Каков физический смысл производной. Что характеризует относительная плотность одного газа по другому газу? Как рассчитывается плотность газа и каков ее физический смысл? Общий смысл производной

Математические задачи находят своё применение во многих науках. К таковым следует отнести не только физику, химию, технику и экономику, но также медицину, экологию и прочие дисциплины. Одним из важных понятий, которое следует освоить, чтобы находить решения важных дилемм, является производная функции. Физический смысл её объяснить совсем не так сложно, как может показаться непосвящённому в суть вопроса. Достаточно лишь найти подходящие примеры тому в реальной жизни и обычных бытовых ситуациях. На самом деле любой автомобилист справляется с подобной задачей каждый день, когда смотрит на спидометр, определяя скорость своей машины в конкретное мгновение фиксированного времени. Ведь именно в этом параметре заключена суть физического смысла производной.

Как найти скорость

Определить скорость движения человека по дороге, зная пройденное расстояние и время в пути, с лёгкостью может любой пятиклассник. Для этого следует первую из заданных величин разделить на вторую. Но не каждый из юных математиков знает о том, что в данный момент находит отношение приращений функции и аргумента. Действительно, если представить движение в виде графика, откладывая по оси ординат путь, а по абсциссе - время, это будет именно так.

Однако скорость пешехода или любого другого объекта, которую мы определяем на большом участке пути, считая движение равномерным, вполне может меняться. В физике известно множество форм движения. Оно может совершаться не только с постоянным ускорением, но замедляться и возрастать произвольным образом. Следует обратить внимание, что в данном случае линией, описывающей перемещение, будет уже не прямая. Графически она может принимать самые сложные конфигурации. Но для любой из точек графика мы всегда можем провести касательную, представленную линейной функцией.

Для уточнения параметра изменения перемещения в зависимости от времени приходится сокращать измеряемые отрезки. Когда же они станут бесконечно малыми, вычисляемая скорость окажется мгновенной. Данный опыт помогает нам дать определение производной. Физический смысл её также логически вытекает из подобных рассуждений.

С точки зрения геометрии

Известно, что чем больше скорость тела, тем круче график зависимости перемещения от времени, а значит, и угол наклона касательной к графику в какой-то определённой точке. Показателем подобных изменений может стать тангенс угла между осью абсцисс и линией касательной. Как раз он определяет значение производной и вычисляется отношением длин противолежащего к прилежащему катету в прямоугольном треугольнике, образованном перпендикуляром, опущенным из некоторой точки на ось абсцисс.

В этом заключается геометрический смысл первой производной. Физический же раскрывается в том, что величина противолежащего катета в нашем случае представляет собой пройденный путь, а прилежащего - время. При этом отношением их является скорость. И снова мы приходим к выводу, что мгновенная скорость, определяемая при стремлении обоих промежутков к бесконечно малому, и является сутью указывая на её физический смысл. Второй производной в данном примере будет ускорение тела, демонстрирующее, в свою очередь, степень изменения скорости.

Примеры нахождения производных в физике

Производная - это показатель скорости изменения любой функции, даже когда речь не идёт о движении в прямом смысле слова. Чтобы наглядно продемонстрировать это, приведём несколько конкретных примеров. Допустим, сила тока, завися от времени, изменяется согласно следующему закону: I = 0,4t 2 . Требуется найти значение скорости, с которой происходит изменение этого параметра в конце 8-й секунды процесса. Заметим, что сама искомая величина, как можно судить из уравнения, постоянно возрастает.

Для решения требуется найти первую производную, физический смысл которой был рассмотрен ранее. Здесь dI / dt = 0,8 t . Далее найдём оную при t =8 , получим, что скорость, с которой происходит изменение силы тока, равна 6,4 A / c . Здесь считается, что сила тока измеряется в амперах, а время, соответственно, в секундах.

Всё изменчиво

Видимый окружающий мир, состоящий из материи, постоянно претерпевает изменения, находясь в движении протекающих в нём разнообразных процессов. Для описания их можно использовать самые разные параметры. Если они объединены зависимостью, то математически записываются в виде функции, наглядно показывающей их изменения. А где есть движение (в каком бы виде оно ни выражалось), там существует и производная, физический смысл которой мы и рассматриваем в настоящий момент.

По этому поводу следующий пример. Допустим, температура тела изменяется по закону T =0,2 t 2 . Следует найти скорость его нагревания в конце 10-й секунды. Решение задачи производится способом, аналогичным описанному в предыдущем случае. То есть мы находим производную и подставляем в неё значение для t = 10 , получаем T = 0,4 t = 4. Значит, окончательным ответом считается 4 градуса за секунду, то есть процесс нагревания и изменение температуры, измеряемой в градусах, происходит именно с такой скоростью.

Решение практических задач

Конечно, в реальной жизни всё бывает гораздо сложнее, чем в теоретических задачах. На практике значение величин определяется обычно в ходе эксперимента. При этом используются приборы, которые выдают показания при измерениях с определённой погрешностью. Поэтому при вычислениях приходится иметь дело с приближёнными значениями параметров и прибегать к округлениям неудобных чисел, а также другим упрощениям. Приняв это ко вниманию, снова приступим к задачам на физический смысл производной, учитывая, что они являются лишь некоей математической моделью происходящих в природе сложнейших процессов.

Извержение вулкана

Представим, что происходит извержение вулкана. Насколько он может быть опасен? Для выяснения этого вопроса необходимо рассмотреть множество факторов. Мы постараемся учесть один из них.

Из жерла "огненного чудовища" выбрасываются вертикально вверх камни, имеющие начальную скорость с момента выхода наружу Необходимо просчитать, какой они могут достигнуть максимальной высоты.

Для нахождения искомого значения составим уравнение зависимости высоты H, измеряемой в метрах, от прочих величин. К таковым относятся начальная скорость и время. Значение ускорения считаем известным и приблизительно равным 10 м/с 2 .

Частная производная

Рассмотрим теперь физический смысл производной функции немного с другой стороны, ведь само уравнение может содержать не одну, а несколько переменных. К примеру, в предыдущей задаче зависимость высоты подъёма камней, выбрасываемых из жерла вулкана, определялась не только изменением временных характеристик, но и значением начальной скорости. Последняя считалась постоянной, фиксированной величиной. Но в других задачах с совершенно иными условиями всё могло быть иначе. Если величин, от которых зависит сложная функция, несколько, расчёты производятся согласно указанным ниже формулам.

Физический смысл частой производной следует определять, как и в обычном случае. Это скорость изменения функции в некоторой определённой точке при росте параметра переменной. Она вычисляется таким образом, что все остальные составляющие принимаются за постоянные, лишь только один рассматривается как переменная. Далее всё происходит по обычным правилам.

Понимая физический смысл производной, примеры решения запутанных и сложных проблем, ответ в которых позволяют найти подобные знания, привести несложно. Если у нас есть функция, описывающая расход горючего в зависимости от скорости автомобиля, можем рассчитать, при каких параметрах последней расход бензина будет наименьшим.

В медицине можно предвидеть, каким образом будет реагировать человеческий организм на прописанное врачом лекарство. Приём препарата сказывается на самых разных физиологических показателях. К ним относятся изменения артериального давления, пульса, температуры тела и многого другого. Все они зависят от дозы принимаемого лекарственного средства. Данные расчёты помогают предвидеть ход лечения, как в благоприятных проявлениях, так и в нежелательных случайностях, способных фатальным образом отразиться на изменениях в организме больного.

Несомненно, важным оказывается понимание физического смысла производной в технических вопросах, в частности в электротехнике, электронике, конструировании и строительстве.

Тормозной путь

Рассмотрим очередную задачу. Двигаясь с постоянной скоростью, автомобиль, приближаясь к мосту, за 10 секунд до въезда вынужден был затормозить, так как водитель заметил дорожный знак, запрещающий движение со скоростью более 36 км/час. Не нарушил ли правила шофёр, если тормозной путь его можно описать формулой S = 26t - t 2 ?

Вычислив первую производную, найдём формулу для скорости, получим v = 28 - 2t. Далее подставим в указанное выражение значение t=10.

Так как эта величина была выражена в секундах, скорость оказывается равной 8 м/с, а значит, 28,8 км/час. Это даёт возможность понять, что шофёр начал тормозить вовремя и не нарушил правила движения, а значит, и предел указанной на знаке скорости.

Подобное доказывает важность физического смысла производной. Пример решения данной задачи демонстрирует широту использования этого понятия в самых разных сферах жизни. В том числе и в бытовых ситуациях.

Производная в экономике

До XIX столетия экономисты в основном оперировали средними величинами, будь то производительность труда или цена на выпускаемую продукцию. Но с некоторого момента для составления эффективных прогнозов в данной области больше стали необходимы предельные величины. К таковым можно отнести предельную полезность, доход или издержки. Понимание этого дало толчок к созданию совершенно нового инструмента в экономических исследованиях, который существует и развивается вот уже более ста лет.

Для составления подобных расчётов, где главенствуют такие понятия, как минимум и максимум, просто необходимо понимание геометрического и физического смысла производной. Среди создателей теоретической основы указанных дисциплин можно назвать таких видных английских и австрийских экономистов, как У. С. Джевонс, К. Менгер и других. Конечно, предельные величины в экономических выкладках не всегда использовать удобно. А, к примеру, квартальные отчёты не обязательно укладываются в существующую схему, но всё же применение подобной теории во многих случаях бывает полезно и эффективно.

Закон Авогадро : при постоянном давлении и температуре в равных объемах газов содержится одинаковое число молекул.

Изобрано-изотермический процесс

6.Сформулируйте основные следствия из закона Авогадро. Какие условия считаются нормальными и чему равен молярный объем газа при этих условиях.

Следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём. В частности, при нормальных условиях, т.е. при 0° С (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm.

7.Что характеризует относительная плотность одного газа по другому газу? Как рассчитывается плотность газа и каков ее физический смысл?

Отношение масс равных объемов двух газов при одинаковых условиях называется плотностью одного газа по другому, т. е.

8.Сформулируйте законы Бойля-Мариотта и Гей-Люссака, запишите их математические выражения.

Закон Бойля-Мариотта отражает взаимосвязь между дав­лением р и объемом V определенного количества газа при по­стоянной температуре: при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа: pV = const. Другими словами, при переходе газа из состояния с пара­метрами р 1 и V 1 в состояние с параметрами р 2 и У 2 (при Т, п = const) выполняется условие: p 1 V 1 =p 2 V 2 .

Этим соотношением пользуются при расчетах.

Закон Гей-Люссака связывает объем газа V с его температу­рой Т (при р = const): при постоянном давлении объем газа изме­няется прямо пропорционально абсолютной температуре:

П

ри расчетах обычно используется соотношение

9.Сформулируйте объединённый газовый закон и запишите его математическое выражение. В каких расчетах он используется?

На осн-ии з-нов Бойля-Мариотта,Гей-Люссака и Авогадро выводится объед-ый газ з-н:


= const. Для расчетов используется соотношение: . Физ смысл закона в следующем: изменение любого из параметров р, V, Т при переходе из состояния 1 в состояние 2 ведет к изменению других параметров, но соотношение - величина постоянная. Видно, что приТ = const (T 1 = T 2) мы полу­чаем закон Бойля-Мариотта (p 1 V 1 = p 2 V 2), а при р = const (p 1 =р 2) - закон Гей-Люссака-Шарля
, т. е. эти законы являются частным случаем объединенного газового закона. Объед-ный з-н используется для расчета параметров газа при переходе из одного состояния в другое и, чаще всего, одно из этих состояний соответствует норм-ным условиям. За норм-ные усл-я приняты давление 101325 Па (1 атм) и тем­пература 273,15 К (0 °С). Для расчетов обычно используют при­ближенные значения: 1 10 s Па и 273 К.

10.Запишите уравнение Клайперона-Менделеева. Каков физический смысл универсальной газовой постоянной? Какие значения она может принимать и от чего зависит ее величина?

Объединенный газовый закон справедлив для любого коли­чества газа. Для идеального газа количеством 1 моль отношение обозначается R. Эта величина является фундаментальной физической константой и называется универсальной (молярной) газовой постоянной. Для 1 моль газа pV m = RT, а для п молей pV= nRT. С учетом п полученное уравнение примет вид

pV = RT.

Последнее ур-ие известно как уравнение Менделеева-Клапейрона и наиболее часто исп-ся при расчетах. Оно устанавливает связь между давлением, объемом, температурой и количеством вещества. Ур-е Менделеева-Клапейрона спра­ведливо для идеального газа, но позволяет производить расчеты параметров реальных газов при физ условиях, прибли­жающихся к норм-ным, или точнее при не слишком больших давлениях и не слишком низких температурах.

R=8,32*Па*м 3 /моль*К

Производная функции - детище дифференциального исчисления Ньютона и Лейбница - обладает вполне определенным физическим смыслом, если рассмотреть ее поглубже.

Общий смысл производной

Производная функции – это предел, к которому стремится отношение приращения значения функции к приращению аргумента при стремлении последнего к нулю. Для неподготовленного человека звучит крайне абстрактно. Если разобраться, будет видно, что это не так.Для того чтобы найти производную функции, возьмите произвольную функцию – зависимость «игрека» от «икса». Замените в выражении этой функции ее аргумент на приращение аргумента и разделите полученное выражение на само приращение. Вы получите дробь. Далее необходимо провести операцию предела. Для этого нужно устремить приращение аргумента к нулю и пронаблюдать, к чему устремится в этом случае ваша дробь. Та конечная, как правило, величина и будет являться производной функции. Обратите внимание, что в выражении для производной функции уже не будет никаких приращений, ибо вы устремили их нулю, поэтому останется только сама переменная и (или) константа.Итак, производная - это отношение приращения функции к приращению аргумента. Каков же смысл такой величины? Если вы, например, найдете производную линейной функции, то вы увидите, что она постоянна. Причем эта константа в выражении самой функции просто умножается на аргумент. Далее, если вы построите график данной функции при разных значениях производной, просто меняя ее раз за разом, то вы заметите, что при больших ее значениях наклон прямой становится больше, и наоборот. Если же вы имеете дело не с линейной функцией, то значение производной в данной точке скажет вам о наклоне касательной, проведенной в данной точке функции. Таким образом, значение производной функции говорит о скорости роста функции в данной точке.

Физический смысл производной

Теперь, чтобы понять физический смысл производной, достаточно просто заменить вашу абстрактную функцию на любую физически обоснованную. К примеру, пусть вы имеете зависимость пути перемещения тела от времени. Тогда производная от такой функции скажет вам о скорости перемещения тела. Если вы получите значение постоянное, то можно будет говорить о том, что тело перемещается равномерно, то есть с постоянной скоростью. Если же вы получите выражение для производной, линейно зависящее от времени, то станет понятно, что движение равноускоренное, ибо вторая производная, то есть производная данной производной, будет постоянной, что фактически означает постоянство скорости скорости тела, а это и есть его ускорение. Вы можете подобрать любую другую физическую функцию и увидеть, что ее производная даст вам определенный физический смысл.

Понравилась статья? Поделитесь с друзьями!