Береговые волновые преобразователи. Типы волновых энергетических установок

Под упругой средой понимают среду, между частицами которой действуют упругие силы. Если какую-либо частицу среды заставить совершать колебания, то за счет действия упругих сил в колебательное движение приходят сначала ближайшие к ней соседние частицы, затем ближайшие к этим соседям частицы и т.д., в колебательный процесс вовлекаются все новые и новые частицы, говорят, что в среде распространяется упругая волна. Итак, под бегущей волной понимают процесс распространения колебаний в среде. Этот процесс сопровождается переносом энергии от источника колебаний, причем переноса частиц в направлении движения волны не происходит, они совершают колебания около своих положений равновесия.

Нужно отметить, что под частицей среды понимают не отдельную молекулу, а совокупность большого числа молекул, обладающих примерно одинаковыми свойствами (одинаковыми смещениями от своих положений равновесия, одинаковыми скоростями и т.д.). Размеры частиц должны быть достаточно малыми, значительно меньше возмущений, возникающих в среде, в частности, значительно меньше длины волны, распространяющейся в среде. Такие частицы препятствуют различным деформациям и, таким образом, среда проявляет упругие свойства. Молекулярное строение среды при этом не рассматривается, она считается сплошной.

Различают продольные и поперечные волны . В продольной волне частицы среды совершают колебания вдоль вектора скорости распространения волны, а в поперечной волне – перпендикулярно к нему (рис. 6.1,а).

Продольные волны связаны с деформациями сжатия и растяжения малых объемов среды (рис. 6.1,а), и поэтому они распространяются во всех средах. В отличие от продольных волн поперечные волны связаны с деформацией сдвига (рис. 6.1,б), поэтому они распространяются только в твердых телах, так как для жидкостей или газов такая деформация отсутствует. Отметим, что кроме волн в упругой среде также выделяют волны на поверхности жидкости, здесь частицы среды совершают сложные колебания, включающие в себя и поперечные и продольные движения.

Введем характеристики, описывающие волновой процесс, на примере гармонической (синусоидальной) волны. Гармонической (синусоидальной) волной называют волну, для которой частицы среды совершают гармонические колебания около своих положений равновесия с определенной циклической частотой .

Рассмотрим процесс возникновения в среде поперечной плоской гармонической волны. Пусть в момент времени
все частицы в плоскости
(для этой плоскости координата равна нулю-) начинают совершать гармонические колебания с периодом колебаний . На рис. 6.2 для частиц, расположенных на оси
, показаны фотографии волны в моменты времени
и .

Эти фотографии дают в эти моменты

времени смещения
частиц среды около своих положений равновесия. Так, например, в момент времени

частица 1 будет максимально отклонена от своего положения равновесия, ее смещение равно амплитуде колебания , при этом волна за это время проходит расстояние до частицы с номером 3. В момент времени
, частица 1 проходит положение равновесия , частица 3 максимально отклонена вверх , волна доходит до частицы с номером 5. В момент времени
волна достигает частицы с номером 9 и расстояние, пройденное волной за это время, называют длиной волны и обозначают символом .

Учитывая приведенные выше фотографии распространения плоской поперечной гармонической волны в среде, можно дать следующие определения основных характеристик волнового процесса.

1. Период Т волны – время одного полного колебания частиц среды.

2. Фазовая скорость волны или скорость распространения волны – скорость перемещения данной фазы колебаний в среде.

3. Длина волны - расстояние, которое проходит волна за один период или минимальное расстояние между частицами среды, совершающими колебания

с разностью фаз, равной
. Из определения длины волны можно записать следующую формулу:

4. Волновая поверхность - поверхность, проведенная через равновесные положения частиц среды, совершающих колебания в одинаковой фазе (на Рис. 6.3 приведены волновые поверхности для плоской гармонической волны). Волновых поверхностей много, и они неподвижны.

5. Фронт волны - поверхность, разделяющая частицы среды на вовлеченные и не вовлеченные в колебательное движение. Фронт волны один, и он движется со скоростью волны. Можно сказать, что фронт волны – это самая дальняя от источника колебаний в данный момент времени волновая поверхность. В каждой точке фронта волны вектор фазовой скорости направлен перпендикулярно к ней.

Форма волновых поверхностей и фронта волны зависит от условий возникновения и распространения волны. По виду фронта волны выделяют плоские, сферические, и цилиндрические волны (рис. 6.4). Для этих волн источником колебаний являются соответственно плоскость, точка и протяженная нить.

Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна. Интерференция и дифракция волн. Бегущие и стоячие волны. Фазовая скорость, длина волны, волновое число, волновой вектор. Упругие волны в газах, жидкостях и твердых телах. Энергетические характеристики упругих волн. Вектор Умова.


6.1. Кинематика и динамика волновых процессов.
Плоская стационарная и синусоидальная волна

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Процесс распространения колебаний в пространстве.

Распространение колебаний в пространстве происходит благодаря взаимодействию между частицами упругой среды. Волна в отличие от колебаний характеризуется не только периодичностью во времени, но и периодичностью в пространстве. Частицы среды при этом не переносятся волной, они лишь совершают колебания около своих положений равновесия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества в пространстве. Среди разнообразия волн, встречающихся в природе и технике, выделяют упругие, на поверхности жидкости и электромагнитные.

Упругими (или механическими) волнами называются механические возмущения, возникающие и распространяющиеся в упругой среде. К упругим волнам относятся звуковые и сейсмические волны; к электромагнитным – радиоволны, свет и рентгеновские лучи.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны различают продольные и поперечные волны.

Продольные – это волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – это волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.

В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому упругие деформации в них могут распространяться только в виде продольных волн (“волны сжатия”).

В твердых телах, в которых упругие силы возникают при сдвиге, упругие деформации могут распространяться не только в виде продольных, но и в виде поперечных волн (“волны сдвига”). В твердых телах ограниченного размера (например, в стержнях и пластинах) картина распространения волны более сложна: здесь возникают еще и другие типы волн, являющиеся комбинацией первых двух основных типов.

В электромагнитных волнах направления электрического и магнитного полей почти всегда перпендикулярны направлению распространения волны, (за исключением случаев анизотропных сред и распространения в несвободном пространстве) поэтому электромагнитные волны в свободном пространстве поперечны.

Волны могут иметь различную форму. Одиночной волной, или импульсом, называется сравнительно короткое возмущение, не имеющее регулярного характера. Ограниченный ряд повторяющихся возмущений называется цугом волн.

Гармоническая волна – бесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса. Такие возмущения могут распространяться в однородной среде (если их амплитуда невелика) без искажения формы.

Геометрическое место точек, до которых доходят волны за некоторый промежуток времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновых поверхностей существует бесконечное множество, в то время, как волновой фронт в каждый момент времени только один. Волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одинаковой фазе). Волновой фронт все время перемещается. Волновые поверхности могут иметь различную геометрию. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, а в сферической волне - систему концентрических сферических поверхностей.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l. Длина волны равна расстоянию, на которое распространяется волна за один период:

Или , (6.1)

где l - длина волны;

T – период волны, т.е. время, за которое совершается один полный цикл колебания;

n - частота, т.е. число периодов в единицу времени.

Направление волны определяется с помощью волнового вектора k . Направление волнового вектора совпадает с направлением вектора скорости:

, (6.2)

где w - круговая или циклическая частота.

В акустике и оптике численное значение волнового вектора представляют в виде волнового числа:

. (6.3)


6.2. Уравнение плоской волны

Уравнение плоской волны - выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени, т.е.

Рис.6.1

x = x(x, у, z, t), (6.4)

где x - смещение.

Эта функция должна быть периодической как относительно t, так и относительно x, у, z. Найдем вид функции в случае плоской волны, распространяющейся в направлении оси X (рис. 6.1). Пусть плоская стенка совершает гармоническое колебание, согласно выражению

. (6.5)

В точке пространства, расположенной на расстоянии x от места возникновения волны, частицы будут совершать те же колебания, что и в точке возникновения волны. Волновые поверхности в этом случае будут перпендикулярны к оси X. Поскольку все точки волновой поверхности колеблются одинаково, то смещение x будет зависеть только от x и t x = x(x, t).

Для прохождения расстояния от места возникновения до рассматриваемой точки волне требуется время. Фронт волны придет в рассматриваемую точку пространства спустя время .

Уравнение колебаний в рассматриваемой точке будет иметь вид

Формула (6.6) представляет собой уравнение прямой бегущей волны, т.е. распространяющейся в направлении положительной полуоси X.

Бегущими волнами называются волны, которые переносят в пространстве энергию. Количественно перенос энергии волнами характеризуется вектором плотности потока энергии

. (6.7)

Вектор плотности потока энергии физическая величина, модуль которой равен энергии DE, переносимой волной за единицу времени (Dt=1) через единичную площадку, расположенную перпендикулярно направлению распространения волны (DS ^). Направление вектора потока плотности энергии (вектора Умова) совпадает с направлением переноса энергии. Можно показать, что численное значение вектора потока плотности энергии определяется соотношением

где u – плотность энергии в каждой точке среды, среднее значение которой равно:

;

ρ – плотность среды;

x 0 – амплитуда волны; w - круговая (циклическая частота);

v – фазовая скорость (скорость перемещения фазы волны).

В векторной форме:

j = u×v . (6.9)

Фазовая скорость упругих волн:

а) продольных ; (6.10)

б) поперечных , (6.11)

где E – модуль Юнга (характеристика упругих свойств среды, обратная коэффициенту упругости);

G – модуль сдвига (он равен такому тангенциальному напряжению, при котором угол сдвига оказался бы равен 45 о, если бы при столь больших деформациях не был превзойден предел упругости).

Понятие фазовой скорости справедливо для монохроматических волн.

Так как распространяющиеся в пространстве волны представляют собой волновой пакет (в силу принципа суперпозиции), то кроме фазовой скорости, для волнового пакета вводят в рассмотрение понятие групповой скорости. Волновой пакет – совокупность волн, частоты которых мало отличаются друг от друга.

Групповой скоростью называют скорость перемещения в пространстве амплитуды волны. С ней происходит перенос энергии волны. Групповая скорость определяется следующим соотношением:

. (6.12)

Уравнение обратной волны можно получить путем замены в (6.6) х на (-х):


6.3.Волновое уравнение

Оказывается, что уравнение любой волны является решением некоторого дифференциального уравнения второго порядка, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и времени от уравнения волны: .

Производные по х:

; . (6.14)

Производные по t:

; . (6.15)

Разделим обе части уравнения (6.15) на v 2:

или . (6.16)

Сравнивая выражения (6.14) и (6.16), убеждаемся в равенстве их правых частей, поэтому можем приравнять левые части этих уравнений:

. (6.17)

Соотношение (6.17) является волновым уравнением плоской волны, распространяющейся вдоль оси X .

Волновое уравнение плоской волны, распространяющейся в трехмерном пространстве, имеет вид

. (6.17)

В математике вводят специальный оператор, называемый оператором Лапласа:

. (6.18)

С применением оператора Лапласа /лапласиана/ волновое уравнение (6.17) принимает вид

Если при анализе какого-либо процесса, получают уравнение вида (6.19), то это означает, что рассматриваемый процесс - волна, распространяющаяся со скоростью v.


6.4. Интерференция волн. Стоячие волны

При одновременном распространении в среде нескольких волн частицы среды совершают колебание, являющееся результатом геометрического сложения колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны накладываются одна на другую, не изменяя друг друга. Это явление называют принципом суперпозиции волн .

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают разностью фаз и имеют одинаковую частоту, волны называются когерентными. Когерентные волны излучаются когерентными источниками. Когерентными источниками называют точечные источники, размерами которых можно пренебречь, излучающие в пространство волны с постоянной разностью фаз. При сложении когерентных волн возникает явление интерференции .

Интерференция – это явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве. Возникает интерференционная картина, заключающаяся в том, что колебания в одних точках усиливают, а в других - ослабляют друг друга.

Наиболее часто интерференция возникает при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающая в результате такой интерференции волна называется стоячей . Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и встречная - отраженная, складываясь, образуют стоячую волну.

Пусть вдоль оси X распространяются прямая и обратная плоские волны, уравнения которых имеют вид

В данном случае результирующее колебание получается путем алгебраического сложения:

Воспользовавшись тригонометрическим тождеством

перепишем (6.22) в виде

Выражение (6.23) - уравнение стоячей волны.

Амплитуда стоячей волны

. (6.24)

Из (6.24) видно, что амплитуда, зависящая от x, может достигать максимального и минимального значений.

Действительно:

1) при kx = ± np (n = 0, 1, 2, ¼) амплитуда максимальна: A = 2x 0 . Точки, в которых амплитуда смещения удваивается, называются пучностями стоячей волны;

2) при kx = ± (2n + 1)p амплитуда обращается в нуль. Эти точки называются узлами стоячей волны.

Расстояние между соседними (узлам) – длина стоячей волны l 0 . Длина стоячей волны

В звуковом интерферометре источником звука (источником волны) является мембрана или пьезоэлектрическая пластинка - 1 (рис.6.3). Имеется отражатель (рефлектор) - 2. Перемещая рефлектор, получают систему стоячих звуковых волн. Если при перемещении рефлектора на расстояние L возникло n узлов, то скорость распространения звука будет равна

. (6.26)


То есть для определения скорости распространения волны (звуковой волны) необходимо измерить длину стоячей волны l 0 и частоту звуковых колебаний.

Лекция 7. Энергия, работа, мощность

Работа силы и её выражение через криволинейный интеграл. Мощность. Энергия как универсальная мера различных форм движений и взаимодействий. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе. Энергия системы, совершающей вращательное движение. Энергия системы, совершающей колебательное движение. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия тела, находящегося в поле тяготения другого тела. Потенциальная энергия и устойчивость системы. Внутренняя энергия. Энергия упругой деформации.


7.1. Работа силы и её выражение через криволинейный интеграл

Работа - это изменение формы движения, рассматриваемое с его количественной стороны. В общем смысле работа - это процесс превращения одних форм движения материи в другие и одновременно количественная характеристика этого процесса.

Механическая работа - процесс, в котором под действием сил изменяется энергия системы, и одновременно количественная мера этого изменения.

При совершении работы всегда имеются сила, действующая на материальную точку (систему, тело), и вызванное данной силой перемещение. При отсутствии хотя бы одного из этих факторов работа не совершается.

Элементарная работа некоторой силы F , действующей на материальную точку (тело, систему), вызывающей элементарное перемещение dr , равна произведению силы на перемещение:

dA = F ×dr = F×dr×cosa = F r ×dr, (7.1)

где α - угол между направлением перемещения и направлением действующей силы.

Из (7.1) следует, что при

α < π/2, dA > 0 - работа положительная;

α = π/2, dA = 0 - работа не совершается;

α > π/2, dA < 0 - работа отрицательная;

α = 0, dA = F×dr - направление перемещения и направление действующей силы совпадают.

В том случае, когда величина тангенциальной составляющей силы остаётся всё время неизменной, то работа определяется соотношением

В частности, это условие выполняется, если тело движется прямолинейно, и постоянная по величине сила образует с направлением движения постоянный угол . Поэтому выражению (7.2) в данном случае можно придать следующий вид:

Надо отметить, что понятие работы в механике существенно отличается от обыденного представления о работе. Например, для того, чтобы держать тяжелый груз, стоя неподвижно, а тем более для того, чтобы перенести этот груз по горизонтальному пути, носильщик затрачивает определенные усилия, т.е. "совершает работу". Однако работа как механическая величина в этих случаях равна нулю.

Вектор силы на плоскости всегда можно разложить на две составляющие - нормальную и тангенциальную. Ясно, что только тангенциальная составляющая силы способна совершить работу. В случае, когда величина проекции силы на направление перемещения не остается постоянной во времени, для вычисления работы следует разбить путь S на элементарные участки , взяв их столь малыми, что за время прохождения телом такого участка можно было бы считать силу постоянной. Тогда на каждом элементарном участке пути DS 1 работа силы равна

. (7.4)

А работа на всем пути S может быть вычислена как сумма элементарных работ:

. (7.5)

В общем случае, когда материальная точка (тело, система), двигаясь по криволинейной траектории, проходит путь конечной длины, можно мысленно разбить этот путь на бесконечно малые элементы, на каждом из которых сила F может считаться постоянной, а элементарная работа может быть вычислена по формуле (7.1). Сложив все эти элементарные работы и перейти к пределу, устремив к нулю длины всех элементарных перемещений, а их число – к бесконечности, получим

. (7.6)

Выражение (7.6) называют криволинейным интегралом вектора F вдоль траектории L.

Рис.7.1

Работу, определяемую формулой (7.6), можно изобразить графически, в координатах F - S, площадью фигуры, что соответствует нахождению криволинейного интеграла. На рис.7.1 построен график F t как функции положения точки на траектории. Из рисунка видно, что элементарная работа численно равна площади заштрихованной полоски, а работа

Экспериментально установлено, что работа сил тяжести, упругих сил, электрических сил не зависит от формы траектории, а определяется начальным и конечным положениями материальной точки (системы, тела). Работа этих сил по замкнутой траектории равна нулю:

. (7.11)

Силы, для которых выполняется данное условие, называются консервативными или потенциальными.

Работа консервативных сил на любом замкнутом пути равна нулю. Поэтому потенциальное поле сил можно определить как поле таких сил, работа которых на любом замкнутом пути равна нулю. Поскольку работа в потенциальном поле сил на замкнутом пути равна нулю, то на одних участках замкнутого пути силы совершают положительную работу, а на других – отрицательную.

Все силы, не удовлетворяющие этому условию, называются неконсервативными.

Типы волновых энергетических установок.

Наиболее распространенными волновыми установками являются поплавковые. Рабочее тело таких установок – поплавок – находится на поверхности моря и совершает вертикальные колебания в соответствии с изменениями уровня воды при ветровом волнении. Вертикальные перемещения поплавка используются для попеременного сжатия газа или жидкости в какой-либо емкости, или они преобразуются во вращательное движение электрического генератора и т.п. Например, буй диаметром 16 м, разработанный в Норвегии, при амплитуде вертикальных перемещений 8 м способен при КПД 80% вырабатывать до 4 млн. кВт∙час в год . Амплитуда колебаний поплавка может быть существенно (в 10-12 раз) увеличена за счет усовершенствования его конструкции. Для увеличения амплитуды (резонанса) вертикальный цилиндрический поплавок частично (в зависимости от параметров волны и поплавка) заполняется водой или к поплавку подвешивается груз соответствующей массы. Крупномасштабная модель резонансного поплавка (рис. 2), исследованная в Японии, имела диаметр 2,2 м, высоту 22 м, массу 13,5 т, пропеллерную турбину диаметром 0,8 м. Амплитуда колебаний поплавка достигала 8 м при волнах высотой от 0,5 до 1,5 м.

Рис. 2 Резонансный поплавок

Установка, получившая название “осциллирующий (колеблющийся) водяной столб”, представляет собой камеру, нижняя открытая часть которой погружена под наинизший уровень воды (впадины волны). При поднятии и опускании уровня в камере происходят циклическое сжатие и расширение воздуха, движение которого через систему клапанов приводит во вращение воздушную турбину, расположенную в отверстии на верху камеры. Характеристика эффективности осциллирующего водного столба представлена на рис. 3.

Рис. 3. КПД осциллирующего водного столба
H и λ - соответственно, высота и длина волны.

Наиболее известная установка этого типа, получившая название “буй Масуды” была предложена И. Масудой (Япония в 1961 г. Волновая энергетическая установка, состоящая из нескольких соединенных между собой “осциллирующих водных столбов” была выполнена в виде судна, получившего название “Каймей”, водоизмещением 500 т. Энергетическое оборудование установки составляет 3 воздушные турбины с рабочими колесами диаметром 1,4 м и генераторами переменного тока мощностью по 125 кВт. Во время испытаний максимальная мощность наблюдалась при равенстве длины волны и установки (судна).

Примером практической реализации этой технологии может служить многомиллионный проект Wave Hub финансируется на средства правительства Великобритании, европейских фондов и промышленных компаний. Разместится эта станция в море, у побережья Корнуолла, примерно в 16 километрах от города Хэйли (Hayle). Несмотря на статус «демонстрационной», станция будет поставлять в сеть до 20 мегаватт, что эквивалентно потребности нескольких тысяч домохозяйств, причём в дальнейшем мощность планируют нарастить.

План предусматривает необычную схему развития. Власти Юго-Запада Англии передадут в аренду компаниям «персональные» кусочки моря размером 1 х 2 километра. Там промышленники установят комплексы волновых генераторов различных схем, и все они при помощи кабелей будут соединены с берегом.

Wave Hub опирается на волновые генераторы PowerBuoy от американской компании Ocean Power Technologies (OPT), обладающей отделением в Британии. PowerBuoy работает за счёт вертикального перемещения крупного (в несколько метров) поплавка, скользящего вдоль колонны, заякоренной на дне. В районе расположения Wave Hub глубина моря составляет 50 метров. Близ Хэйли OPT должна развернуть парк таких генераторов мощностью по 150 киловатт каждый.

Wave Hub начало выработку энергии для потребителей в 2011 г. При этом номинально тестовый проект запланирован на пять лет, но предусматривает продление работы и, главное, расширение сети генераторов до общей мощности в 50 мегаватт. Британия намерена стать мировым лидером в использовании энергии моря.

Поплавки, находящиеся на поверхности моря, могут совершать не только вертикальные колебания, но и угловые перемещения в соответствии с профилем волны. Рабочее тело таких установок состоит из двух или многих поплавков, соединенных между собой шарнирами в виде поршневых насосов или гофрированных “мехов”. Установки используют изменение формы поверхности моря при ветровом волнении (путем изменения углового положения между поплавками) для привода в действие насосов или “мехов”. Наиболее известной установкой этого типа является “контурный (шарнирный) плот Кокерелля (рис. 4), предложенный в 1972 г. Характеристика эффективности плота представлена на рис. 5.

Рис. 4. Контурный (шарнирный) плот Кокерелля

Рис. 5. Эффективность двузвенного контура плота
при жесткой стабилизации заднего звена.

Модель также в 1/10 величины испытывалась в проливе Солент вблизи г. Саутгемптона. Контурный плот устанавливается перпендикулярно к фронту волны и отслеживает ее профиль. Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера (которая будет рассмотрена ниже), но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным). Изготовление таких плотов не потребует создания новых промышленных предприятий и позволит поднять занятость в судостроительной промышленности.

Эффективность поплавковых установок возрастает, если применить эксцентрические поплавки, которые не только раскачиваются на волнах, но и воспринимают давление набегающей волны. Широко известной установкой этого типа является “утка” Солтера. Техническое название такого преобразователя – колеблющееся крыло. Форма преобразователя обеспечивает максимальное извлечение мощности (рис. 6.).


Рис. 6. «Утка Солтера»: а – схема преобразования энергии волны; б – вариант конструкции преобразователя; 1 – плавучая платформа; 2 – цилиндрическая опора с размещенными в ней приводами и электрогенераторами; 3 – асимметричный поплавок.

Поплавок имеет форму цилиндрического асимметричного поплавка, сидящего на горизонтальной оси, с тыловой частью в форме кругового цилиндра. Ось располагается вдоль фронта волны. Под воздействием волн на выступ эксцентрика он совершает угловые колебания вокруг оси. Горизонтальная ось должна быть стабилизирована от линейных и вращательных перемещений. С этой целью Солтер предложил использовать фронтальную фазовую стабилизацию – делать ось достаточно длинной и размещать на ней несколько кулачков, с тем, чтобы гребни волн, подходящие в разных фазах, взаимно компенсировали усилия на ось. Эффективность данного устройства исследовалась многими авторами, которые подтвердили результаты, полученные С. Солтером (рис. 7). Было показано также, что система, состоящая из трех-четырех тел, способна поглотить почти всю энергию случайной волны в широком диапазоне частот. Даже ограничение системы двумя телами сохраняет способность отбора более 95% энергии случайной волны в широком спектре частот. При этом эффективность каждого из тел максимальна в своем диапазоне частот (рис.8.).



Рис. 7. КПД “утки” Солтера с одной степенью свободы

Рис. 8. Эффективность системы из двух “уток” Солтера.

Первоначально Солтером был создан макет достаточно узкополосного по частоте устройства. В волновом бассейне оно поглощало до 90 % падающей энергии. Первые испытания в условиях, близких к морским, были проведены в мае 1977 г. на оз. Лох-Несс. 50-метровая гирлянда из 20-метровых «уток» общей массой 16 т была спущена на воду и испытывалась в течение 4 месяцев при различных волновых условиях. В декабре того же года эта модель в 1/10 будущей величины океанского преобразователя была вновь спущена на воду и дала первый ток. В течение 3 мес. одного из самых суровых зимних периодов модель первой английской волновой электростанции работала с КПД около 50 %. Дальнейшие разработки Солтера направлены на то, чтобы обеспечить утке способность противостоять ударам максимальных волн и создать заякоренную гирлянду преобразователей в виде достаточно гибкой линии. Предполагается, что характерный размер реальной утки будет равен примерно 0,1? , что для 100-метровых атлантических волн соответствует 10 м. Нить из уток протяженностью несколько километров предполагается установить в районе с наиболее интенсивным волнением западнее Гебридских островов. Мощность всей станции будет примерно 100 МВт. Наиболее серьезными недостатками для «уток Солтера» оказались следующие:

Необходимость передачи медленного колебательного движения на привод генератора;

Необходимость снятия мощности с плавающего на значительной глубине устройства большой протяженности;

Вследствие высокой чувствительности системы к направлению волн необходимость отслеживать изменение их направления для получения высокого КПД преобразования;

Затруднения при сборке и монтаже из-за сложность формы поверхности «утки».

Хотя устройство работает достаточно эффективно, проект был практически закрыт в середине 80-х из-за того, что в отчете ЕС цена выработанной электроэнергии с помощью такой технологии была ошибочно оценена в 10 раз выше реальной. Сейчас допущенная ошибка обнаружена, и интерес к устройству Салтера снова возрастает.

Грейферный ковш (рис.9.) - другое устройство, которое, подобно "Утке", может генерировать энергию, "используя" колебания морской воды. Грейферный ковш - устройство с шестью воздушными подушками, установленными вокруг полого круглого столба. При ударе волн о конструкцию, воздух "выдавливается" между шестью подушками через полый столб, который оборудован самонастраивающимися турбинами. Даже при учете затрат на кабель, соединяющий устройство с берегом, подсчитано, что грейферный ковш может вырабатывать электроэнергию по цене около 0,06 доллара США за 1 кВт·ч.

В июле 1998 года Центр морской науки и технологии Японии начал работу по проекту самой большой в мире морской силовой установки, полноразмерный прототип которой был протестирован в 2000 году. Это плавучее устройство получило название "Могучий Кит" (рис.10.). Установка длиной 50 м и шириной 30 м использует волны Тихого океана для привода трёх воздушных турбин (одна номинальной мощностью 50 кВт + 10 кВт и две по 30 кВт), установленных на бортовой платформе.

После того, как прототип установки был отбуксирован к месту швартовки приблизительно в 1,5 км от выхода из залива Гокашо, он был поставлен на якорь (приблизительно на 40-метровой глубине) шестью тросами; четыре троса по направлению к морю и два - на подветренной стороне. По своей прочности тросы рассчитаны на тайфун, а сама установка может выдерживать 8-метровые волны. "Могучий Кит" преобразует энергию волны в электроэнергию, используя колеблющиеся водяные столбы для привода воздушных турбин. Волны, попадающие внутрь и вытекающие из воздушных камер, расположенных у входного отверстия, заставляют уровень воды в камерах повышаться и понижаться. Под воздействием воды воздух входит или выходит из камер сквозь сопла в верхней части. В результате высокоскоростные потоки воздуха вращают воздушные турбины, которые приводят в действие генераторы. "Могучим Китом" можно управлять дистанционно с берега. В демонстрационном проекте выработанная электроэнергия

главным образом используется для питания бортовых приборов; любой ее избыток аккумулируется на батареях. Предохранительный клапан защищает воздушные турбины от разрушения при штормовой погоде, перекрывая поток воздуха, если скорость вращения турбин превышает определённый уровень. "Могучий Кит" непосредственно может быть использован как метеостанция, как временное место швартовки для малых судов или как платформа для ловли рыбы.

Оригинальным проектом, использующим энергию глубинных волн, является проект Европейского исследовательского центра морской энергии (European Marine Energy Centre). Автор - эдинбургская компания Aquamarine Power.

Волновой электрогенератор под названием «Устрица» (Oyster) - самый крупный агрегат такого рода в мире, он сравним в высоту с многоэтажным домом. В 2009 г. аппарат был водружён на морское дно и включён в потребительскую электросеть - он питает энергией несколько сот домов.

Oyster (рис.11 – 13), представляет собой оригинальную волновую электростанцию. Её размещают у береговой линии, в пределах сотни метров от кромки пляжа и на умеренных глубинах в считанные метры, или десятки метров. Огромные поплавки, закреплённые на дне на мощных рычагах, должны раскачиваться под действие пробегающих над ними волн.

Вся электрическая часть остаётся на берегу – так она дольше проработает, да и обслуживать и ремонтировать её будет несравненно проще. На дне останется только суперпоплавок и приводимый им в движение двухсторонний поршневой насос. Последний гонит морскую воду на берег, где она крутит ротор гидроэлектрогенератора. Один экземпляр такой машины вырабатывает от 300 до 600 киловатт в зависимости от места установки и ряда других деталей. Несколько поплавков с насосами могут сообща работать на одну большую береговую гидротурбину, что сократит стоимость комплекса.

Рис.13. Схема «устричной» станции.

Волны окружают нас везде, так как мы живем в мире движений и звуков. Какова природа волнового процесса, в чем суть теории волновых процессов? Рассмотрим это на примере опытов.

Понятие о волнах в физике

Общим понятием для многих процессов является наличие звучания. По определению звука, он является результатом быстрых колебательных движений, которые создаются воздухом или другой средой, воспринимающимися нашими слуховыми органами. Зная это определение, можно перейти к рассмотрению понятия «волновой процесс». Существует ряд опытов, которые позволяют наглядно рассмотреть это явление.

Изучаемые волновые процессы в физике, могут наблюдаться в виде радиоволн, звуковых, волн сжатия при использовании голосовых связок. Они распространяются по воздуху.

Для визуального определения понятия в лужу бросают камень и характеризуют распространение эффектов. Это пример Она возникает вследствие поднятия и опускания жидкости.

Акустика

Изучению свойства звука в физике посвящен целый раздел, который называется «Акустика». Разберемся, что же он характеризует. Сосредоточим внимание на явлениях и процессах, в которых еще не все ясно, на проблемах, которые ещё только ждут своего решения.

У акустики, как и у других разделов физики, ещё много неразгаданных тайн. Их ещё предстоит открыть. Займемся рассмотрением волнового процесса в акустике.

Звук

Это понятие связано с наличием которые производятся частицами среды. Звук - это ряд колебательных процессов, связанный с возникновением волн. В процессе образования в среде сжатий и разряжений и возникает волновой процесс.

Показатели длины волн зависят от характера среды, где имеют место колебательные процессы. Практически все явления, которые происходят в природе, связаны с наличием звуковых колебаний и звуковых волн, которые распространяются в среде.

Примеры определения волнового процесса в природе

Эти движения могут информировать о явлении волнового процесса. Высокочастотные звуковые волны могут распространяться на тысячи километров, например, если происходит извержение вулкана.

При землетрясении идут сильные акустические и геоакустические колебания, которые можно зарегистрировать специальными звуковыми приёмниками.

При подводном землетрясении имеет место интересное и страшное явление - цунами, которое представляет собой огромную волну, возникшую при мощном подземном или подводном проявлениях стихии.

Благодаря акустике можно получить информацию о том, что приближается цунами. Многие из таких явлений известны издавна. Но до сих пор некоторые понятия физики требуют тщательного изучения. Поэтому для исследования загадок, которые ещё не раскрыты, приходят на помощь именно звуковые волны.

Теория тектоники

В XVIII веке родилась «гипотеза катастроф». В то время не были связаны понятия «стихия» и «закономерность». Тогда обнаружили, что возраст дна мирового океана намного младше, чем суша, и эта поверхность постоянно обновляется.

Именно в это время, благодаря новому взгляду на землю, безумная гипотеза переросла в теорию «Тектоники литосферных плит», которая утверждает, что земная мантия движется, а твердь - плывет. Такой процесс подобен движению вечного ледохода.

Для понимания описанного процесса важно освободиться от стереотипов и привычных взглядов, осознать другие виды бытия.

Дальнейшие достижения науки

Геологическая жизнь на земле имеет свое время и состояние материи. Науке удалось воссоздать подобие. На дне океана происходит непрерывное движение, при котором возникают разрывы и образования рифтовых хребтов, когда новое вещество из глубин земли поднимается на поверхность и постепенно остывает.

В это время на суше происходят процессы, когда на поверхности земной мантии плавают колоссальные плиты литосферы - верхней каменной оболочки земли, которая несет на себе материки и морское дно.

Число таких плит насчитывает около десяти. Мантия неспокойна, поэтому литосферные плиты начинают двигаться. В лабораторных условиях этот процесс имеет вид изящного опыта.

В природе это грозит геологической катастрофой - землетрясением. Причиной являются глобальные процессы конвекции, которые происходят в глубинах земли. Результатом бурления будут цунами.

Япония

Среди других сейсмически опасных районов земли Япония занимает особенной место, эту цепь островов называют «огненным поясом».

Пристально следя за дыханием земной тверди, можно предсказать грозящую катастрофу. Для изучения колебательных процессов в толщу земли внедрили сверхглубокую буровую. Она проникла на глубину 12 км и позволила ученым сделать выводы о наличии внутри земли определенных пород.

Скорость электромагнитной волны изучают на уроках физики в 9 классе. Показывают опыт с грузиками, расположенными на равном расстоянии друг от друга. Они связаны одинаковыми пружинками обычного вида.

Если сместить первый грузик вправо на определенное расстояние, второй некоторое время остается в прежнем положении, но пружинка уже начинает сжиматься.

Определение понятия «волна»

Поскольку произошёл такой процесс, возникла сила упругости, которая будет толкать второй грузик. Он получит ускорение, через некоторое время наберет скорость, сместится в этом направлении и сожмет пружинку между вторым и третьим грузиком. В свою очередь, третий получит ускорение, начнет разгоняться, сместится и повлияет на четвертую пружинку. И так процесс будет происходить на всех элементах системы.

При этом смещение второго груза по времени будет происходить позже, чем первого. Следствие всегда запаздывает по отношению к причине.

Также смещение второго груза повлечет за собой смещение третьего. Данный процесс имеет тенденцию распространяться вправо.

Если первый груз начал колебаться по гармоническому закону, тогда этот процесс распространится и на второй грузик, но с запоздалой реакцией. Следовательно, если заставить колебаться первый груз, можно получить колебание, которое распространится в пространстве с течением времени. Это и есть определение волны.

Разновидности волн

Представим вещество, которое состоит из атомов, они:

  • обладают массой - как предложенные в опыте грузики;
  • соединяются друг с другом, образуя твердое тело путем химических связей (как рассмотренные в опыте с пружинкой).

Отсюда следует, что вещество является системой, напоминающей модель из опыта. В нем может распространяться Этот процесс связан с возникновением сил упругости. Такие волны часто называют «упругими».

Существует два типа упругих волн. Для их определения можно взять длинную пружину, закрепить её с одной стороны и растянуть вправо. Так можно увидеть, что направление распространения волны - вдоль пружины. Частицы среды смещаются в том же самом направлении.

В такой волне характер направления колебания частиц совпадает с направлением распространения волны. Данное понятие называется «продольная волна».

Если растянуть пружинку и дать ей время прийти в состояние покоя, а потом резко изменить положение в вертикальном направлении, будет видно, что волна распространяется вдоль пружины и многократно отражается.

Но направление колебания частиц теперь вертикальное, а распространение волны - горизонтальное. Это поперечная волна. Она может существовать только в твердых телах.

Скорость электромагнитной волны разного вида отличается. Этим свойством успешно пользуются сейсмологи, чтобы определить расстояние до очагов землетрясения.

Когда распространяется волна, отмечается колебание частиц вдоль или поперек, но это не сопровождается переносом вещества, а только движением. Так указано в учебнике "Физики" 9 класс.

Характеристика волнового уравнения

Волновое уравнение в физической науке - разновидность линейного гиперболического дифференциального уравнения. Оно используются также для других областей, которые охватывает теоретическая одно из уравнений, которые применяет для расчетов математическая физика. В частности, описываются гравитационные волны. Применяются для описания процессов:

  • в акустике, как правило, линейного типа;
  • в электродинамике.

Волновые процессы отображаются в вычислении для многомерного случая однородного волнового уравнения.

Отличие между волной и колебанием

Замечательные открытия следуют из размышлений над заурядным явлением. Галилей за эталон времени брал биение своего сердца. Так было открыто постоянство процесса колебаний маятника - одно из основных положений механики. Оно абсолютно лишь для математического маятника - идеальной колебательной системы, которая характеризуется:

Для выведения системы из равновесия необходимо условие возникновения колебания. При этом сообщается определенная энергия. Разным колебательным системам требуются различные виды энергии.

Колебанием называется процесс, который характеризуется постоянным повторением движений или состояний системы в определенные периоды времени. Наглядной демонстрацией колебательного процесса является пример качающегося маятника.

Колебательные и волновые процессы наблюдаются почти во всех природных явлениях.

Волна имеет функцию возмущать или изменять состояния среды, распространяемое в пространстве и несущее энергию без необходимости переносить вещество. Это отличительное свойство волновых процессов, они в физике изучаются давно. При исследованиях можно выделить длину волны.

Звуковые волны могут существовать во всех сферах, их нет только в вакууме. Особыми свойствами обладают электромагнитные волны. Они могут существовать везде, даже в вакууме.

Энергия волны зависит от её амплитуды. Круговая волна, распространяясь от источника, рассеивает энергию в пространстве, поэтому её амплитуда быстро уменьшается.

Интересными свойствами обладает линейная волна. Её энергия не рассеивается в пространстве, поэтому амплитуда таких волн убывает только за счет силы трения.

Направление распространения волн изображается лучами - линиями, которые перпендикулярны к фронту волны.

Угол между падающим лучом и нормалью - это Между нормалью и отраженным лучом - угол отражения. Равенство этих углов сохраняется при любом положении преграды относительно волнового фронта.

При встрече волн, движущихся в противоположных направлениях, может образовываться стоячая волна.

Итоги

Частицы среды между соседними узлами стоячей волны колеблются в одинаковой фазе. Таковы параметры волнового процесса, зафиксированные в волновых уравнениях. При встрече волн могут наблюдаться как увеличения, так и уменьшения их амплитуд.

Зная основные характеристики волнового процесса, можно определить амплитуду результирующей волны в данной точке. Установим, в какой фазе придет в эту точку волна от первого и второго источника. Причем фазы противоположны.

Если разность хода - нечетное число полуволн, амплитуда результирующей волны в этой точке будет минимальная. Если разность хода равна нулю или целому числу длины волн, в точке встречи будет наблюдаться увеличение амплитуды результирующей волны. Это при сложении волн от двух источников.

Частота электромагнитных волн фиксируется в современной технике. Приёмное устройство должно регистрировать слабые электромагнитные волны. Если поставить отражатель, в приёмник попадет больше энергии волн. Систему отражателей устанавливают так, чтобы она создавала максимальный сигнал на приёмном устройстве.

Характеристики волнового процесса лежат в основе современных представлений о природе света и строении материи. Таким образом, при изучении их по учебнику физики 9 класса можно успешно научиться решать задачи из области механики.



Понравилась статья? Поделитесь с друзьями!