Для чего строится петля гистерезиса. Гистерезис магнитный: описание, свойства, практическое применение

В электротехнике есть разные приборы, принцип работы которых основан на электромагнитных явлениях. Где есть сердечник, на котором намотана катушка из проводящего материала, например, меди, наблюдаются взаимодействия за счёт магнитных полей. Это реле, пускатели, контакторы, электродвигатели и магниты. Среди характеристик сердечников есть такая характеристика как гистерезис. В этой статье мы рассмотрим, что это такое, а также какаие польза и вред от данного явления.

Определение понятия

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и . Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис в электронике

В электронных устройствах гистерезис несёт в основном полезные функции. Допустим это используется в пороговых элементах, например, компараторах и триггерах Шмидта. Ниже вы видите график его состояний:

Это нужно в тех случаях, чтобы устройство сработало при достижении сигнала X, после чего сигнал может начать уменьшаться и устройство не отключилось до тех пор, пока сигнал не упадет до уровня Y. Такое решение используется для подавления дребезга контакта, и случайных всплесков, а также в различных регуляторах.

Например, термостат или регулятор температуры. Обычно его принцип действия заключается в том, чтобы отключить нагревательный (или охладительный) прибор в тот момент, когда температура в помещении или другом месте достигла заданного уровня.

Рассмотрим два варианта работы кратко и просто:

  1. Без гистерезиса. Включение и отключение при заданной температуре. При этом здесь есть нюансы. Если вы установили регулятор температуры на 22 градуса и обогреваете комнату до этого уровня, то как только в комнате будет 22 он выключится, а когда вновь опустится до 21 – включится. Это не всегда правильное решение, потому что ваш управляемый прибор будет слишком часто включаться и отключаться. К тому же в большинстве бытовых и многих производственных задачах нет нужды настолько четкой поддержки температуры.
  2. С гистерезисом. Чтобы сделать некий зазор в допустимом диапазоне регулируемых параметров применяют гистерезис. То есть, если вы установили температуру в 22 градуса, то, как только она будет достигнута, обогреватель отключится. Допустим, что гистерезис в регуляторе установлен на зазор в 3 градуса, то обогреватель вновь заработает только тогда, когда температура воздуха опустится до 19 градусов.

Иногда этот зазор регулируется на ваше усмотрение. В простых исполнениях используются биметаллические пластины.

Мы рассмотрели явление и применение гистерезиса в электрике. Итог следующий: в электроприводе и трансформаторах он несет пагубный эффект, а в электронике и разнообразных регуляторах находит и полезное применение. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Чтобы лучше понять, что такое магнитный гистерезис, нужно разобраться, где и при каких условиях он возникает.

Основные понятия

Магнитное поле – это одна из составляющих электромагнитного поля, характеризующаяся своим силовым действием на движущиеся заряженные частицы.

Вектор магнитной индукции B – это основная силовая величина магнитного поля.

Намагниченность M – это величина, которая характеризует магнитное состояние вещества.

Напряженность магнитного поля – это характеристика магнитного поля, которая равна разности магнитной индукции и намагниченности.

Ферромагнитный материал – это материал, намагниченность которого зависит от напряженности внешнего магнитного поля.

Допустим, мы имеем катушку, внутри которой имеется сердечник из ферромагнитного материала. Обычно такой сердечник состоит из железа, никеля, кобальта и различных соединений на их основе. Если подключить её к источнику переменного тока , то вокруг катушки образуется магнитное поле, которое будет изменяться по закону

График зависимости B (H)

Участок 0-1 называется кривой первоначального намагничивания. Благодаря ей мы можем увидеть, как меняется магнитная индукция в размагниченной катушке.

После насыщения (то есть точки 1) с уменьшением напряженности магнитного поля до нуля (участок 1-2), мы видим, что сердечник остался намагниченным на величину остаточной намагниченности Br. Это и называется явлением магнитного гистерезиса.

С точки зрения физики остаточная намагниченность объясняется тем, что в ферромагнетиках существуют сильные магнитные связи между молекулами, благодаря которым создаются беспорядочно направленные магнитные моменты. Под воздействием внешнего поля, они принимают направления поля, а после его снятия, часть магнитных моментов остаются направленными. Поэтому вещество остается намагниченным.

После изменения направления тока в катушке размагничивание продолжается (участок 2-3) до пересечения оси абсцисс. Участок 3-0 называется коэрцитивной силой Hc. Это величина, которая необходима для уничтожения поля в сердечнике. Далее аналогично происходит намагничивание сердечника до насыщения (участок 3-4) и обратно размагничивание на участке 4-5 и 5-6, с последующим намагничиванием до точки 1. Весь этот график называется петлей магнитного гистерезиса.

Если многократно намагнитить сердечник с напряженностью и индукцией магнитного поля, меньшими чем при насыщении, то можно получить семейство кривых, из которых в дальнейшем можно построить основную кривую намагничивания (0-1-2). Эта кривая зачастую требуется при электротехнических расчетах магнитных систем.

В зависимости от ширины петли гистерезиса, ферромагнитные материалы делят на магнитотвердые и магнитомягкие. Магнитотвердые вещества обладают большими значениями остаточной намагниченности и коэрцитивной силы. Магнитомягкие вещества, такие как электротехническая сталь применяют в трансформаторах, электрических машинах,электромагнитах , благодаря небольшой коэрцитивной силе и большому значению магнитной проницаемости.

Важное свойство сегнетоэлектриков обнаруживается при изучении зависимости электрического смещения (D) от напряженности поля (E). Смещение является не прямо пропорциональным полю. Диэлектрическая проницаемость вещества () зависит от напряженности поля. Кроме того, величина диэлектрического смещения зависит не только от значения напряженности электрического поля в настоящий момент, но и от предыстории состояний поляризации. Это явление носит название диэлектрического гистерезиса . Зависимость смещения D от напряженности поля E для сегнетоэлектриков графически изображается петлей гистерезиса (рис.1).

Между обкладками плоского конденсатора поместим сегнетоэлектрик. Будем изменять напряженность (E) внешнего электрического поля по гармоническому закону. При этом станем проводить измерение диэлектрической проницаемости сегнетоэлектрика (). При этом используется схема, которая состоит из двух конденсаторов, соединенных последовательно. К крайним клеммам конденсаторов присоединен генератор, который создает разность потенциалов, которая изменяется по гармоническому закону. Один из имеющихся конденсаторов заполнен сегнетоэлектриком (его емкость обозначим C), в другом диэлектрик отсутствует (). Считаем, что площади обкладок конденсаторов равны, расстояния между обкладками - d. Тогда напряженности полей конденсаторов:

тогда разности потенциалов между обкладками соответствующих конденсаторов:

где - плотность заряда на пластинах конденсатора. Тогда отношение равно:

Если напряжение U подают на горизонтальную развертку осциллографа, а напряжение на вертикальную развертку, то на экране осциллографа отобразится, при изменении E, кривая, абсцисса точек которой в некотором масштабе равна , а ордината - . Данная кривая будет петлей гистерезиса (рис.1).

Стрелки на представленной кривой указывают направления изменения напряженности поля. Отрезок ОВ - отображает величину остаточной поляризации сегнетоэлектрика. Это поляризация диэлектрика при внешнем поле равном нулю. Чем больше отрезок ОВ, тем больше остаточная поляризация. Отрезок ОС отображает величину напряженности, противоположного направления к вектору поляризации, при которой сегнетоэлектрик полностью деполяризован (остаточная поляризация равна нулю). Чем больше длина отрезка ОС, тем лучше остаточную поляризацию удерживает сегнетоэлектрик.

Петлю гистерезиса можно получить, если производить перемагничивание ферромагнетика в периодическом магнитном поле. Кивая зависимости магнитной индукции магнетика от напряженности внешнего магнитного поля (B(H)) будет иметь вид аналогичный рис.1. Демонстрация петли гистерезиса для ферромагнетиков проводится по выше описанной схеме, но при замене конденсаторов на катушки.

Примеры решения задач

ПРИМЕР 1

Задание Объясните, почему ферромагнетики при циклическом перемагничивании нагреваются тем больше, чем ярче у них выражен гистерезис.
Решение Рассмотрим ферромагнетик, гистерезис которого представлен рис.2.

При увеличении индукции от до совершается работа, которая равна площади, ограниченной ветвью кривой намагничивания 1, то есть площади . При размагничивании до исходного состояния возвращаемая работа равна площади , которая имеет, очевидно меньшую величину. Так, при полном цикле перемагничивания нашего ферромагнетика на каждую единицу объема вещества вводится энергия, равна W, причем:

где S - площадь петли гистерезиса. Данная энергия тратится на выполнение работы против коэрцитивных сил в ферромагнетике и в результате переходит в теплоту. Следовательно, ферромагнетики нагреваются тем больше, чем сильнее у них проявляется гистерезис.

ПРИМЕР 2

Задание Зачем тепло гистерезиса учитывают при расчете электрических приборов и устройств?
Решение Тепло гистерезиса необходимо учитывать при расчете разных электрических устройств, если они содержат ферромагнетики, которые в ходе работы устройства подвержены перемагничиванию. (см. пример 1). Примерами подобных устройств являются железные сердечники трансформаторов, железные якори генераторов постоянного тока. Существование гистерезиса в них ведет к тому, что происходит бесполезная затрата энергии, выделяющаяся в виде теплоты, что понижает коэффициент полезного действия приборов и установок. Для уменьшения ненужных трат используют сорта мягкого железа, у которых петли гистерезиса минимальны, то есть гистерезис проявляется слабо.

Гистерезис в общем понятии (от греческого – отстающий) — это свойство определенных физических, биологических и иных систем, которые реагируют на соответствующие воздействия с учетом текущего состояния, а также предыстории.

Гистерезис характерен т.н. «насыщением», и различными траекториями соответствующих графиков, отмечающих состояние системы в данный момент времени. Последние, в итоге, имеют форму остроугольной петли.

Если же рассматривать конкретно электротехнику, то каждый электромагнитный сердечник после окончания воздействия электрического тока в течение некоторого времени сохраняет собственное магнитное поле, называемое остаточным магнетизмом.

Его величина зависит, прежде всего, от свойств материала: у закаленной стали она существенно выше, чем у мягкого железа.

Но, в любом случае, явление остаточного магнетизма всегда присутствует при перемагничивании сердечника, когда необходимо размагнитить его до нуля, а затем изменить полюс на противоположный.

Любое изменение направления тока в обмотке электромагнита предусматривает (из-за наличия вышеуказанных свойств материала) предварительное размагничивание сердечника. Только после этого он может поменять свою полярность — это известный закон физики.

Для перемагничивания в обратном направлении необходим соответствующий магнитный поток.

Другими словами: изменение сердечника не «поспевает» за соответствующими изменениями магнитного потока, которое оперативно создает обмотка.

Вот эта временная задержка намагничивания сердечника от изменений магнитных потоков и получило название в электротехнике как гистерезис.

Каждое перемагничивание сердечника предусматривает избавление от остаточного магнетизма путем воздействия противонаправленным магнитным потоком. На практике это приводит к определенным потерям электроэнергии, которые тратятся на преодоление «неправильной» ориентации молекулярных магнитиков.

Последние проявляются в виде выделения тепла, и представляют так называемые затраты на гистерезис.

Таким образом, стальные сердечники, например, статоров или якорей электродвигателей или генераторов, а также , должны иметь по возможности наименьшую корреляционную силу . Это позволит снизить гистерезисные потери, повысив в итоге КПД соответствующего электрического агрегата или прибора.

Сам процесс намагничивания определяется соответствующим графиком – так называемой петлей гистерезиса. Она представляет замкнутую кривую, отображающую зависимость скорости намагничивания от изменения динамики напряженности внешнего поля.

Большая площадь петли подразумевает, соответственно, и большие затраты на перемагничивание.

Также практически во всех электронных приборах наблюдается и такое явление, как тепловой гистерезис – невозвращение после прогрева аппаратуры к изначальному состоянию.

В и явление гистерезиса используется в различных магнитных носителях информации (например, триггерах Шмидта), или в специальных гистерезисных электродвигателях.

Широкое распространение этот физический эффект нашел также в различных устройствах, предназначенных для подавления различных шумов (дребезг контактов, быстрые колебания и т. п.) в процессе переключения логических схем.



Понравилась статья? Поделитесь с друзьями!