Найти ускорение момент времени t. Сложное движение точки

Скорость - векторная величина, характеризующая не только быстроту передвижения частицы по траектории, но и направление, в котором движется частица в каждый момент времени.

Средняя скорость за время от t 1 до t 2 равна отношению перемещения за это время к промежутку времени , за которое это перемещение имело место:

Тот факт, что это именно средняя скорость мы будем отмечать, заключая среднюю величину в угловые скобки: <...> , как это сделано выше.

Приведенная выше формула для среднего вектора скорости есть прямое следствие общего математического определения среднего значения <f(x) > произвольной функции f(x) на промежутке [a,b ]:

Действительно

Средняя скорость может оказаться слишком грубой характеристикой движения. Например, средняя скорость за период колебаний всегда равна нулю, в независимости от характера этих колебаний , по той простой причине, что за период - по определению периода - колеблющееся тело вернется в исходную точку и, следовательно, перемещение за период всегда равно нулю. По этой и ряду других причин, вводится мгновенная скорость - скорость в данный момент времени. В дальнейшем, подразумевая мгновенную скорость, будем писать просто: «скорость», опуская слова «мгновенная» или «в данный момент времени» всегда, когда это не может привести к недоразумениям.Для получения скорости в момент времени t надо сделать очевидную вещь: вычислить предел отношения при стремлении промежутка времени t 2 – t 1 к нулю. Сделаем переобозначения: t 1 = t и t 2 = t + и перепишем верхнее соотношение в виде:

Скорость в момент времени t равна пределу отношения перемещения за время к промежутку времени, за которое это перемещение имело место, при стремлении последнего к нулю

Рис. 2.5. К определению мгновенной скорости.

В данный момент мы не рассматриваем вопрос о существовании этого предела, предполагая, что он существует. Отметим, что если и есть конечное перемещение и конечный промежуток времени, то и - их предельные величины: бесконечно малое перемещение и бесконечно малый промежуток времени. Так что правая часть определения скорости

есть ничто иное как дробь - частное от деления на , поэтому последнее соотношение может быть переписано и весьма часто используется в виде

По геометрическому смыслу производной, вектор скорости в каждой точке траектории направлен по касательной к траектории в этой точке в её сторону движения.

Видео 2.1. Вектор скорости направлен по касательной к траектории. Эксперимент с точилом.

Любой вектор можно разложить по базису (для единичных векторов базиса, другими словами, единичных векторов, определяющих положительные направления осей OX ,OY ,OZ используем обозначения , , или , соответственно). Коэффициентами такого разложении являются проекции вектора на соответствующие оси. Важно следующее: в алгебре векторов доказано, что разложение по базису единственно. Разложим по базису радиус-вектор некоторой движущейся материальной точки

Учитывая постоянство декартовых единичных векторов , , , продифференцируем это выражение по времени

С другой стороны, разложение по базису вектора скорости имеет вид

опоставление двух последних выражений, с учетом единственности разложения любого вектора по базису, дает следующий результат: проекции вектора скорости на декартовы оси равны производным по времени от соответствующих координат, то есть

Модуль вектора скорости равен

Получим ещё одно, важное, выражение для модуля вектора скорости.

Уже отмечалось, что при величина || все меньше и меньше отличается от соответствующего пути (см. рис. 2). Поэтому

и в пределе (>0)

Иными словами, модуль скорости - это производная пройденного пути по времени.

Окончательно имеем:

Средний модуль вектора скорости , определяется следующим образом:

Среднее значение модуля вектора скорости равно отношению пройденного пути ко времени, в течение которого этот путь был пройден:

Здесь s(t 1 , t 2) - путь за время от t 1 до t 2 и, соответственно, s(t 0 , t 2) - путь за время от t 0 до t 2 и s(t 0 , t 2) - путь за время от t 0 до t 1 .

Средний вектор скорости или просто средняя скорость, как указано выше, равен

Отметим, что прежде всего, это вектор, его модуль - модуль среднего вектора скорости не следует путать со средним значением модуля вектора скорости. В общем случае они не равны: модуль среднего вектора вовсе не равен среднему модулю этого вектора . Две операции: вычисление модуля и вычисление среднего, в общем случае, переставлять местами нельзя.

Рассмотрим пример. Пусть точка движется в одну сторону. На рис. 2.6. показан график пройденного ею пути s в от времени (за время от 0 до t ). Используя физический смысл скорости, найти с помощью этого графика момент времени , в который мгновенная скорость равна средней путевой скорости за первые секунд движения точки.

Рис. 2.6. Определение мгновенной и средней скорости тела

Модуль скорости в данный момент времени

будучи производной пути по времени, равен угловому коэффициенту качательной к графику зависисмости точке соответствующей моменту времени t* . Средний модуль скорости за промежуток времени от 0 до t* есть угловой коэффициент секущей, проходящей через точки того же графика, соответствующие началу t = 0 и концу t = t* временного интервала. Нам надо найти такой момент времени t* , когда оба угловых коэффициента совпадают. Для этого через начало координат проводим прямую, касательную к траектории. Как видно из рисунка точка касания этой прямой графика s(t) и дает t* . В нашем примере получается

Инструкция

Введите систему координат, относительно которой вы будете определять направление и модуль . Если в задаче уже задана зависимости скорости от времени, вводить систему координат не нужно – предполагается, что она уже есть.

По имеющейся функции зависимости скорости от времени можно найти значение скорости в любой момент времени t. Пусть, например, v=2t²+5t-3. Если требуется найти модуль скорости в момент времени t=1, просто подставьте это значение в и посчитайте v: v=2+5-3=4.

Источники:

  • как находить зависимость пути от времени

Модуль числа n представляет собой количество единичных отрезков от начала координат до точки n. Причем не важно, в какую сторону будет отсчитываться это расстояние – вправо или влево от нуля.

Инструкция

Модуль числа также принято называть абсолютной величиной этого числа . Он короткими вертикальными линиями, проведенными слева и справа от числа . Например, модуль числа 15 записывается следующим образом: |15|.

Помните, что модуль может быть только положительным числом или . Модуль положительного числа равен числу. Модуль нулю. То есть для любого числа n, которое больше либо равно нулю, будет справедлива следующая |n| = n. Например, |15| = 15, то есть модуль числа 15 равен 15-ти.

Модулем отрицательного числа будет то же число, но с противоположным знаком. То есть для любого числа n, которое меньше нуля, будет справедлива формула |n| = -n. Например, |-28| = 28. Модуль числа -28 равен 28-ми.

Можно находить не только для целых, но и для чисел. Причем в отношении дробных чисел действуют те же правила. Например, |0,25| = 25, то есть модуль числа 0,25 будет равен 0,25. А |-¾| = ¾, то есть модуль числа -¾ будет равен ¾.

При работе полезно знать, что модули всегда равны друг другу, то есть |n| =|-n|. Это является основным свойством . Например, |10| = |-10|. Модуль числа 10 равен 10-ти, точно так же, как модуль числа -10. Кроме того, |a - b| = |b - a|, так как расстояние от точки a до точки b и расстояние от b до a равны друг другу. Например, |25 - 5| = |5 - 25|, то есть |20| = |- 20|.

Для нахождения изменения скорости определитесь с типом движения тела. В случае если движение тела равномерно, изменение скорости равно нулю. Если тело движется с ускорением, то изменение его скорости в каждый момент времени можно узнать, если отнять от мгновенной скорости в данный момент времени его начальную скорость.

Вам понадобится

  • секундомер, спидометр, радар, рулетка, акселерометр.

Инструкция

Определение изменения скорости произвольно движущегося траекторииС помощью спидометра или радара измерьте скорость тела в начале и конце отрезка пути. Затем от конечного результата отнимите начальный, это и будет изменение скорости тела.

Определение изменения скорости тела, движущегося с ускорениемНайдите ускорение тела. Используйте акселерометр или динамометр. Если известна масса тела, тогда силу, действующую на тело, поделите на его массу (a=F/m). После этого измерьте время, за которое происходил изменения скорости . Чтобы найти изменение скорости , умножьте значение ускорения на время, за которое происходило это изменение (Δv=a t). Если ускорение измерить в метрах на секунду , а время - в секундах, то скорость получится в метрах на секунду. Если нет возможности замерить время, но , что скорость менялась на определенном отрезке пути, спидометром или радаром, измерьте скорость в начале этого отрезка, затем с помощью рулетки или дальномера измерьте длину этого пути . Любым из вышеописанных методов измерьте ускорение, которое действовало на тело. После этого найдите конечную скорость тела в конце участка пути. Для этого возведите начальную скорость в , прибавьте к ней произведение участка на ускорение и число 2. Из результата извлеките . Чтобы найти изменение скорости , от полученного результата отнимите значение начальной скорости .

Определение изменения скорости тела при поворотеЕсли не только величина, но и направление скорости , то найдите ее изменение векторную разность начальной и конечной скорости . Для этого измерьте угол между векторами. Затем от суммы квадратов скоростей отнимите удвоенное их произведение, умноженное на косинус угла между ними: v1²+v2²-2v1v2 Cos(α). Из полученного числа извлеките квадратный корень.

Видео по теме

Для определения скорости различных видов движения понадобятся разные формулы. Чтобы определить скорость равномерного движения, расстояние поделите на время его прохождения. Среднюю скорость движения находите сложением всех отрезков, которое прошло тело, на общее время движения. При равноускоренном движении узнайте ускорение, с которым двигалось тело, а при свободном падении высоту, с которой оно начало движение.

Вам понадобится

  • дальномер, секундомер, акселерометр.

Инструкция

Скорость равномерного движения и средняя скоростьИзмерьте расстояние с помощью дальномера, которое прошло тело, а время, за которое оно его преодолело, с помощью секундомера. После этого поделите расстояние, пройденное телом на время его прохождения, результатом будет скорость равномерного движения (v=S/t). Если тело движется неравномерно, произведите те же измерения и примените ту же формулу - тогда получите среднюю скорость тела. Это , что если бы тело по данному отрезку пути двигалось с полученной скоростью, оно было бы в пути время, равное измеренному. Если тело движется по , измерьте ее и время прохождения оборота, затем радиус умножьте на 6,28 и поделите на время (v=6,28 R/t). Во всех случаях результат получится в метрах в секунду. Для перевода в час помножьте его на 3,6.

Скорость равноускоренного движенияИзмерьте ускорение тела с помощью акселерометра или динамометра, если известна масса тела. Секундомером замерьте время движения тела и его начальную скорость, если тело не начинает двигаться из состояния покоя. Если же тело двигается из состояния покоя, она равна нулю. После этого узнайте скорость тела, прибавив к начальной скорости произведение ускорения на время (v=v0+at).

Скорость свободно падающего телаС помощью дальномера измерьте , с которой тело в метрах. Чтобы узнать скорость, с которой оно долетит до поверхности Земли (без учета сопротивления ), умножьте высоту на 2 и на число 9,81 (ускорение свободного падения). Из результата извлеките квадратный . Чтобы найти скорость тела на любой высоте, применяйте ту же методику, только от начальной , отнимайте текущую и полученное значение подставляйте вместо высоты.

Видео по теме

Человек привык воспринимать понятие "скорость " как нечто более простое, чем это есть на самом деле. Действительно, проносящийся на перекрестке автомобиль движется с определенной скорость ю, в то время как человек стоит и наблюдает за ним. Но если человек находится в движении, то разумнее говорить не об абсолютной скорости, а об относительной ее величине. Найти относительную скорость очень легко.

Инструкция

Можно продолжить рассмотрение темы движущегося на перекрестка на автомобиле. Человек же, стоя на красном свете светофора, стоит и на проезжающий автомобиль. Человек неподвижен, поэтому примем его за систему отсчета. Система отсчета - такая , относительно которой движется какое-либо тело или иная материальная точка.

Допустим, автомобиль движется со скорость ю 50 км/ч. Но, допустим, что побежал вслед автомобилю (можно, например, вместо автомобиля представить маршрутку или проезжающий мимо ). Скорость бега 12 км/ч. Таким образом, скорость данного механического транспортного средства представится не столь и быстрой, как было раньше, когда он ! В этом вся и суть относительной скорости. скорость всегда измеряется касательно подвижной системы отсчета. Таким образом, скорость автомобиля не будет для пешехода 50 км/ч, а 50 - 12 = 38 км/ч.

Можно рассмотреть еще один . Достаточно вспомнить любой из моментов, когда человек, сидя у окна автобуса, наблюдает за проносящимися мимо автомобилями. Действительно, из окна автобуса их скорость кажется просто ошеломляющей. И это не удивительно, ведь, если принять автобус за систему отсчета, то скорость автомобиля и скорость автобуса нужно будет сложить. Допустим, что автобус движется со скорость ю 50 км/ч, а 60 км/ч. Тогда 50 + 60 = 110 км/ч. Именно с такой скорость ю эти самые автомобили проносятся мимо автобуса и пассажиров в нем.
Эта же скорость будет справедлива и действительна и в том случае, если за систему отсчета принять любой из проезжающих мимо автобусов автомобилей.

Кинематика изучает различные виды движения тела с заданной скоростью, направлением и траекторией. Чтобы определить его положение относительно точки начала пути, нужно найти перемещение тела .

Инструкция

Движение тела происходит по некоторой траектории. В случае прямолинейного движения ею линия, поэтому найти перемещение тела довольно просто: оно равно пройденному пути. В противном случае определить его можно начального и конечного положения в пространстве.

В общих целях нахождение скорости объекта (v) – простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt) , то есть представляет собой производную от формулы для вычисления средней скорости тела. .

Шаги

Часть 1

Вычисление мгновенной скорости
  1. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени), то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне – члены с переменной t (время). Например:

    s = -1.5t 2 + 10t + 4

    • В этом уравнении: Перемещение = s . Перемещение – пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 - 7 = 3 м (а на 10 + 7 = 17 м). Время = t . Обычно измеряется в секундах.
  2. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, вы должны вычислить производную этого уравнения. Производная – это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*x n , то производная = a*n*x n-1 . Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t 2 + 10t + 4
      (2)-1.5t (2-1) + (1)10t 1 - 1 + (0)4t 0
      -3t 1 + 10t 0
      -3t + 10

  3. Замените "s" на "ds/dt", чтобы показать, что новое уравнение – это производная от исходного уравнения (то есть производная s от t). Производная – это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t 2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени. Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время – в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с – правильная.

    Часть 2

    Графическая оценка мгновенной скорости
    1. Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке). Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

      • По оси Y откладывайте перемещение, а по оси Х - время. Координаты точек (х,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
      • График может опускаться ниже оси Х. Если график перемещения тела опускается ниже оси Х, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не будет распространяться за ось Y (отрицательные значения х) – мы не измеряем скорости объектов, движущихся назад во времени!
    2. Выберите на графике (кривой) точку Р и близкую к ней точку Q. Чтобы найти наклон графика в точке Р, используем понятие предела. Предел – состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

      • Например, рассмотрим точки Р(1,3) и Q(4,7) и вычислим мгновенную скорость в точке Р.
    3. Найдите наклон отрезка РQ. Наклон отрезка РQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами H = (y Q - y P)/(x Q - x P), где H – наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

      H = (y Q - y P)/(x Q - x P)
      H = (7 - 3)/(4 - 1)
      H = (4)/(3) = 1.33

    4. Повторите процесс несколько раз, приближая точку Q к точке Р. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке Р. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки Р остаются прежними):

      Q = (2,4.8): H = (4.8 - 3)/(2 - 1)
      H = (1.8)/(1) = 1.8

      Q = (1.5,3.95): H = (3.95 - 3)/(1.5 - 1)
      H = (.95)/(.5) = 1.9

      Q = (1.25,3.49): H = (3.49 - 3)/(1.25 - 1)
      H = (.49)/(.25) = 1.96

    5. Чем меньше расстояние между точками Р и Q, тем ближе значение Н к наклону графика в точке Р. При предельно малом расстоянии между точками Р и Q, значение Н будет равно наклону графика в точке Р. Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

      • В нашем примере при приближении Q к P мы получили следующие значения Н: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке Р равен 2.
      • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Часть 3

    Примеры
    1. Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t 3 - 3t 2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

      • Сначала вычислим производную этого уравнения:

        s = 5t 3 - 3t 2 + 2t + 9
        s = (3)5t (3 - 1) - (2)3t (2 - 1) + (1)2t (1 - 1) + (0)9t 0 - 1
        15t (2) - 6t (1) + 2t (0)
        15t (2) - 6t + 2

        t = 1.01: s = 4(1.01) 2 - (1.01)
        4(1.0201) - 1.01 = 4.0804 - 1.01 = 3.0704, so Q = (1.01,3.0704)

      • Теперь вычислим H:

        Q = (2,14): H = (14 - 3)/(2 - 1)
        H = (11)/(1) = 11

        Q = (1.5,7.5): H = (7.5 - 3)/(1.5 - 1)
        H = (4.5)/(.5) = 9

        Q = (1.1,3.74): H = (3.74 - 3)/(1.1 - 1)
        H = (.74)/(.1) = 7.3

        Q = (1.01,3.0704): H = (3.0704 - 3)/(1.01 - 1)
        H = (.0704)/(.01) = 7.04

      • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).
    • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод в части первой, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени - все, что вам нужно сделать, это подставить значение для времени.
    • Уравнение, описывающее зависимость у (перемещение) от х (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной х, то есть в нашем примере =6.
    • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

В прошлой статье мы немножко разобрались с тем, то такое механика и зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Траектория, радиус-вектор, закон движения тела

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве .

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат (или радиус-вектора точки) от времени.

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории . Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное .

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Здесь R – радиус окружности, по которой движется тело

Здесь - x нулевое- начальная координата. v нулевое - начальная скорость. Продифференцируем по времени, и получим скорость

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Например такую: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Дорогие друзья, поздравляем! Если Вы прочли эту статью по основам кинематики, а вдобавок еще и узнали что-то новое, Вы уже сделали доброе дело! Искренне надеемся, что наша "кинематика для чайников" Вам пригодится. Дерзайте и помните – всегда готовы помочь Вам с решением каверзных задачек с коварными дешевыми ловушками. . Успехов в изучении механики!



Понравилась статья? Поделитесь с друзьями!