Сумма модулей равна числу. Внеклассный урок - модуль числа

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 5 является 5, модулем числа –5 тоже является 5.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |5|, |х |, |а | и т.д.

Правило :

Пояснение :

|5| = 5
Читается так: модулем числа 5 является 5.

|–5| = –(–5) = 5
Читается так: модулем числа –5 является 5.

|0| = 0
Читается так: модулем нуля является ноль.

Свойства модуля:

1) Модуль числа есть неотрицательное число:

|а | ≥ 0

2) Модули противоположных чисел равны:

|а | = |–а |

3) Квадрат модуля числа равен квадрату этого числа:

|а | 2 = a 2

4) Модуль произведения чисел равен произведению модулей этих чисел:

|а · b | = |а | · |b |

6) Модуль частного чисел равен отношению модулей этих чисел:

|а : b | = |а | : |b |

7) Модуль суммы чисел меньше или равен сумме их модулей:

|а + b | ≤ |а | + |b |

8) Модуль разности чисел меньше или равен сумме их модулей:

|а b | ≤ |а | + |b |

9) Модуль суммы/разности чисел больше или равен модулю разности их модулей:

|а ± b | ≥ ||а | – |b ||

10) Постоянный положительный множитель можно вынести за знак модуля:

|m · a | = m · |а |, m >0

11) Степень числа можно вынести за знак модуля:

|а k | = |а | k , если а k существует

12) Если |а | = |b |, то a = ± b

Геометрический смысл модуля.

Модуль числа – это величина расстояния от нуля до этого числа.

Для примера возьмем снова число 5. Расстояние от 0 до 5 такое же, что и от 0 до –5 (рис.1). И когда нам важно знать только длину отрезка, то знак не имеет не только значения, но и смысла. Впрочем, не совсем верно: расстояние мы измеряем только положительными числами – или неотрицательными числами. Пусть цена деления нашей шкалы составляет 1 см. Тогда длина отрезка от нуля до 5 равна 5 см, от нуля до –5 тоже 5 см.

На практике часто расстояние отмеряется не только от нуля – точкой отсчета может быть любое число (рис.2). Но суть от этого не меняется. Запись вида |a – b| выражает расстояние между точками а и b на числовой прямой.

Пример 1 . Решить уравнение |х – 1| = 3.

Решение .

Смысл уравнения в том, что расстояние между точками х и 1 равно 3 (рис.2). Поэтому от точки 1 отсчитываем три деления влево и три деления вправо – и наглядно видим оба значения х :
х 1 = –2, х 2 = 4.

Можем и вычислить.

х – 1 = 3
х – 1 = –3

х = 3 + 1
х = –3 + 1

х = 4
х = –2.

Ответ : х 1 = –2; х 2 = 4.

Пример 2 . Найти модуль выражения:

Решение .

Сначала выясним, является ли выражение положительным или отрицательным. Для этого преобразуем выражение так, чтобы оно состояло из однородных чисел. Не будем искать корень из 5 – это довольно сложно. Поступим проще: возведем в корень 3 и 10. Затем сравним величину чисел, составляющих разность:

3 = √9. Следовательно, 3√5 = √9 · √5 = √45

10 = √100.

Мы видим, что первое число меньше второго. Значит, выражение отрицательное, то есть его ответ меньше нуля:

3√5 – 10 < 0.

Но согласно правилу, модулем отрицательного числа является это же число с противоположным знаком. У нас отрицательное выражение. Следовательно, надо поменять его знак на противоположный. Выражением, противоположным 3√5 – 10, является –(3√5 – 10). Раскроем в нем скобки – и получим ответ:

–(3√5 – 10) = –3√5 + 10 = 10 – 3√5.

Ответ .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

1. Модули противоположных чисел равны

2. Квадрат модуля числа равен квадрату этого числа

3. Квадратный корень из квадрата числа есть модуль этого числа

4. Модуль числа есть число неотрицательное

5. Постоянный положительный множитель можно выносить за знак модуля

6. Если , то

7. Модуль произведения двух (и более) чисел равен произведению их модулей

Числовые промежутки

Окрестность точки Пусть х о -любое действительное число (точка на числовой прямой). Окрестностью точки хо называется любой интервал (a; b), содержащий точку x0. В частности, интервал (х о -ε,х о +ε), где ε >0, называется ε-окрестностью точки х о. Число х о называется центром.

3 ВОПРОС понятие функции Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение перемен­ной у.

Переменную х называют независимой переменной или аргументом.

Переменную у называют зависимой переменной.

Способы задания функции

Табличный способ. заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Аналитический способ. Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у = f (х), где f (х) - некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

Для аналитически заданной функции иногда не указывают явно область определения функции. В таком случае подразумевают, что область определения функции у = f (х) совпадает с областью определения выражения f (х), т. е. с множеством тех значений х, при которых выражение f (х) имеет смысл.

Естественная область определения функции

Область определения функции f – это множество X всех значений аргумента x , на котором задается функция.

Для обозначения области определения функции f используется краткая запись вида D(f) .

явное неявное параметрическое задание функции

Если функция задана уравнением у=ƒ(х), разрешенным относительно у, то функция задана в явном виде (явная функция).

Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у.

Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот.

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Модулем рационального числа называют расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать, что модуль числа не может быть отрицательным.

Свойства модуля:

Модуль положительного числа равен самому числу.
|a| = a, если a > 0;

Модуль отрицательного числа равен противоположному числу.
|-a| = a, если a < 0;

Модуль нуля равен нулю.
|0| = 0, если a = 0;

Противоположные числа имеют равные модули.
|-a| = |a|;

Примеры модулей рациональных чисел:

4.Основные методы решения иррациональных уравнений и неравенств.

Мы называем уравнение или неравенство иррациональным, если оно содержит переменную под радикалами, то есть под знаками квадратного, кубического и т. д. корня. Иррациональные урав- нения и неравенства обладают определённой спецификой.

Напомним, что область допустимых значений (сокращённо ОДЗ) уравнения или неравенства есть множество значений переменной, при которых обе части данного уравнения или неравенства имеют смысл. В любой задаче можно обойтись без поиска (и без упоминания) ОДЗ, так что особой необходимости в этом понятии нет. Но и вреда в нём тоже нет2 ; более того, в отдельных ситуациях нахождение ОДЗ оказывается весьма полезным. Так, в некоторых иррациональных уравнениях и неравенствах дело не доходит до каких-либо специфических приёмов - достаточно пристального взгляда и учёта ОДЗ.

Равносильные преобразования

Мы переходим к рассмотрению стандартных видов иррациональных уравнений и неравенств. Здесь предварительный поиск ОДЗ оказывается, как правило, ненужным шагом; наиболее эффективно эти задачи решаются с помощью соответствующих равносильных переходов. Уравнения вида √ A = √ B

Начнём с примера.

Пусть надо решить уравнение √ x = √ 2x + 1. В силу монотонности функции √ x подкоренные выражения должны быть равны: x = 2x+1, откуда x = −1. Однако подстановка этого значения x в уравнение даёт отрицательные числа под радикалами; следовательно, x = −1 не является корнем данного уравнения, и потому оно не имеет решений. Теперь рассмотрим общую ситуацию. Пусть имеется уравнение √ A = √ B, где A и B - некоторые выражения, содержащие переменную. Тогда, во-первых, подкоренные выражения должны быть равны: A = B. Во-вторых, оба подкоренных выражения должны быть неотрицательными; но в силу их равенства достаточно потребовать неотрицательности одного из них. Таким образом, имеем: √ A = √ B ⇔ (A = B, A > 0 или √ A = √ B ⇔ (A = B, B > 0. При этом естественно требовать не отрицательности того выражения, которое устроено проще.

5.Посторение графиков функции, аналитические выражения которого содержат модуль.:

Модуль числа – это расстояние от точки отсчёта до точки соответсвующей этой точке.

Алгоритм построения графика y=|f(x)|.

1.Строим график y=f(x)

2.Участки графика, лежащие выше оси абсцисс, оставить без изменения.

3.Участки, лежащие ниже оси абсцисс, зеркально отобразить относительно этой оси.

Алгоритм построения графика y=f(|x|).

1.Построим график y=f(x).

2.удалим все точки находящиеся слева оси OY.

3.Все точки, лежащие на оси ОУ и справа от неё ,отразим симметрично относительно оси ОУ.

Алгоритм построения графика |y|=|f(x)|

1.Строим график y=f(x).

2.строим график y=|f(x)|.

3.Осуществить его зеркальное отображение относительно оси Ох.

6.Cвойства и график квадратной функции y=ax+bx+c

Функция, которую можно задать формулой y=ax2+bx+c, где a,b,c∈R и a≠0,

называется квадратичной функцией.

Областью определения функции y=ax2+bx+c (допустимыми значениями аргумента x) являются все действительные числа (R).

Графиком квадратичной функции является парабола.

абсциссу вершины параболы (xo;yo) можно вычислить по формуле:

Чтобы построить график квадратичной функции необходимо:

1) вычислить координаты вершины параболы: x0=−b/2a и y0, которую находят, подставив значение x0 в формулу функции,

2) отметить вершину параболы на координатной плоскости, провести ось симметрии параболы,

3) определить направление ветвей параболы,

4) отметить точку пересечения параболы с осью Oy,

5) составить таблицу значений, выбрав необходимые значения аргумента x.

Решив квадратичное уравнение ax2+bx+c=0, получаем точки пересечения параболы с осью Ox или корни функции (если дискриминант D>0)

если D<0, то точек пересечения параболы с осью Ox не существует,



Понравилась статья? Поделитесь с друзьями!