Фракталы в науке. Фракталы

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости;
  • губка Менгера - аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ;
  • кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано - непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [ ] .

Рекурсивная процедура получения фрактальных кривых

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i (K) {\displaystyle \Psi \colon K\mapsto \cup _{i=1}^{n}\psi _{i}(K)}

Можно показать, что отображение Ψ {\displaystyle \Psi } является сжимающим отображением на множестве компактов с метрикой Хаусдорфа . Следовательно, по теореме Банаха , это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n {\displaystyle \psi _{i},\,i=1,\dots ,n} - отображения подобия, а n {\displaystyle n} - число звеньев генератора.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n {\displaystyle z_{n}} к бесконечности (определяемой, скажем, как наименьший номер n {\displaystyle n} , при котором | z n | {\displaystyle |z_{n}|} превысит фиксированную большую величину A {\displaystyle A} ).

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики , например, в модели Изинга и перколяции .
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами

Природные объекты (квазифракталы ) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы , …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Система кровообращения и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии -адсорбции , пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании

МИНИСТЕРСТВО ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ИРКУТСКАЯ ГОСУДАРСТВЕННАЯ ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ

По экономико-математическим моделям и методам

ТЕОРИЯ ФРАКТАЛОВ И ЕЕ ПРИМЕНЕНИЕ

Подготовили: Руководитель:

Погодаева Е. А. Толстикова Т.В.

Четвериков С.В.

ИРКУТСК 1997

Все образы схожи, и

Все же ни один на дру

Гой не похож; Хоры их

На тайный закон указу-

Ют, на святую загадку...

И. В. Гете.

Метаморфоз растений.

ПОЧЕМУ МЫ ЗАГОВОРИЛИ О ФРАКТАЛАХ?

Во второй половине нашего века в естествознании произошли
фундаментальные изменения, породившие так называемую теорию
самоорганизации, или синергетику. Она родилась внезапно, как бы на
скрещении нескольких линий научного исследования. Один из решающих
начальных импульсов был предан ей российскими учеными на рубеже
пятидесятых - шестидесятых годов. В пятидесятых годах ученый
химик-аналитик Б. П. Белоусов открыл окислительно-восстановительную
химическую реакцию. Открытие и изучение автоколебаний и автоволн в ходе
реакции Белоусова

С. Э. Шнолем, А. М. Жаботинским, В.И. Кринским, А. Н. Заикиным, Г. Р.
Иваницким- едва ли не самая блестящая страница фундаментальной
российской науки в послевоенный период. Быстрое и успешное изучение
реакции Белоусова - Жаботинского сработало в науке как спусковой
крючок: сразу вспомнили, что и раньше были известны процессы подобного
рода и что многие природные явления, начиная от образования галактик
до смерчей, циклонов и игры света на отражающих поверхностях(так
называемых каустиках), - по сути дела процессы самоорганизации. Они
могут иметь самую различную природу: химическую, механическую,
оптическую, электрическую и тому подобное. Более того, оказалось, что
уже давно была готова и прекрасно разработана математическая теория
самоорганизации. Ее основу заложили работы А. Пуанкаре и А. А.
Ляпунова еще в конце прошлого века. Диссертация "Об устойчивости
движения" написана Ляпуновым в 1892 году.

Математическая теория самоорганизации заставляет нас по-новому
взглянуть на окружающий нас мир. Объясним, чем она отличается от
классического мировоззрения, так как нам это будет необходимо знать при
изучении фрактальных объектов.

"Классическое однозначно - детерминистическое мировоззрение
может символизироваться ровной гладкой поверхностью, на которой
соударяются шары, получившие определенный количества движения.
Будущая судьба каждого такого тела однозначно определена его
"прошлым" в предыдущий момент времени (количеством движения, зарядом) и
взаимодействием с другими телами. Никакой целостностью такая система
не обладает." (Л. Белоусов. Посланники живой грозы. \\ Знание- сила. N
2. 1996. - с.32). Таким образом, классическая наука верила, что будущее
такой системы жестко и однозначно определено ее прошлым и, при условии
знания прошлого, неограниченно предсказуемо.

Современная математика показала, что в некоторых случаях это не
так: например, если шары ударяются о выпуклую стенку, то ничтожно малые
различия в их траекториях будут неограниченно нарастать, так что
поведение системы становиться в определенный момент непредсказуемым.
Тем самым позиции однозначного детерминизма оказались подорванными даже
в сравнительно простых ситуациях.

Мировоззрение, основанное на теории самоорганизации,
символизируется образом горной страны с долинами, по которым текут реки,
и хребтами-водоразделами. В этой стране действуют мощные обратные связи
- как отрицательные, так и положительные. Если тело скатывается вниз
по склону, то между его скоростью и положением существует положительная
обратная связь, если оно пытается взобраться вверх, то отрицательная.
Нелинейные (достаточно сильные) обратные связи – непременное условие
самоорганизации. Нелинейность в мировоззренческом смысле означает
многовариантность путей эволюции, наличие выбора из альтернативных путей
и определенного темпа эволюции, а также необратимость эволюционных
процессов. Например, рассмотрим взаимодействие двух тел: А и В. В –
упругий древесный ствол, А – горный поток в нашей стране. Поток сгибает
ствол по направлению движения воды, но по достижении некоторого
изгиба ствол под действием упругой силы может распрямиться, отталкивая
частицы воды обратно. То есть мы видим альтернативу взаимодействия
двух тел А и В. Причем, это взаимодействие происходит таким образом,
что связь А-В - положительна, а В-А - отрицательна. Соблюдается условие
нелинейности.

Более того, в теории самоорганизации мы можем заставить нашу
горную страну "жить", то есть изменяться во времени. При этом важно
выделить переменные различного порядка. Такая иерархия переменных по
времени является необходимым условием упорядочения самоорганизации.
Нарушьте ее, "смешайте" времена- наступит хаос(пример- землетрясение,
когда сдвиги геологического порядка происходят за считанные минуты, а
должны- за несколько тысячелетий).Впрочем, как выявляется, живые
системы не так уж и боятся хаоса: они все время живут на его пределе,
иногда даже впадая в него, но все же умеют, когда надо, из него
выбираться. При этом самыми важными оказываются наиболее медленные по
времени переменные (их называют параметрами). Именно значения параметров
определяют, каким набором устойчивых решений будет обладать система и,
таким образом, какие структуры могут быть в ней вообще реализованы. В
то же время более быстрые

(динамические) переменные отвечают за конкретный выбор реализуемых
устойчивых состояний из числа возможных.

Принципы нелинейности и альтернативы выбора развития любого
процесса, развития системы реализуется и при построении фракталов.

Как стало ясно в последние десятилетия (в связи с развитием теории
самоорганизации), самоподобие встречается в самых разных предметах и
явлениях. Например, самоподобие можно наблюдать в ветках деревьев и
кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах
льда, при развитии экономических систем (волны Кондратьева), строении
горных систем, в строении облаков. Все перечисленные объекты и другие,
подобные им по своей структуре, называются фрактальными. То есть они
обладают свойствами самоподобия, или масштабной инвариантности. А это
значит, что некоторые фрагменты их структуры строго повторяются через
определенные пространственные промежутки. Очевидно, что эти объекты
могут иметь любую природу, причем их вид и форма остаются неизменными
независимо от масштаба.

Таким образом, можно сказать, что фракталы как модели применяются в том
случае, когда реальный объект нельзя представить в виде классических
моделей. А это значит, что мы имеем дело с нелинейными связями и
недетерминированной природой данных. Нелинейность в мировоззренческом
смысле означает многовариантность путей развития, наличие выбора из
альтернатив путей и определенного темпа эволюции, а также необратимость
эволюционных процессов. Нелинейность в математическом смысле означает,
определенный вид математических уравнений (нелинейные дифференциальные
уравнения), содержащих искомые величины в степенях, больше единицы или
коэффициенты, зависящие от свойств среды. То есть, когда мы применяем
классические модели (например, трендовые, регрессионные и т. д.), мы
говорим, что будущее объекта однозначно детерминированное. И мы можем
предсказать его, зная прошлое объекта(исходные данные для
моделирования). А фракталы применяются в том случае, когда объект имеет
несколько вариантов развития и состояние системы определяется
положением, в котором она находится на данный момент. То есть мы
пытаемся смоделировать хаотичное развитие.

Что же нам дает применение фракталов?

Они позволяют намного упростить сложные процессы и объекты, что очень
важно для моделирования. Позволяют описать нестабильные системы и
процессы и, самое главное, предсказать будущее таких объектов.

ТЕОРИЯ ФРАКТАЛОВ

ПРЕДПОСЫЛКИ ВОЗНИКНОВЕНИЯ

Теория фракталов имеет совсем небольшой возраст. Она появилась в
конце шестидесятых годов на стыке математики, информатики, лингвистики
и биологии. В то время компьютеры все больше проникали в жизнь
людей, ученые начинали применять их в своих исследованиях, росло число
пользователей вычислительных машин. Для массового использования
компьютеров необходимо стало облегчить процесс общения человека с
машиной. Если в самом начале компьютерной эры немногочисленные
программисты-пользователи самоотверженно вводили команды в машинных
кодах и получали результаты в виде бесконечных лент бумаги, то при
массовом и загруженном режиме использования компьютеров возникла
необходимость в изобретении такого языка программирования, который был
бы понятен для машины, и в то же время, был бы прост в изучении и
применении. То есть пользователю требовалось бы ввести только одну
команду, а компьютер разложил бы ее на более простые, и выполнил
бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики
и лингвистики возникла теория фракталов, позволяющая строго задавать
взаимоотношения между алгоритмическими языками. А датский математик и
биолог А. Линденмеер придумал в 1968 году одну такую грамматику,
названную им L-системой, которая, как он полагал, моделирует также рост
живых организмов, в особенности образование кустов и веток у растений.

Вот как выглядит его модель. Задают алфавит - произвольный набор
символов. Выделяют одно, начальное слово, называемое аксиомой, - можно
считать, что оно соответствует исходному состоянию организма – зародышу.
А потом описывают правила замены каждого символа алфавита определенным
набором символов, то есть задают закон развития зародыша. Действуют
правила так: прочитываем по порядку каждый символ аксиомы и заменяем
его на слово, указанное в правиле замены.

Таким образом, прочитав аксиому один раз, мы получаем новую строку
символов, к которой снова применяем ту же процедуру. Шаг за шагом
возникает все более длинная строка – каждый из таких шагов можно
считать одной из последовательных стадий развития «организма».
Ограничив число шагов, определяют, когда развития считается законченным.

ВОЗНИКНОВЕНИЕ ТЕОРИИ ФРАКТАЛОВ

Отцом фракталов по праву можно считать Бенуа Мандельброта.
Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское
прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт:

Фрактал – самоподобная структура, чье изображение не зависит от
масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем
развитии развитие всей модели в целом.

На сегодняшний день существует много различных математических моделей
фракталов. Отличительная особенность каждой из них является то, что в
их основе лежит какая-либо рекурсивная функция, например: xi=f(xi-1).
С применением ЭВМ у исследователей появилась возможность получать
графические изображения фракталов. Простейшие модели не требуют больших
вычислений и их можно реализовать прямо на уроке информатики, тогда как
иные модели настолько требовательны к мощности компьютера, что их
реализация осуществляется с применением суперЭВМ. Кстати, в США
изучением фрактальных моделей занимается Национальных Центр Приложений
для Суперкомпьютеров (NCSA). В данной работе мы хотим показать только
несколько моделей фракталов, которые нам удалось получить.

Модель Мандельброта.

Бенуа Мандельброт предложил модель фрактала, которая уже стала
классической и часто используется для демонстрации как типичного
примера самого фрактала, так и для демонстрации красоты фракталов,
которая также привлекает исследователей, художников, просто
интересующихся людей.

Математическое описание модели следующее: на комплексной плоскости в
неком интервале для каждой точки с вычисляется рекурсивная функция
Z=Z2+c. Казалось бы, что такого особенного в этой функции? Но после N
повторений данной процедуры вычисления координат точек, на
комплексной плоскости появляется удивительно красивая фигура, чем-то
напоминающая грушу.

В модели Мандельброта изменяющимся фактором является начальная точка
с, а параметр z, является зависимым. Поэтому для построения фрактала
Мандельброта существует правило: начальное значение z равно нулю (z=0)!
Это ограничение вводится для того, чтобы первая производная от функции
z в начальной точке была равна нулю. А это означает, что в начальной
точке функция имеет минимум, и в дальнейшем она будет принимать только
большие значения.

Мы хотим заметить, что если рекурсивная формула фрактала имеет другой
вид, то тогда следует выбирать другое значение начальной точки для
параметра Z. Например, если формула имеет вид z=z2+z+c, то начальная
точка будет равна:

2*z+1=0 ???z= -1/2.

В данной работе мы имеем возможность привести изображения фракталов,
которые были построены в NCSA. Мы получили файлы с изображениями через
сеть Internet.

Рис.1 Фрактал Мандельброта

Вам уже известна математическая модель фрактала Мандельброта. Теперь мы
покажем, как она реализуется графически. Начальная точка модели
равна нулю. Графически она соответствует центру тела “груши”. Через N
шагов заполнятся все тело груши и в том месте, где закончилась
последняя итерация, начинает образовываться «голова» фрактала.
«Голова» фрактала будет ровно в четыре раза меньше тела, так как
математическая формула фрактала представляет из себя квадратный
полином. Затем опять через N итераций у «тела» начинает образовываться
«почка» (справа и слева от «тела»). И так далее. Чем больше задано
числе итераций N, тем более детальным получится изображение фрактала,
тем больше будет у него различных отростков. Схематическое изображение
стадий роста фрактала Мандельброта представлено на рис.2:

Рис.2 Схема образования фрактала Мандельброта

Из рисунков 1 и 2 видно, что каждое последующее образование на «теле»
точно повторяет в своем строении само тело. Это и есть отличительная
черта того, что данная модель является фракталом.

На следующих рисунках показано, как будет изменяться положение точки,
соответствующей параметру z, при различном начальном положении точки
c.

А) Начальная точка в «теле» Б) Начальная
точка в «голове»

В) Начальная точка в «почке» Г) Начальная точка в
«почке» второго уровня

Д) Начальная точка в «почке» третьего уровня

Из рисунков А - Д хорошо видно, как с каждым шагом все более
усложняется структура фрактала и у параметра z все более сложная
траектория.

Ограничения на модель Мандельброта: существует доказательство, что в
модели Мандельброта |z|

Модель Джулии (Julia set)

Модель фрактала Джулии имеет то же уравнение, что и модель
Мандельброта: Z=Z2+c, только здесь переменным параметром является
не c, a z.

Соответственно, меняется вся структура фрактала, так как теперь на
начальное положение не накладывается никаких ограничений. Между
моделями Мандельброта и Джулии существует такое различие: если модель
Мандельброта является статической (так как z начальное всегда равно
нулю), то модель Джулии является динамической моделью фрактала. На
рис. 4 показано графическое представление фрактала Джулии.

Рис. 4 Модель Джулии

Как видно из рисунка фрактала, он симметричную относительно центральной
точки форму, тогда как фрактал Мандельброта имеет форму, симметричную
относительно оси.

Ковер Серпинского

Ковер Серпинского считается еще одной моделью фрактала. Строится он
следующим образом: берется квадрат, делится на девять квадратов,
вырезается центральный квадрат. Затем с каждым из восьми оставшихся
квадратов проделывается подобная процедура. И так до бесконечности. В
результате вместо целого квадрата мы получаем ковер со своеобразным
симметричным рисунком. Впервые данную модель предложил математик
Серпинский, в честь которого он и получил свое название. Пример ковра
Серпинского можно увидеть на рис. 4d.

Рис.4 Построение ковра Серпинского

4. Кривая Коха

В начале ХХ века математики искали такие кривые, которые ни в одной
точке не имеют касательной. Это означало, что кривая резко меняет свое
направление, и притом с колоссально большой скоростью (производная
равна бесконечности). Поиски данных кривых были вызваны не просто
праздным интересом математиков. Дело в том, что в начале ХХ века очень
бурно развивалась квантовая механика. Исследователь М.Броун
зарисовал траекторию движения взвешенных частиц в воде и объяснил это
явление так: беспорядочно движущиеся атомы жидкости ударяются о
взвешенные частицы и тем самым приводят их в движение. После такого
объяснения броуновского движения перед учеными встала задача найти такую
кривую, которая бы наилучшим образом аппроксимировала движение
броуновских частиц. Для этого кривая должна была отвечать следующим
свойствам: не иметь касательной ни в одной точке. Математик Кох
предложил одну такую кривую. Мы не будем вдаваться в объяснения
правила ее построения, а просто приведем ее изображение, из которого все
станет ясно (рис.5).

Рис.5 Этапы построения кривой Коха

Кривая Коха является еще одним примером фрактала, так как каждая ее
часть является уменьшенным изображением всей кривой.

6. Графические изображения различных фракталов

В данном пункте мы решили поместить графические изображения различных
фракталов, которые мы получили из сети Internet. К сожалению, мы не
смогли найти математическое описание этих фракталов, но для того,
чтобы понять их красоту, достаточно только рисунков.

Рис. 6 Примеры графического представления фракталов

II РАЗДЕЛ

ПРИМЕНЕНИЕ ТЕОРИИ ФРАКТАЛОВ В ЭКОНОМИКЕ

ТЕХНИЧЕСКИЙ АНАЛИЗ ФИНАНСОВЫХ РЫНКОВ

Финансовый рынок в развитых странах мира существует уже не одну сотню
лет. На протяжении веков люди продавали и покупали ценные бумаги.
Данный вид сделок с ценными бумагами приносил участникам рынка доход
из-за того, что цены на акции и облигации все время варьировали,
постоянно менялись. В течение веков люди покупали ценные бумаги по
одной цене и продавали, когда они становились дороже. Но иногда
ожидания покупателя не сбывались и цены на купленные бумаги начинали
падать, таким образом, он не только не получал доход, а еще и терпел
убытки. Очень долгое время никто не задумывался, почему так происходит:
цена то растет, то падает. Люди просто видели результат действия и не
задумывались о причинно-следственном механизме, его порождающем.

Так происходило до тех пор, пока американский финансист, один из
издателей известной газеты «Financial Times”, Чарльз Доу не
опубликовал ряд статей, в которых он излагал свои взгляды на
функционирование финансового рынка. Доу заметил, что цены на акции
подвержены циклическим колебаниям: после продолжительного роста следует
продолжительное падение, потом опять рост и падение. Таким образом,
Чарльз Доу впервые заметил, что можно прогнозировать дальнейшее
поведение цены на акции, если известно ее направление за какой-то
последний период.

Рис.1 Поведение цены по Ч.Доу

Впоследствии на основе сделанных Ч.Доу открытий была разработана целая
теория технического анализа финансового рынка, которая получила
название Теория Доу. Эта теория ведет свое начало с девяностых годов
девятнадцатого века, когда Ч.Доу опубликовал свои статьи.

Технический анализ рынков - это методы прогнозирования дальнейшего
поведения тренда цены, основанные на знании предыстории его поведения.
Технический анализ для прогнозирования использует математические
свойства трендов, а не экономические показатели ценных бумаг.

В середине века двадцатого, когда весь научный мир увлекался только
что появившейся теорией фракталов, другой известный американский
финансист Ральф Эллиот предложил свою теорию поведения цен на акции,
которая была основана на использовании теории фракталов.

Эллиот исходил из того, что геометрия фракталов имеет место быть не
только в живой природе, но и в общественных процессах. К общественным
процессам он относил и торговлю акциями на бирже.

ВОЛНОВАЯ ТЕОРИЯ ЭЛЛИОТА

Волновая Теория Эллиота – одна из старейших теорий технического
анализа. Со времени ее создания никто из пользователей не вносил в нее
каких-либо заметных новшеств. Наоборот, все усилия были направлены на
то, чтобы принципы сформулированные Эллиотом, вырисовывались более и
более четко. Результат – налицо. С помощью теории Эллиота были сделаны
самые лучшие прогнозы движения американского индекса Доу-Джонса.

Основой теории служит так называемая волновая диаграмма. Волна – это
различимое ценовое движение. Следуя правилам развития массового
психологического поведения, все движения цен разбиваются на пять волн в
направлении более сильного тренда, и на три волны – в обратном
направлении. Например, в случае доминирующего тренда мы увидим пять
волн при движении цены вверх и три – при движении (коррекции) вниз.

Для обозначения пятиволнового тренда используют цифры а для
противоположного трехволнового – буквы. Каждое из пятиволновых движений
называют импульсным, а каждое из трехвоновых - коррективным. Поэтому
каждая из волн 1,3,5,А и С является импульсной, а 2,4,и В -
коррективной.

Рис. 7 Волновая диаграмма Эллиота

Эллиот был одним из первых, кто четко определил действие Геометрии
Фракталов в природе, в данном случае - в ценовом графике. Он
предположил, что в каждая из только что показанных импульсных и
коррективных волн также представляет собой волновую диаграмму Эллиота.
В свою очередь, те волны тоже можно разложить на составляющие и так
далее. Таким образом Эллиот применил теорию фракталов для разложения
тренда на более мелкие и понятные части. Знание этих частей в более
мелком масштабе, чем самая большая волновая диаграмма, важно потому,
что трейдеры (участники финансового рынка), зная, в какой части
диаграммы они находятся, могут уверенно продавать ценные бумаги, когда
начинается коррективная волна, и должны покупать их, когда начинается
импульсная волна.

Рис.8 Фрактальная структура диаграммы Эллиота

ЧИСЛА ФИБОНАЧЧИ И ХАРАКТЕРИСТИКИ ВОЛН

Ральф Эллиот первым подал идею использовать числовую последовательность
Фибоначчи для составления прогнозов в рамках технического анализа. С
помощью чисел и коэффициентов Фибоначчи можно прогнозировать длину
каждой волны и время ее завершения. Не затрагивая вопроса времени,
обратимся к наиболее часто применяемым правилам определения длины
Эллиотовских волн. Под длиной в данном случае имеется в виду ее
повышение или понижение по шкале цен.

Импульсные волны.

Волна 3 обычно имеет длину, составляющую 1,618 волны 1, реже – равную
ей.

Две из импульсных волн часто бывают равны по длине, обычно это волны 5
и 1. Обычно это происходит, если длина волны 3 меньше, чем 1,618
длины волны 1.

Часто встречается соотношение, при котором длина волны 5 равна 0,382
или 0,618 расстояния, пройденного ценой от начала волны 1 до конце
волны 3.

Коррекции

Длины корректирующих волн составляют определенный коэффициент
Фибоначчи от длины предшествующей импульсной волны. В соответствии с
правилом чередования волны 2 и 4 должны чередоваться в процентном
соотношении. Наиболее распространенным примером является следующий:
волна 2 составила 61,8% волны 1, при этом волна 4 может составлять
только 38,2% или 50% от волны 3.

ЗАКЛЮЧЕНИЕ

В нашей работе приведены далеко не все области человеческих знаний,
где нашла свое применение теория фракталов. Хотим только сказать, что
со времени возникновения теории прошло не более трети века, но за это
время фракталы для многих исследователей стали внезапным ярким светом
в ночи, которые озарил неведомые доселе факты и закономерности в
конкретных областях данных. С помощью теории фракталов стали объяснять
эволюцию галактик и развитие клетки, возникновение гор и образование
облаков, движение цен на бирже и развитие общества и семьи. Может
быть, в первое время данное увлечение фракталами было даже слишком
бурным и попытки все объяснять с помощью теории фракталов были
неоправданными. Но, без сомнения, данная теория имеет право на
существование, и мы сожалеем, что в последнее время она как-то забылась
и осталась уделом избранным. При подготовке данной работы нам было
очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что
очень часто возникает такое ощущение, что теоретические знания стоят в
стороне от жизненной реальности.

В завершение нашей работы, мы хотим привести восторженные слова
крестного отца теории фракталов Бенуа Мандельброта: «Геометрия природы
фрактальна!». В наше время это звучит также дерзко и абсурдно, как
знаменитое восклицание Г. Галилея: «А все-таки она вертится!» в XVI
веке.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Шейпак И.А. Фракталы, графталы, кусты… //Химия и жизнь. 1996 №6

Постижение хаоса //Химия и жизнь. 1992 №8

Эрлих А. Технический анализ товарных и фондовых рынков, М: Инфра-М, 1996

Материалы из сети Internet.

Последовательность Фибоначчи – последовательность, предложенная в 1202
г. средневековым математиком Леонардо Фибоначчи. Относится к виду
возвратных последовательностей. a1=1, а2=1, аi=ai-1+ai-2.
Коэффициенты Фибоначчи – частное от деления двух соседних членов
последовательности Фибоначчи: K1=ai/ai-1=1.618,

K2=ai-1/ai=0.618. Эти коэффициенты представляют собой так называемое
“золотое сечение”.

Цена акции

График поведения цены акции

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

Язык науки стремительно меняется в современном мире. История развития физики насчитывает уже не одно столетие. За это время изучено огромное количество разнообразных явлений природы, открыты фундаментальные законы физики, объясняющие различные экспериментальные факты. Каждый раз, сталкиваясь с новыми природными объектами, ученые вводят в язык науки новые категории, термины и понятия.

До недавнего времени геометрические модели различных природных конструкций традиционно строились на основе сравнительно простых геометрических фигур: прямых, многоугольников, окружностей, многогранников, сфер. Однако очевидно, что этот классический набор, вполне достаточный для описания элементарных структур, становится плохо применимым для характеристики таких сложных объектов, как очертание береговых линий материков, поле ско­ростей в турбулентном потоке жидкости, разряд молнии в воздухе, пористые материалы, форма облаков, снежинки, пламя костра, контуры дерева, кровеносно-сосудистая система человека, поверхность клеточной мембраны и др. В последние 15-20 лет для описания этих и им подобных образований ученые все чаще используют новые геометрические понятия. Одним из таких понятий, изменившим многие традиционные представления о геометрии, явилось понятие фрактала. Оно было введе­но в обращение замечательным французским математиком польского происхождения Бенуа Мандельбротом в 1975 году. И хотя в математике похожие конструкции в той или иной форме появились уже много десятков лет назад, в физике ценность подобных идей была осознана лишь в 70-е годы нашего столетия.

Основой новой геометрии является идея самоподобия. Она выражает собой тот факт, что иерархический принцип организации фрактальных структур не претерпевает значительных изменений при рассмотрении их через микроскоп с различным увеличением. В результате эти структуры на малых масштабах выглядят в среднем так же, как и на больших. Здесь следует провести разницу между геометрией Евклида, имеющей дело исключительно с гладкими кривыми, и бесконечно изрезанными самоподобными фрактальными кривыми. Элементы кривых у Евклида всегда самоподобны, но тривиальным образом: все кривые являются локально прямыми, а прямая всегда самоподобна. Фрактальная же кривая, в идеале, на любых, даже самых маленьких масштабах не сводится к прямой и является в общем случае геометрически нерегулярной, хаотичной. Для нее, в частности, не существует и понятия касательной в точке, так как функции, описывающие эти кривые, являются в общем случае недифференцируемыми.

Возможно, что наиболее убедительным аргументом в пользу изучения фракталов является их бросающаяся в глаза красота.

Многие крупные достижения науки о фракталах стали возможны только с использованием методов вычислительной математики, которая в настоящее время немыслима без применения современных компьютеров. "Компьютерные эксперименты" позволили получить достаточно полное представление о разнообразных фрактальных структурах и причинах их возникновения. Часто теоретическое моделирование этих структур подчас даже опережало экспериментальные методы изучения реальных природных объектов сложной формы.

В настоящее время при помощи сравнительно простых алгоритмов появилась возможность создавать трехмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в еще более захватывающие картины. С другой стороны, часто искусственные изображения фракталов столь схожи с естественными, природными формами, что их невозможно отличить друг от друга.

Примеры различных фрактальных структур можно встретить во многих явлениях природы. Фрактальные образы с успехом используются при описании хаотического поведения нелинейных динамических и диссипативных систем, неоднородного распределения материи во Вселенной, при исследовании трещин и дислокационных скоплений в твердых телах, при изучении электрического пробоя, диффузии и агрегации частиц, роста кристаллов и т. д.

Язык фрактальной геометрии необходим, например, при изучении поглощения или рассеяния излучения в пористых средах, для характеристики сильно развитой турбулентности, при моделировании свойств поверхности твердых тел, для описания молнии, при анализе процессов усталостного разрушения материалов, при исследовании различных стадий роста вещества за счет диффузии и последующей агрегации, в квантовой механике при описании геометрической структуры волновых функций в точке перехода Андерсона металл-диэлектрик. Удивительно то, что сходные геометрические формы встречаются в совершенно различных областях науки: в астрофизике при описании процессов кластеризации галактик во Вселенной, в картографии при изучении форм береговых линий и разветвленной сети речных русел и, например, в биологии, при анализе строения кровеносной системы или рассмотрении сложных поверхностей клеточных мембран.

Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации.

· Геометрические фракталы

· Алгебраические фракталы

· Стохастические фракталы

Рассмотрим эти различные виды фракталов более подробно.

Геометрические фрак талы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох. Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент, обозначенный на рис.1 через n=1. В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3. Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n-го поколения при любом конечном n называется предфракталом. На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом.


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя.

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта).

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z[i] * Z[i] + C,

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

Фракталами называются геометрические объекты: линии, поверхности, пространственные тела, имеющие сильно изрезанную форму и обладающие свойством самоподобия. Слово фрактал произошло от латинского слова fractus и переводится как дробный, ломаный. Самоподобие как основная характеристика фрактала означает, что он более или менее единообразно устроен в широком диапазоне масштабов. Так, при увеличении маленькие фрагменты фрактала получаются очень похожими на большие. В идеальном случае такое самоподобие приводит к тому, что фрактальный объект оказывается инвариантным относительно растяжений, т. е. ему, как говорят, присуща дилатационная симметрия. Она предполагает неизменность основных геометрических особенностей фрактала при изменении масштаба.

Конечно, для реального природного фрактала существует некоторый минимальный масштаб длины , такой, что на расстояниях его основное свойство - самоподобие - пропадает. Кроме того, на достаточно больших масштабах длин , где - характерный геометрический размер объектов, это свойство самоподобия также нарушается. Поэтому свойства природных фракталов рассматриваются лишь на масштабах l , удовлетворяющих соотношению – Такие ограничения являются довольно естественными, потому что, когда мы приводим в качестве примера фрактала - изломанную, негладкую траекторию броуновской частицы, то мы понимаем, что этот образ является очевидной идеализацией. Дело в том, что на маленьких масштабах сказывается конечность массы и размеров броуновской частицы, а также конечность времени соударения. При учете этих обстоятельств траектория броуновской частицы становится плавной кривой.


Наткнулся тут на упоминание "Теории фракталов" в сериале "Иеремия" и заинтресовался этой довольно изящной теорией, которые современные метафизики применяют для доказательства существования Бога. Теория фракталов имеет совсем небольшой возраст. Она появилась в конце шестидесятых годов на стыке математики, информатики, лингвистики и биологии. В то время компьютеры все больше проникали в жизнь людей, ученые начинали применять их в своих исследованиях, росло число пользователей вычислительных машин. Для массового использования компьютеров необходимо стало облегчить процесс общения человека с машиной. Если в самом начале компьютерной эры немногочисленные программисты-пользователи самоотверженно вводили команды в машинных кодах и получали результаты в виде бесконечных лент бумаги, то при массовом и загруженном режиме использования компьютеров возникла необходимость в изобретении такого языка программирования, который был бы понятен для машины, и в то же время, был бы прост в изучении и применении. То есть пользователю требовалось бы ввести только одну команду, а компьютер разложил бы ее на более простые, и выполнил бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики и лингвистики возникла теория фракталов, позволяющая строго задавать взаимоотношения между алгоритмическими языками. А датский математик и биолог А. Линденмеер придумал в 1968 году одну такую грамматику, названную им L-системой, которая, как он полагал, моделирует также рост живых организмов, в особенности образование кустов и веток у растений.

Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Фрактальная форма подвида цветной капусты (Brassica cauliflora). Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Отцом фракталов по праву можно считать Бенуа Мандельброта. Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт. На рисунке как раз классическая модель фрактала - Множество Мандельброта.

Если излагать примтивно, то теория фрактала - это сопособность хаотичгных стукртур самоорагнизовываться в систему. Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz)- одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), котороя имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Так вот, свойство хаотических систем самоорганизовываться с помощью неправильных аттракторов, по мнению некоторых математиков, и явялется недоказуемым доказательством существования Бога и Его энергии творения всего сущего. Загадка!



Понравилась статья? Поделитесь с друзьями!