой начнем при данном допущении.

1.1 Количественная мера информации.

Прежде разберемся, что имеет смысл передавать по каналу.

Если получателю известно, какая информация будет передана, то, очевидно, нет необходимости ее передачи. Есть смысл передавать только то, что является неожиданным. Чем больше эта неожиданность, тем большее количество информации должно содержаться в этом событии. Например, Вы работаете за компьютером. Сообщение о том, что сегодня работу надо закончит через 45 мин. согласно расписанию вряд ли является для Вас новым. Это абсолютно ясно было и до заявления о конце работы. Следовательно, в таком сообщении содержится нулевая информация; передавать его бессмысленно. А теперь другой пример. Сообщение следующее: через час начальник подарит Вам авиабилет до Москвы и обратно, да еще выделит сумму денег на развлечения. Такого рода информация для Вас неожиданна и, следовательно, содержит большое количество единиц меры. Вот такие сообщения имеет смысл передавать по каналу. Вывод очень простой: чем больше неожиданности в сообщении, тем большее количество информации в нем содержится.

Неожиданность характеризуется вероятностью, которая и закладывается в информационную меру.

Еще несколько примеров. Имеем два ящика, один с белыми, а другой с черными шарами. Какое количество информации содержится в сообщении, где белые шары? Вероятность того, что в любом указанном ящике белые шары равна 0,5. Назовем эту вероятность до опытной или априорной .

Теперь вытаскиваем один шар. В независимости от того, какой шар мы вынули, после такого опыта будет абсолютно точно известно в каком ящике белые шары. Следовательно, вероятность сведений будет равна 1. Эта вероятность называется после опытной или апостериорной .

Посмотрим на данную пример с позиции количества информации.итак, имеем источник информации ящики с шарами. Первоначально неопределенность о шарах характеризовалась вероятностью 0,5. Далее источник "заговорил" и выдал информацию; мы вытащили шар. Далее все стало определено с вероятностью 1. Степень уменьшения неопределенности о событии в результате опыта логично принять за количественную меру информации. В нашем примере это будет 1/0,5.

Теперь пример более сложный. Известно, что размер детали может быть 120,121,122, . . .,180 мм., то есть, имеет одно из 61-ого значений. Априорная вероятность того, что размер детали i мм равна 1/61.

У нас имеется весьма несовершенный измерительный инструмент позволяющий измерить деталь с точностью +5,-5 мм. В результате измерения получили размер 130 мм. Но фактически он может быть 125,126, . . .,135 мм.; всего 11 значений. В результате опыта остается неопределенность, которая характеризуется апостериорной вероятностью 1/11. Степень уменьшения неопределенности будет (1/11):(1/61). Как и выше это отношение и есть количество информации.

Наиболее удобна логарифмическая функция для отражения количества информации. Основание логарифма принимается равное двум. Обозначим количество информации,
- априорная вероятность,
- апостериорная вероятность. Тогда,

. (1)

В первом примере
1 бит информации; во втором
2,46 бит информации. Бит – одна двоичная единица информации .

Теперь обратимся к реальному источнику информации, который представляет собой множество независимых событий (сообщений) с различными априорными вероятностями
. Это множество представляет данные о параметрах объекта и есть информация о нем. Обычно, после выдачи сообщения источником, становится достоверно известно, какой параметр выдан. Апостериорная вероятность равна 1. Количество информации, содержащееся в каждом событии, будет равно

. (2)

Эта величина всегда больше нуля. Сколько событий, столько количеств информации. Для характеристики источника это не совсем удобно. Поэтому вводится понятие энтропии. Энтропия это среднее количество информации, приходящееся на одно событие (сообщение) источника . Находится она по правилам определения математического ожидания:

. (3)

Или учитывая свойства логарифмической функции

. (4)

Размерность энтропии бит/сообщение. Остановимся на свойствах энтропии. Начнем с примера. Допустим, имеется двоичный источник информации с априорными вероятностями событий исоставляющих полную группу. Из этого следует связь между ними:
. Найдем энтропию источника:

Не трудно видеть, что если одна из вероятностей равно нулю, то вторая равна 1, а выражение энтропии при этом даст нуль.

Построим график зависимости энтропии от
(рис.1).

Обратим внимание на то, что энтропия максимальна при вероятности равной 0,5 и всегда положительна.

Первое свойство энтропии . Энтропия максимальна при равновероятных событиях в источнике. В нашем примере двоичного источника эта величина равна 1. Если источник не двоичный и содержит N слов, то максимальная энтропия.

Второе свойство энтропии. Если вероятность одного сообщения источника равна 1, и остальные равны нулю, как образующие полную группу событий, то энтропия равна нулю . Такой источник не генерирует информацию.

Третье свойство энтропии это теорема сложения энтропий . Разберем этот вопрос более подробно. Допустим, имеется два источника информации представленные множествами сообщений и.

У каждого из источников имеются энтропии
и
. Далее эти источники объединяются, и требуется найти энтропию объединенного ансамбля
. Каждой паре сообщенийисоответствует вероятность
. Количество информации в такой паре будет

Действуя известным образом, найдем среднее количество информации, приходящееся на пару сообщений ансамбля. Это и будет энтропия. Правда, здесь может быть два случая. Объединяемые ансамбли могут быть статистически независимы и зависимы.

Рассмотрим первый случай независимых ансамблей, появление сообщения ни в коей мере не определяется. Запишем выражение для энтропии:

, (7)

здесь
- число сообщений в ансамблях.

Так как при независимости двумерная вероятность , а, из общей предыдущей формулы получим

где
и
определяются по известным формулам.

Далее рассмотрим более сложный случай. Предположим, что ансамбли сообщений находятся в статистической связи, то есть с какай-то вероятностью предполагает появление. Этот факт характеризуется условной вероятностью
; косая черта в обозначении характеризует условие. При введении условных вероятностей двумерная вероятность может быть определена через произведение одномерных:

Учитывая это, найдем выражение для энтропии. Преобразование идет следующим образом:

Учитывая равенство 1 суммы всех вероятностей событий, первая двойная сумма в последнем выражении дает энтропию источника X, H(x).

Вторая двойная сумма получила название условной энтропии и обозначается как
. Таким образом,

Аналогичным образом можно доказать, что .

В последних выражениях мы встретились с условной энтропией, которая определяется связью между объединяемыми ансамблями сообщений. Если ансамбли статистически независимы
, и условная энтропия
. В итоге мы получаем известную формулу.

Если сообщения зависимы абсолютно, то есть находятся в функциональной связи,
принимает одно из двух значений: либо 1, когда
, либо 0, когда
. Условная энтропия будет равна 0, так как второй ансамбль сообщений не обладает неожиданностью, и, следовательно, не несет информацию.

После введения энтропии и ее свойств, вернемся к единственному источнику информации. Следует знать, что любой источник информации работает в текущем времени. Его символы (знаки) занимают определенное место в последовательности. Источник информации называется стационарным, если вероятность символа не зависит от его места в последовательности. И еще одно определение. Символы источника могут иметь статистическую (вероятностную) связь друг с другом.Эргодический источник информации это такой источник, в котором статистическая связь между знаками распространяется на конечное число предыдущих символов. Если эта связь охватывает лишь соседние два знака, то такой источник называется односвязная цепь Маркова. Именно такой источник мы сейчас рассмотрим. Схема генерации источником символов показана на рис. 2.

Появление символа зависит от того, какой символвыдал источник в предыдущий момент. Эта зависимость определяется вероятностью
. Найдем энтропию такого источника. Будем исходить из понимания вообще энтропии, как математического ожидания количества информации. Допустим, выдается два символа как показано на рис. 2. Количество информации в такой ситуации источником выдается

Усреднив это количество по всем возможным последующим символам, получим частную энтропию при условии, что предыдущем всегда выдается символ :

. (13)

Еще раз, усреднив эту частную энтропию по всем предыдущим символам, получим окончательный результат:

Индекс 2 в обозначении энтропии свидетельствует о том, что статистическая связь распространяется только на два соседних символа.

Остановимся на свойствах энтропии эргодического источник.

При независимости символов в источнике
, формула (14) упрощается и приводится к обычному виду (4).

Наличие статистических (вероятностных) связей между символами источника всегда приводит к уменьшению энтропии,
.

Итак, источник информации имеет максимальную энтропию если выполняется два условия: все символы источника равновероятны (свойство энтропии) и между символами источника нет статистических связей.

Для того чтобы показать насколько хорошо используются символы источника, вводится параметр избыточности :

. (15)

Величина находится в диапазоне от 0 до 1.

Отношение к этому параметру двоякое. С одной стороны, чем меньше избыточность, тем более рационально работает источник. С другой стороны, чем больше избыточность, тем меньше помехи, шумы влияют на доставку информации такого источника потребителю. Например, наличие статистических связей между символами увеличивает избыточность, но в то же время увеличивает верность передачи. Отдельные пропавшие символы могут быть предсказаны и восстановлены.

Рассмотрим пример. Источник – буквы русского алфавита, всего их 32. Определим максимальную энтропию:
бит/сообщение.

Так как между буквами есть статистическая связь и вероятности их появления в тексте далеко не одинаковы, реальная энтропия равна 3 бит/сообщение. Отсюда избыточность
.

Следующая характеристика источника производительность; она характеризует скорость генерации информации источником. Предположим, что каждая буква источника выдается за определенный промежуток времени . Усредняя эти времена, найдем среднее время выдачи одного сообщения. Среднее количество информации выдаваемое источником в единицу времени – производительность источника
:

. (16)

Итак, подведем итог. Характеристиками эргодического источника информации являются следующие:

количество информации в каждом знаке,

энтропия,

избыточность,

производительность.

Необходимо заметить, что сильной стороной введенной меры количества информации и, разумеется, всех характеристик является универсальность. Все введенные выше понятия применимы к любому виду информации: социологической, технической и т. д.. Слабая же сторона меры в том, что в ней не отражена значимость информации, ее ценность. Информация о выигрыше в лотерею авторучки и автомобиля одинакова по значимости.

1.2. Информационные характеристики канала

Вспомним о том, что информация передается по каналу связи. Мы ранее ввели информационные характеристики источника информации, а теперь введем информационные характеристики канала. Представим ситуацию так, как показано на рис. 1.

Рис. 1

На входе канала присутствует входной алфавит, состоящий из множества знаков , а на выходе -.

П
редставим канал связи математической моделью. Наиболее известное представление дискретного канала в виде графа. Узлы графа, получаемые () и передаваемые () буквы алфавита; ребра отражают возможные связи между этими буквами (рис. 2).

Связи между буквами алфавита принято оценивать условными вероятностями, например,
вероятность приемапри условии что передана. Это вероятность правильного приема. Точно также можно ввести условные вероятности ошибочных приемов, например,
. Причины появления этих ненулевых вероятностей - помехи, от которых не свободен ни один из реальных каналов. Обратим внимание на то, чтоn и m , количество знаков (букв) в передаваемом и принимаемом массиве не обязательно равны между собой. На основании этой модели вводятся дальнейшие определения.

Симметричный канал – это канал в котором все вероятности правильного приема для всех символов равны, а также равны вероятности ошибочных приемов. Для такого канала условная вероятность может быть записана так:

Здесь – вероятность ошибочного приема. Если эта вероятность не зависит от того, какие знаки передавались до данного символа, такой канал называется "канал без памяти ". В качестве примера ниже на рис.3 показан граф симметричного двоичного канала без памяти.

Р
ис. 3

Далее допустим, что алфавит на выходе канала содержит дополнительный символ, который появляется тогда, когда декодер приемника не может опознать переданный символ. В этом случае он вырабатывает отказ от решения. Это положение называется стиранием. Такой канал называется каналом без памяти со стиранием и его граф показан на рис. 4. Положение "стирание" здесь обозначено знаком вопроса.

Р
ис. 4.

Простейшим каналом с памятью является марковский канал . В нем вероятности ошибок зависят от того правильно или ошибочно был принят предыдущий символ.

Наряду с графом для канала связи существует и другое описание – канальная матрица . Это набор условных вероятностей
или
. Вмести с априорными вероятностями,
и
это дает полную картину статистики канала с помехами. Для примера приведем канальную матрицу

.

Любое сообщение, с которым мы имеем дело в теории информации, представляет собой совокупность сведений о некоторой физической системе. Например, на вход автоматизированной системы управления производственным цехом может быть передано сообщение о нормальном или повышенном проценте брака, о химическом составе сырья или температуре в печи. На вход системы управления средствами противовоздушной обороны может быть передано сообщение о том, что в воздухе находятся две цели, летящие на определенной высоте, с определенной скоростью. На тот же вход может быть передано сообщение о том, что на определенном аэродроме в данный момент находится такое-то количество истребителей в боевой готовности, или что аэродром выведен из строя огневым воздействием противника, или что первая цель сбита, а вторая продолжает полет с измененным курсом. Любое из этих сообщений описывает состояние какой-то физической системы.

Очевидно, если бы состояние физической системы было известно заранее, не было бы смысла передавать сообщение. Сообщение приобретает смысл только тогда, когда состояние системы заранее неизвестно, случайно.

Поэтому в качестве объекта, о котором передается информация, мы будем рассматривать некоторую физическую систему , которая случайным образом может оказаться в том или ином состоянии, т. е. систему, которой заведомо присуща какая-то степень неопределенности. Очевидно, сведения, полученные о системе, будут, вообще говоря, тем ценнее и содержательнее, чем больше была неопределенность системы до получения этих сведений («априори»). Возникает естественный вопрос: что значит «большая» или «меньшая» степень неопределенности и чем можно ее измерить?

Чтобы ответить на этот вопрос, сравним между собой две системы, каждой из которых присуща некоторая неопределенность.

В качестве первой системы возьмем монету, которая в результате бросания может оказаться в одном из двух состояний: 1) выпал герб и 2) выпала цифра. В качестве второй - игральную кость, у которой шесть возможных состояний: 1, 2, 3, 4, 5 и 6. Спрашивается, неопределенность какой системы больше? Очевидно, второй, так как у нее больше возможных состояний, в каждом из которых она может оказаться с одинаковой вероятностью.

Может показаться, что степень неопределенности определяется числом возможных состояний системы. Однако в общем случае это не так. Рассмотрим, например, техническое устройство, которое может быть в двух состояниях: 1) исправно и 2) отказало. Предположим, что до получения сведений (априори) вероятность исправной работы устройства 0,99, а вероятность отказа 0,01. Такая система обладает только очень малой степенью неопределенности: почти наверное можно предугадать, что устройство будет работать исправно. При бросании монеты тоже имеется два возможных состояния, но степень неопределенности гораздо больше. Мы видим, что степень неопределенности физической системы определяется не только числом ее возможных состояний, но и вероятностями состояний.

Перейдем к общему случаю. Рассмотрим некоторую систему , которая может принимать конечное множество состояний: с вероятностями , где

(18.2.1)

Вероятность того, что система примет состояние (символом обозначается событие: система находится в состоянии ). Очевидно, .

Запишем эти данные в виде таблицы, где в верхней строке перечислены возможные состояния системы, а в нижней - соответствующие вероятности:

Эта табличка по написанию сходна с рядом распределения прерывной случайной величины с возможными значениями , имеющими вероятности . И действительно, между физической системой с конечным множеством состояний и прерывной случайной величиной много общего; для того чтобы свести первую ко второй, достаточно приписать каждому состоянию какое-то числовое значение (скажем, номер состояния). Подчеркнем, что для описания степени неопределенности системы совершенно неважно, какие именно значения записаны в верхней строке таблицы; важны только количество этих значений и их вероятности.

В качестве меры априорной неопределенности системы (или прерывной случайной величины ) в теории информации применяется специальная характеристика, называемая энтропией. Понятие об энтропии является в теории информации основным.

Энтропией системы называется сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком:

. (18.2.2)

Энтропия , как мы увидим в дальнейшем, обладает рядом свойств, оправдывающих ее выбор в качестве характеристики степени неопределенности. Во-первых, она обращается в нуль, когда одно из состояний системы достоверно, а другие - невозможны. Во-вторых, при заданном числе состояний она обращается в максимум, когда эти состояния равновероятны, а при увеличении числа состояний - увеличивается. Наконец, и это самое главное, она обладает свойством аддитивности, т. е. когда несколько независимых систем объединяются в одну, их энтропии складываются.

Логарифм в формуле (18.2.2) может быть взят при любом основании . Перемена основания равносильна простому умножению энтропии на постоянное число, а выбор основания равносилен выбору определенной единицы измерения энтропии. Если за основание выбрано число 10, то говорят о «десятичных единицах» энтропии, если 2 - о «двоичных единицах». На практике удобнее всего пользоваться логарифмами при основании 2 и измерять энтропию в двоичных единицах; это хорошо согласуется с применяемой в электронных цифровых вычислительных машинах двоичной системой счисления.

В дальнейшем мы будем везде, если не оговорено противное, под символом понимать двоичный логарифм.

В приложении (табл. 6) даны двоичные логарифмы целых чисел от 1 до 100.

Легко убедиться, что при выборе 2 в качестве основания логарифмов за единицу измерения энтропии принимается энтропия простейшей системы , которая имеет два равновозможных состояния:

Действительно, по формуле (18.2.2) имеем:

.

Определенная таким образом единица энтропии называется «двоичной единицей» и иногда обозначается bit (от английского «binary digit» - двоичный знак). Это энтропия одного разряда двоичного числа, если он с одинаковой вероятностью может быть нулем или единицей.

Измерим в двоичных единицах энтропию системы , которая имеет равновероятных состояний:

т. е. энтропия системы с равновозможными состояниями равна логарифму числа состояний.

Например, для системы с восемью состояниями .

Докажем, что в случае, когда состояние системы в точности известно заранее, ее энтропия равна нулю. Действительно, в этом случае все вероятности в формуле (18.2.2) обращаются в нуль, кроме одной - например , которая равна единице. Член обращается в нуль, так как . Остальные члены тоже обращаются в нуль, так как

.

Докажем, что энтропия системы с конечным множеством состояний достигает максимума, когда все состояния равновероятны. Для этого рассмотрим энтропию системы (18.2.2) как функцию вероятностей и найдем условный экстремум этой функции при условии:

Пользуясь методом неопределенных множителей Лагранжа, будем искать экстремум функции:

. (18.2.5)

Дифференцируя (18.2.5) по и приравнивая производные нулю, получим систему уравнений:

, (18.2.6)

откуда видно, что экстремум (в данном случае максимум) достигается при равных между собой значениях . Из условия (18.2.4) видно, что при этом

, (18.2.7)

а максимальная энтропия системы равна:

, (18.2.8)

т. е. максимальное значение энтропии системы с конечным числом состояний равно логарифму числа состояний и достигается, когда все состояния равновероятны.

Вычисление энтропии по формуле (18.2.2) можно несколько упростить, если ввести в рассмотрение специальную функцию:

, (18.2.9)

где логарифм берется по основанию 2.

Формула (18.2.2) принимает вид:

. (18.2.10)

Функция затабулирована; в приложении (табл. 7) приведены ее значения для от 0 до 1 через 0,01.

Пример 1. Определить энтропию физической системы, состоящей из двух самолетов (истребителя и бомбардировщика), участвующих в воздушном бою. В результате боя система может оказаться в одном из четырех возможных состояний:

1) оба самолета не сбиты;

2) истребитель сбит, бомбардировщик не сбит;

3) истребитель не сбит, бомбардировщик сбит;

4) оба самолета сбиты.

Вероятности этих состояний равны соответственно 0,2; 0,3; 0,4 и 0,1.

Решение. Записываем условия в виде таблицы:

Для источника с зависимыми сообщениями энтропия тоже вычисляется как математическое ожидание количества информации на один элемент этих сообщений. Количество информации и энтропия являются логарифмическими мерами и измеряются в одних и тех же единицах.


6. Энтропия объединенных статистически независимых источников информации равна сумме их энтропий. 7. Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля, полностью игнорируя содержательную сторону ансамбля. ЭНТРОПИЯ ЭКОСИСТЕМЫ - мера неупорядоченности экосистемы, или количества энергии, недоступной для использования. Чем больше показатель энтропии, тем менее устойчива экосистема во времени и пространстве.

4.1.2. Энтропия и производительность дискретного источника сообщений

Любое из этих сообщений описывает состояние какой-то физической системы. Мы видим, что степень неопределенности физической системы определяется не только числом ее возможных состояний, но и вероятностями состояний. В качестве меры априорной неопределенности системы (или прерывной случайной величины) в теории информации применяется специальная характеристика, называемая энтропией.

Энтропия, как мы увидим в дальнейшем, обладает рядом свойств, оправдывающих ее выбор в качестве характеристики степени неопределенности. Наконец, и это самое главное, она обладает свойством аддитивности, т. е. когда несколько независимых систем объединяются в одну, их энтропии складываются. Если за основание выбрано число 10, то говорят о «десятичных единицах» энтропии, если 2 — о «двоичных единицах».

Докажем, что энтропия системы с конечным множеством состояний достигает максимума, когда все состояния равновероятны. Пример 3. Определить максимально возможную энтропию системы, состоящей из трех элементов, каждый из которых может быть в четырех возможных состояниях.

Следует заметить, что полученное в этом случае значение энтропии будет меньше, чем для источника независимых сообщений. Это следует из того, что при наличии зависимости сообщений неопределенность выбора уменьшается и, соответственно, уменьшается энтропия. Определим энтропию двоичного источника. График зависимости (4.4) представлен на рис. 4.1. Как следует из графика, энтропия двоичного источника изменяется в пределах от нуля до единицы.

Основные свойства энтропии

Обычно отмечают, что энтропия характеризует заданное распределение вероятностей с точки зрения степени неопределенности исхода испытания, т. е. неопределенности выбора того или иного сообщения. Действительно, легко убедиться, что энтропия равна нулю тогда и только тогда, когда одна из вероятностей равна единице, а все остальные равны нулю; это означает полную определенность выбора.

Возможна и другая наглядная интерпретация понятия энтропии как меры «разнообразия» сообщений, создаваемых источником. Легко убедиться, что приведенные выше свойства энтропии вполне согласуются с интуитивным представлением о мере разнообразия. Также естественно считать, что количество информации, содержащееся в элементе сообщения, тем больше, чем более разнообразны возможности выбора этого элемента.

Выражение представляющее математическое ожидание количества информации в выбираемом элементе, для источника, находящегося в -м состоянии, можно назвать энтропией этого состояния. Определенная выше энтропия источника на элемент сообщения зависит от того, каким образом сообщения расчленяются на элементы, т. е. от выбора алфавита. Однако энтропия обладает важным свойством аддитивности.

Отметим некоторые свойства энтропии. Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической.

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.

Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии. Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний.

Другими словами, энтропия - это то, как мы описываем систему. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

С одной стороны, это расширяет возможности использования энтропии при анализе самых различных явлений, но, с другой стороны, требует определенной дополнительной оценки возникающих ситуаций. Это во-первых.Во-вторых, Вселенная — это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве.

МАКСИМАЛЬНАЯ РАБОТА - в термодинамике 1) работа, совершаемая теплоизолиров. Любое сообщение, с которым мы имеем дело в теории информации, представляет собой совокупность сведений о некоторой физической системе. Очевидно, если бы состояние физической системы было известно заранее, не было бы смысла передавать сообщение.

Очевидно, сведения, полученные о системе, будут, вообще говоря, тем ценнее и содержательнее, чем больше была неопределенность системы до получения этих сведений («априори»). Чтобы ответить на этот вопрос, сравним между собой две системы, каждой из которых присуща некоторая неопределенность.

Однако в общем случае это не так. Рассмотрим, например, техническое устройство, которое может быть в двух состояниях: 1) исправно и 2) отказало. Подчеркнем, что для описания степени неопределенности системы совершенно неважно, какие именно значения записаны в верхней строке таблицы; важны только количество этих значений и их вероятности. Понятие об энтропии является в теории информации основным.

Количество этой информации и называется энтропией. Предположим, что в некоторое сообщение вошло элементов алфавита, элементов и т.д. Величину называют энтропией источника сообщений. 3. Энтропия максимальна, если все состояния элементов сообщений равновероятны. В теории информации доказывается, что всегда, т. е. наличие вероятностных связей уменьшает энтропию источника сообщений.

Игра в бильярд начинается с того, что шары аккуратной пирамидкой выстраиваются на столе. Затем наносится первый удар кием, который разбивает пирамиду. Шары перекатываются по столу по причудливым траекториям, многократно сталкиваются со стенками стола и друг с другом и, наконец, застывают в некотором новом расположении. Отчего-то новое расположение всегда менее упорядоченно. Почему? Можно пробовать бесконечно. Положения шаров на столе каждый раз будут меняться, но никогда мы не придем к такой же упорядоченной пирамиде, которая была на столе перед первым ударом. Система самопроизвольно переходит в менее упорядоченные состояния. Никогда не в более упорядоченные. Для того чтобы система перешла в упорядоченное состояние, необходимо вмешательство извне. Кто-нибудь из играющих берет треугольную рамку и формирует новую пирамиду. Процесс требует вложения энергии. Не существует способа заставить шары самопроизвольно выстроиться в пирамиду в результате соударений друг с другом и со стенками.

Процесс нарастания беспорядка на бильярдном столе не управляется (хотя и требует энергии для своего прохождения), потому что хороший бильярдный стол специально делается таким, чтобы энергия шара в любой его точке была одинаковой. То, что происходит на бильярдном столе, демонстрирует другой великий принцип, по которому организована наша Вселенная: принцип максимума энтропии. Разумеется, одним лишь бильярдным столом великий принцип мироздания не ограничивается. Так что будем разбираться.

Энтропия - это мера неупорядоченности системы. Чем меньше порядка в системе, тем выше ее энтропия. Наверное, имеет смысл поговорить о том, что считать порядком и что беспорядком.

Под порядком можно понимать регулярное расположение частиц, когда расстояния и направления повторяются, а по расположению нескольких частиц можно предсказать расположение следующей. Если частицы равномерно перемешаны безо всякого видимого закона расположения - это беспорядок. Если частицы аккуратно собраны в одной области пространства - это порядок. Если разбросаны повсюду - беспорядок. Если разные компоненты смеси находятся в разных местах - это порядок. Если все вперемежку - беспорядок. В общем, спросите маму или жену - она объяснит.

Энтропия газа (между прочим, слово "газ" - это искаженное греческое "хаос") выше, чем жидкости. Энтропия жидкости выше, чем твердого тела. Вообще говоря, повышение температуры увеличивает беспорядок. Из всех состояний вещества наименьшую энтропию будет иметь твердый кристалл при температуре абсолютного нуля. Эту энтропию принимают за нулевую.

В различных процессах энтропия изменяется. Если в некотором процессе не происходит изменения энергии, то процесс протекает самопроизвольно только в том случае, если это ведет к повышению энтропии системы. (Что происходит, когда меняется и энтропия, и энергия, мы обсудим немного позже.) Именно поэтому после удара кием шары на бильярдном столе переходят в менее упорядоченное положение. Изменения энтропии в различных системах можно суммировать в виде принципа максимума энтропии :

Любая система самопроизвольно стремится занять наиболее неупорядоченное доступное ей состояние.

Очень часто это же самое формулируется в виде принципа неуменьшения энтропии :

Энтропия изолированной системы не может уменьшиться.

Эта формулировка породила и порождает продолжать массу споров на тему тепловой смерти Вселенной: Вселенная по определению является изолированной системой (поскольку у нее отсутствует окружающая среда, с которой был бы возможен обмен массой или энергией), следовательно, ее энтропия постепенно возрастает. Следовательно, Вселенная придет в конце концов в состояние полной однородной неупорядоченности, в котором не может существовать ни один объект, как-то отличающийся от окружения. Тема в высшей степени увлекательная, но давайте об этом как-нибудь в другой раз.

Энтропия определяется как среднее значение собственной информации ансамбля

Метод максимума энтропии, аналогично методу максимума информации, строится на поиске среди всех возможных распределений вероятностей такого, которое обладает максимальной энтропией вида (3.19). Таким образом, критерий максимума энтропии используется для снятия неопределенности решения, а функционал (3.19) выступает как своеобразная «мера качества» изображения .

Смысл такой меры качества можно понять, обратившись к задаче оценивания плотностей распределения вероятностей в математической статистике. В случае известных моментов случайного распределения оценка, получаемая максимизацией выражения (3.19), является наименее смещенной из всех возможных оценок. Можно ожидать, что максимум (3.19) при наложенных ограничениях на процесс формирования изображения будет давать хорошую оценку плотности распределения. Попытаемся рассмотреть процесс формирования изображения и выяснить физический смысл критерия максимума энтропии.

Пусть суммарная интенсивность источника равна причем из точки излучается интенсивность из Подсчитаем число способов, которыми данный объект может быть сформирован из лучей:

Теперь найдем такое распределение, которое будет сформировано в наибольшем числе случаев

Заменив на его логарифм (максимум при этом не сместится) и используя формулу Стирлинга, получим :

Для решения задачи необходимо учесть также ограничения на уравнения формирования:

а также ограничение на суммарную интенсивность изображения, т. е.

Выражения составляют основу метода максимума энтропии. Физический смысл применения критерия максимума энтропии заключается в поиске такого распределения вероятностей на входе канала, которое в большинстве случаев формирует заданное выходное распределение или поиск наиболее правдоподобного распределения источника при заданных условиях формирования. В этом смысле метод максимума энтропии можно рассматривать как метод максимального правдоподобия для лучевой модели формирования изображений .

Рассмотрим одну из наиболее часто встречающихся форм записи метода максимума энтропии. Будем рассматривать одновременно с формированием изображения параллельное формирование шумового поля :

На основании приведенных рассуждений получим, что шумовое поле может быть создано способами, где

Для решения задачи необходимо максимизировать совместную вероятность формирования изображения и шумового поля

Логарифмирование этого выражения дает сумму энтропий шума и изображения:

Учитывая ограничения на процесс формирования и сохранение числа лучей (суммарную интенсивность), получим следующую задачу оптимизации:

где величины и являются множителями Лагранжа задачи оптимизации. Для решения системы найдем частные производные (3.25) по и приравняем их к нулю:

Подставляя выражения для и из (3.26), (3.27) в уравнения ограничений, находим

Из уравнений вида (3.28) определяются множители Лагранжа которые используются для нахождения функции входного распределения:

Экспонента в (3.29) обеспечивает положительность решения Сам функционал энтропии существенно нелинеен, что обусловливает интересную особенность уравнений (3.29): они могут содержать пространственные частоты, которые отсутствовали в спектре искаженного изображения. Это позволяет говорить о возможности «сверхразрешения», т. е. восстановлении информации, уничтоженной системой формирования с ограниченной полосой (эффекту сверхразрешения и оценке его возможностей посвящена гл. 5). Отметим также, что решения, получаемые на основе (3.29), обладают повышенным качеством по сравнению с линейными алгоритмами восстановления, однако требуют решения сложной системы нелинейных уравнений.

Выражению для энтропии в форме (3.19) существует альтернатива, предложенная Бургом для оценок спектров мощности . Эта форма энтропии имеет следующий вид:

Метод восстановления на основе выражения (3.30) также можно использовать в практике обработки изображений. Пусть нам известны зашумленные отсчеты спектра

где соответственно отсчеты спектров Наложим ограничение на расхождение истинных и зашумленных отсчетов спектра наблюдаемого изображения :

Тогда для нахождения решения требуется максимизировать более простой функционал:

Необходимо отметить, что в последнее время появилось большое число алгоритмов на основе как (3.19), так и (3.30), использующих при этом самые разнообразные ограничения, вытекающие из постановки каждой конкретной задачи. Правда, наличие двух норм энтропии вызывает некоторое сомнение, во-первых, из-за того, что неясно, какую из них использовать на практике, а во-вторых, из-за недостаточно четкой постановки задачи восстановления.

Существует еще одна интересная особенность алгоритмов, основанных на поиске максимума энтропии. Обратимся к выражениям (3.27)-(3.29) для случая идеальной системы формирования, но при наличии аддитивного шума Нетрудно видеть, что применение алгоритма максимума энтропии в этом случае претендует на выделение изображения из шума без каких-либо априорных характеристик шума и сигнала. Однако более внимательный анализ показывает, что решение с помощью уравнений вида (3.28) дает парадоксальный результат: сигнал и шум оказываются связаны линейной зависимостью. Действительно, оценка сигнала здесь равна

а оценка шума будет:

В практических приложениях для избежания этого эффекта выражение для энтропии шума берут с некоторым весовым коэффициентом и вместо (3.24) рассматривают следующий функционал:

Этот прием, однако, оставляет неясным физический смысл производных преобразований.

Еще один недостаток метода максимума энтропии состоит в том, что наилучшие результаты с его помощью получаются при восстановлении объектов, состоящих из отдельных импульсов на однородном фоне, а попытки применения метода к пространственно протяженным объектам вызывают появление флуктуаций .

Изложенные результаты, касающиеся методов максимума энтропии и максимума информации, могут быть объединены

в единую схему, основанную на построении алгоритмов оценивания плотности распределения с помощью метода максимального правдоподобия. Тем самым рассмотренные алгоритмы можно включить в группу методов статистической регуляризации, описанных в § 2.4. Отличие лишь в том, что эти алгоритмы основаны на другой статистической модели - представлении самого изображения как плотности вероятности. Такая модель сразу же приводит к нелинейности рассматриваемых функционалов . Однако отмеченные ранее недостатки заставляют искать алгоритмы, которые, сохраняя преимущества теоретико-информационных методов восстановления (неограниченность по полосе частот, неотрицательность решения и т. п.), позволяют восстанавливать более широкий класс изображений.



Понравилась статья? Поделитесь с друзьями!