Fonksiyonun türevi x'in küp köküdür. Bir kuvvet fonksiyonunun türevi (kuvvetler ve kökler)

Burada en basit türevleri inceledik ve aynı zamanda türev alma kuralları ve türev bulmanın bazı teknik teknikleri hakkında da bilgi sahibi olduk. Bu nedenle, fonksiyonların türevleri konusunda pek iyi değilseniz veya bu makaledeki bazı noktalar tam olarak anlaşılamadıysa, önce yukarıdaki dersi okuyun. Lütfen ciddi bir ruh hali içine girin - materyal basit değil, ama yine de onu basit ve net bir şekilde sunmaya çalışacağım.

Uygulamada, karmaşık bir fonksiyonun türeviyle çok sık uğraşmanız gerekir, hatta diyebilirim ki, size türevleri bulma görevi verildiğinde hemen hemen her zaman.

Karmaşık bir fonksiyonun türevini almak için kuraldaki (No. 5) tabloya bakıyoruz:

Hadi çözelim. Öncelikle girişe dikkat edelim. Burada iki fonksiyonumuz var - ve mecazi anlamda konuşursak, fonksiyon fonksiyonun içinde yuvalanmıştır. Bu türdeki bir fonksiyona (bir fonksiyon diğerinin içine yerleştirildiğinde) karmaşık fonksiyon denir.

Fonksiyonu çağıracağım harici fonksiyon ve fonksiyon – dahili (veya iç içe geçmiş) fonksiyon.

! Bu tanımlar teorik değildir ve ödevlerin nihai tasarımında yer almamalıdır. Sadece materyali anlamanızı kolaylaştırmak için “dış işlev”, “iç işlev” gibi resmi olmayan ifadeler kullanıyorum.

Durumu açıklığa kavuşturmak için şunları göz önünde bulundurun:

Örnek 1

Bir fonksiyonun türevini bulun

Sinüs altında sadece "X" harfi değil, ifadenin tamamı var, dolayısıyla türevi tablodan hemen bulmak işe yaramayacak. Ayrıca ilk dört kuralın burada uygulanmasının imkansız olduğunu da fark ettik, bir fark var gibi görünüyor, ancak gerçek şu ki sinüs "parçalara ayrılamaz":

Bu örnekte, bir fonksiyonun karmaşık bir fonksiyon olduğu ve polinomun bir iç fonksiyon (gömme) ve bir dış fonksiyon olduğu açıklamalarımdan zaten sezgisel olarak açıktır.

İlk adım Karmaşık bir fonksiyonun türevini bulurken yapmanız gereken şey Hangi fonksiyonun dahili, hangisinin harici olduğunu anlayın.

Basit örneklerde sinüsün altına bir polinomun gömülü olduğu açıkça görülmektedir. Peki ya her şey açık değilse? Hangi fonksiyonun harici, hangisinin dahili olduğunu doğru bir şekilde nasıl belirleyebilirim? Bunu yapmak için zihinsel olarak veya taslak halinde yapılabilecek aşağıdaki tekniği kullanmanızı öneririm.

İfadenin değerini bir hesap makinesinde hesaplamamız gerektiğini hayal edelim (bir yerine herhangi bir sayı olabilir).

İlk önce neyi hesaplayacağız? Öncelikle aşağıdaki eylemi gerçekleştirmeniz gerekecek: bu nedenle polinom bir iç fonksiyon olacaktır:

ikinci olarak bulunması gerekecek, dolayısıyla sinüs – harici bir fonksiyon olacak:

Bizden sonra HEPSİ SATILDI iç ve dış fonksiyonlarda, karmaşık fonksiyonların farklılaşması kuralını uygulamanın zamanı geldi .

Karar vermeye başlayalım. Dersten Türevi nasıl bulunur? herhangi bir türevin çözümünün tasarımının her zaman böyle başladığını hatırlıyoruz - ifadeyi parantez içine alıyoruz ve sağ üst köşeye bir çizgi koyuyoruz:

Başta dış fonksiyonun türevini (sinüs) buluruz, temel fonksiyonların türevleri tablosuna bakarız ve şunu fark ederiz. Tüm tablo formülleri, “x”in karmaşık bir ifadeyle değiştirilmesi durumunda da geçerlidir, bu durumda:

Lütfen iç fonksiyonun değişmedi, dokunmuyoruz.

Peki, oldukça açık ki

Formülün uygulanmasının sonucu son haliyle şöyle görünür:

Sabit faktör genellikle ifadenin başına yerleştirilir:

Herhangi bir yanlış anlaşılma varsa çözümü bir kağıda yazıp açıklamaları tekrar okuyun.

Örnek 2

Bir fonksiyonun türevini bulun

Örnek 3

Bir fonksiyonun türevini bulun

Her zaman olduğu gibi şunu yazıyoruz:

Nerede harici bir fonksiyona sahip olduğumuzu ve nerede dahili bir fonksiyona sahip olduğumuzu bulalım. Bunu yapmak için (zihinsel olarak veya taslak halinde) ifadenin değerini hesaplamaya çalışırız. İlk önce ne yapmalısınız? Her şeyden önce, tabanın neye eşit olduğunu hesaplamanız gerekir: bu nedenle polinom bir iç fonksiyondur:

Ve ancak o zaman üs alma işlemi gerçekleştirilir, bu nedenle kuvvet fonksiyonu harici bir fonksiyondur:

Formüle göre , öncelikle dış fonksiyonun türevini, bu durumda dereceyi bulmanız gerekir. Gerekli formülü tabloda arıyoruz: . Bir kez daha tekrarlıyoruz: herhangi bir tablo formülü yalnızca “X” için değil aynı zamanda karmaşık bir ifade için de geçerlidir. Böylece, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu Sonraki:

Dış fonksiyonun türevini aldığımızda iç fonksiyonumuzun değişmediğini bir kez daha vurguluyorum:

Şimdi geriye kalan tek şey iç fonksiyonun çok basit bir türevini bulmak ve sonucu biraz değiştirmek:

Örnek 4

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Karmaşık bir fonksiyonun türevine ilişkin anlayışınızı pekiştirmek için yorumsuz bir örnek vereceğim, kendi başınıza anlamaya çalışın, dış fonksiyonun nerede ve iç fonksiyonun nerede olduğunu, görevlerin neden bu şekilde çözüldüğünü düşünün.

Örnek 5

a) Fonksiyonun türevini bulun

b) Fonksiyonun türevini bulun

Örnek 6

Bir fonksiyonun türevini bulun

Burada bir kökümüz var ve kökü farklılaştırabilmek için onun bir güç olarak temsil edilmesi gerekiyor. Böylece öncelikle fonksiyonu türev almaya uygun forma getiriyoruz:

Fonksiyonu analiz ettiğimizde, üç terimin toplamının bir iç fonksiyon olduğu, bir güce yükselmenin ise bir dış fonksiyon olduğu sonucuna varıyoruz. Karmaşık fonksiyonların farklılaşma kuralını uyguluyoruz :

Dereceyi yine bir radikal (kök) olarak temsil ediyoruz ve iç fonksiyonun türevi için toplamın türevini almak için basit bir kural uyguluyoruz:

Hazır. Ayrıca ifadeyi parantez içinde ortak bir paydaya indirgeyebilir ve her şeyi bir kesir olarak yazabilirsiniz. Elbette güzel, ancak hantal uzun türevler elde ettiğinizde bunu yapmamak daha iyidir (kafanın karışması, gereksiz bir hata yapılması kolaydır ve öğretmenin kontrol etmesi sakıncalı olacaktır).

Örnek 7

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Bazen karmaşık bir fonksiyonun türevini alma kuralı yerine bir bölümün türevini alma kuralını kullanabileceğinizi belirtmek ilginçtir. ancak böyle bir çözüm alışılmadık bir sapkınlık gibi görünecek. İşte tipik bir örnek:

Örnek 8

Bir fonksiyonun türevini bulun

Burada bölümün farklılaşma kuralını kullanabilirsiniz ancak karmaşık bir fonksiyonun türev alma kuralı yoluyla türevini bulmak çok daha karlı:

Fonksiyonu türev için hazırlıyoruz - eksiyi türev işaretinden çıkarıyoruz ve kosinüsü paya yükseltiyoruz:

Kosinüs bir iç fonksiyondur, üstel ise harici bir fonksiyondur.
Kuralımızı kullanalım :

Dahili fonksiyonun türevini buluyoruz ve kosinüsü tekrar sıfırlıyoruz:

Hazır. Ele alınan örnekte işaretlerin karıştırılmaması önemlidir. Bu arada kuralı kullanarak çözmeye çalışın , yanıtların eşleşmesi gerekir.

Örnek 9

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Şu ana kadar karmaşık bir fonksiyonda yalnızca bir yuvalamanın olduğu durumlara baktık. Pratik görevlerde, iç içe geçmiş bebekler gibi, 3 veya hatta 4-5 fonksiyonun aynı anda iç içe geçtiği türevleri sıklıkla bulabilirsiniz.

Örnek 10

Bir fonksiyonun türevini bulun

Bu fonksiyonun eklerini anlayalım. Deneysel değeri kullanarak ifadeyi hesaplamaya çalışalım. Hesap makinesine nasıl güvenebiliriz?

İlk önce bulmanız gerekir; bu, ark sinüsünün en derin gömme olduğu anlamına gelir:

Bu birin ark sinüsünün karesi alınmalıdır:

Ve son olarak yedinin bir kuvvetini alıyoruz:

Yani, bu örnekte üç farklı fonksiyonumuz ve iki yerleştirmemiz var; en içteki fonksiyon ark sinüs, en dıştaki fonksiyon ise üstel fonksiyondur.

Karar vermeye başlayalım

Kurala göre Öncelikle dış fonksiyonun türevini almanız gerekir. Türev tablosuna bakıyoruz ve üstel fonksiyonun türevini buluyoruz: Tek fark, "x" yerine karmaşık bir ifadeye sahip olmamızdır ve bu, bu formülün geçerliliğini ortadan kaldırmaz. Yani, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu Sonraki.

Bir güç fonksiyonunun türevinin formülünün türetilmesi (x üzeri a). X'in köklerinden türevler dikkate alınır. Daha yüksek dereceli bir güç fonksiyonunun türevinin formülü. Türev hesaplama örnekleri.

x üzeri a'nın türevi eşittir a çarpı x üzeri a eksi bir:
(1) .

X'in n'inci kökünün m'inci kuvvetinin türevi:
(2) .

Bir güç fonksiyonunun türevinin formülünün türetilmesi

Durum x > 0

x değişkeninin a üssüne sahip bir kuvvet fonksiyonunu düşünün:
(3) .
Burada a keyfi bir gerçek sayıdır. Öncelikle olayı ele alalım.

Fonksiyon (3)'ün türevini bulmak için şunu kullanırız: bir güç fonksiyonunun özellikleri ve aşağıdaki forma dönüştürün:
.

Şimdi türevi şunu kullanarak buluyoruz:
;
.
Burada .

Formül (1) kanıtlanmıştır.

Derece n'nin x'in m derecesine kadar türevi için formülün türetilmesi

Şimdi aşağıdaki formun kökü olan bir fonksiyonu düşünün:
(4) .

Türevi bulmak için kökü bir kuvvet fonksiyonuna dönüştürürüz:
.
Formül (3) ile karşılaştırdığımızda şunu görüyoruz:
.
Daha sonra
.

Formül (1)'i kullanarak türevi buluyoruz:
(1) ;
;
(2) .

Pratikte formül (2)'yi ezberlemeye gerek yoktur. İlk önce kökleri kuvvet fonksiyonlarına dönüştürmek ve daha sonra formül (1)'i kullanarak türevlerini bulmak çok daha uygundur (sayfanın sonundaki örneklere bakın).

Durum x = 0

Eğer ise x = değişkeninin değeri için kuvvet fonksiyonu tanımlanır. 0 . 0 Fonksiyon (3)'ün türevini x ='de bulalım.
.

. 0 :
.
Bunu yapmak için türevin tanımını kullanırız:

x = yerine koyalım
.
Bu durumda türev derken sağ taraftaki limiti kastediyoruz.
Böylece şunu bulduk:
Böylece şunu bulduk:
Buradan şunu açıkça görüyoruz ki , .
(1) .
, tarihinde. 0 .

Bu sonuç aynı zamanda formül (1)'den de elde edilir:< 0

Dolayısıyla formül (1) x = için de geçerlidir.
(3) .
Durum x
,
Fonksiyon (3)'ü tekrar düşünün:

Eğer n tek ise, o zaman x değişkeninin negatif değerleri için güç fonksiyonu da tanımlanır. 3 Örneğin, n = 1 ve m =
.
elimizde x'in küp kökü var:

Ayrıca x değişkeninin negatif değerleri için de tanımlanır.
.
Tanımlandığı a sabitinin rasyonel değerleri için güç fonksiyonunun (3) türevini bulalım. Bunu yapmak için x'i aşağıdaki biçimde temsil edelim:
.
Daha sonra , Türevi, türev işaretinin dışındaki sabiti alıp şunu kullanarak buluruz: :

.
karmaşık bir fonksiyonun türevini alma kuralı
.
Burada . Ancak
.
Daha sonra
.
O zamandan beri
(1) .

Yani formül (1) aşağıdakiler için de geçerlidir:

Yüksek dereceli türevler
(3) .
Şimdi kuvvet fonksiyonunun yüksek mertebeden türevlerini bulalım
.

Birinci dereceden türevi zaten bulduk:
.
Türevin işareti dışındaki a sabitini alarak ikinci dereceden türevi buluruz:
;

.

Benzer şekilde üçüncü ve dördüncü mertebeden türevleri de buluruz: Bundan açıkça görülüyor ki keyfi n'inci dereceden türev
.

aşağıdaki forma sahiptir: Dikkat a bir doğal sayı ise
.
, bu durumda n'inci türev sabittir:
,
O zaman sonraki tüm türevler sıfıra eşittir:

.

Türev hesaplama örnekleri

Örnek
.

Fonksiyonun türevini bulun:

Çözüm
;
.
Kökleri kuvvetlere dönüştürelim:
.

Daha sonra orijinal fonksiyon şu şekli alır:
;
.
Kuvvetlerin türevlerini bulma:
.

Sabitin türevi sıfırdır:

Türevi bulma işlemine farklılaşma denir.

Türevi, argümanın artışına oranının limiti olarak tanımlayarak en basit (ve çok basit olmayan) fonksiyonların türevlerini bulma problemlerinin çözülmesinin bir sonucu olarak, bir türev tablosu ve kesin olarak tanımlanmış farklılaşma kuralları ortaya çıktı. . Türev bulma alanında ilk çalışmalar yapanlar Isaac Newton (1643-1727) ve Gottfried Wilhelm Leibniz (1646-1716) olmuştur.

Bu nedenle günümüzde herhangi bir fonksiyonun türevini bulmak için yukarıda belirtilen fonksiyonun artımının argümanın artımına oranının limitini hesaplamanıza gerek yoktur, yalnızca tabloyu kullanmanız gerekir. türevler ve türev alma kuralları. Aşağıdaki algoritma türevi bulmak için uygundur. Türevi bulmak için , asal işaretin altında bir ifadeye ihtiyacınız var basit işlevleri bileşenlere ayırın ve hangi eylemlerin gerçekleştirileceğini belirleyin(çarpım, toplam, bölüm) bu işlevler birbiriyle ilişkilidir. Daha sonra, türev tablosunda temel fonksiyonların türevlerini ve türev kurallarında ürünün, toplamın ve bölümün türevlerinin formüllerini buluyoruz.

İlk iki örnekten sonra türevler ve türev alma kurallarının bir tablosu verilmiştir.Örnek 1.

Çözüm. Türev alma kurallarından, bir fonksiyon toplamının türevinin, fonksiyonların türevlerinin toplamı olduğunu öğreniyoruz;

Türev tablosundan "x" türevinin bire, sinüs türevinin kosinüse eşit olduğunu öğreniyoruz. Bu değerleri türevlerin toplamına koyarız ve problemin koşulunun gerektirdiği türevi buluruz:

Örnek 2.Örnek 1.

Çözüm. İkinci terimin sabit bir faktöre sahip olduğu bir toplamın türevi olarak türev alıyoruz; bu, türevin işaretinden çıkarılabilir:

Eğer hala bir şeyin nereden geldiğine dair sorular ortaya çıkıyorsa, bunlar genellikle türev tablosuna ve türev almanın en basit kurallarına aşina olduktan sonra açıklığa kavuşturulur. Şu anda onlara doğru ilerliyoruz.

Basit fonksiyonların türevleri tablosu

1. Bir sabitin (sayı) türevi. İşlev ifadesindeki herhangi bir sayı (1, 2, 5, 200...). Her zaman sıfıra eşittir. Bunu hatırlamak çok önemlidir, çünkü çok sık ihtiyaç duyulur.
2. Bağımsız değişkenin türevi. Çoğu zaman "X". Her zaman bire eşittir. Bunu uzun süre hatırlamak da önemlidir
3. Derecenin türevi. Problem çözerken karekök olmayanları kuvvetlere dönüştürmeniz gerekir.
4. Bir değişkenin -1 kuvvetine göre türevi
5. Karekökün türevi
6. Sinüs türevi
7. Kosinüsün türevi
8. Teğetin türevi
9. Kotanjantın Türevi
10. Arsinüsün türevi
11. Ark kosinüsün türevi
12. Arktanjantın türevi
13. Ark kotanjantının türevi
14. Doğal logaritmanın türevi
15. Logaritmik fonksiyonun türevi
16. Üssün türevi
17. Üstel bir fonksiyonun türevi

Farklılaşma kuralları

1. Bir toplamın veya farkın türevi
2. Ürünün türevi
2a. Bir ifadenin sabit bir faktörle çarpılmasının türevi
3. Bölümün türevi
4. Karmaşık bir fonksiyonun türevi

Kural 1.Eğer işlevler

Bir noktada türevlenebilirse fonksiyonlar aynı noktada türevlenebilirdir

Ve

onlar. cebirsel fonksiyon toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir.

Sonuçlar. İki türevlenebilir fonksiyonun farkı sabit bir terim ise türevleri eşittir yani

Kural 2.Eğer işlevler

Bir noktada türevlenebilirse çarpımları da aynı noktada türevlenebilirdir

Ve

onlar. İki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımları ile diğerinin türevinin toplamına eşittir.

Sonuç 1. Sabit faktör türevin işaretinden çıkarılabilir:

Sonuç 2. Çeşitli türevlenebilir fonksiyonların çarpımının türevi, her faktörün ve diğerlerinin türevinin çarpımlarının toplamına eşittir.

Örneğin üç çarpan için:

Kural 3.Eğer işlevler

bir noktada farklılaşabilir Ve , o zaman bu noktada onların bölümü de türevlenebiliru/v ve

onlar. iki fonksiyonun bölümünün türevi, pay, paydanın çarpımları ile payın türevi ile pay ve paydanın türevi arasındaki fark olan bir kesire eşittir ve payda, karesidir. eski pay.

Diğer sayfalardaki şeyleri nerede arayabiliriz?

Gerçek problemlerde bir çarpımın ve bölümün türevini bulurken her zaman birkaç türev alma kuralını aynı anda uygulamak gerekir, bu nedenle makalede bu türevlerle ilgili daha fazla örnek vardır."Çarpının türevi ve fonksiyonların bölümü".

Yorum. Bir sabiti (yani bir sayıyı) toplamdaki bir terim ve sabit bir faktör olarak karıştırmamalısınız! Bir terim olması durumunda türevi sıfıra eşit olur ve sabit bir faktör olması durumunda türevlerin işareti dışına çıkarılır. Bu, türevleri çalışmanın ilk aşamasında meydana gelen tipik bir hatadır, ancak ortalama bir öğrenci birkaç bir ve iki parçalı örnekleri çözdükçe artık bu hatayı yapmaz.

Ve eğer bir ürünü veya bölümü farklılaştırırken bir teriminiz varsa sen"v, hangisinde sen- bir sayı, örneğin 2 veya 5, yani bir sabit, o zaman bu sayının türevi sıfıra eşit olacaktır ve dolayısıyla tüm terim sıfıra eşit olacaktır (bu durum örnek 10'da tartışılmıştır).

Bir diğer yaygın hata, karmaşık bir fonksiyonun türevini basit bir fonksiyonun türevi olarak mekanik olarak çözmektir. Bu yüzden karmaşık bir fonksiyonun türevi ayrı bir makale ayrılmıştır. Ama önce basit fonksiyonların türevlerini bulmayı öğreneceğiz.

Yol boyunca ifadeleri dönüştürmeden yapamazsınız. Bunu yapmak için kılavuzu yeni pencerelerde açmanız gerekebilir. Güçleri ve kökleri olan eylemler Ve Kesirlerle işlemler .

Kesirlerin kuvvetleri ve kökleri olan türevlerine çözüm arıyorsanız, yani fonksiyon şöyle göründüğünde , ardından “Küsleri ve kökleri olan kesirlerin toplamlarının türevi” dersini takip edin.

gibi bir göreviniz varsa , daha sonra “Basit trigonometrik fonksiyonların türevleri” dersini alacaksınız.

Adım adım örnekler - türev nasıl bulunur

Örnek 3.Örnek 1.

Çözüm. Fonksiyon ifadesinin bölümlerini tanımlarız: ifadenin tamamı bir çarpımı temsil eder ve faktörleri toplamlardır; ikincisinde terimlerden biri sabit bir faktör içerir. Çarpım farklılaşma kuralını uyguluyoruz: iki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımlarının diğerinin türevine göre toplamına eşittir:

Daha sonra, toplamın türev alma kuralını uyguluyoruz: Cebirsel fonksiyonlar toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir. Bizim durumumuzda her toplamda ikinci terimin bir eksi işareti vardır. Her toplamda hem türevi bire eşit olan bağımsız bir değişken hem de türevi sıfıra eşit olan bir sabit (sayı) görüyoruz. Yani “X” bire, eksi 5 ise sıfıra dönüşüyor. İkinci ifadede "x" 2 ile çarpıldığından ikiyi "x"in türeviyle aynı birim ile çarpıyoruz. Aşağıdaki türev değerlerini elde ederiz:

Bulunan türevleri çarpımların toplamına koyarız ve problemin koşulunun gerektirdiği tüm fonksiyonun türevini elde ederiz:

Örnek 4.Örnek 1.

Çözüm. Bölümün türevini bulmamız gerekiyor. Bölümün türevini almak için formülü uyguluyoruz: iki fonksiyonun bölümünün türevi, payı paydanın çarpımları ile payın türevi ve pay ile payın türevi arasındaki fark olan bir kesire eşittir. payda ve payda önceki payın karesidir. Şunu elde ederiz:

Örnek 2'de paydaki faktörlerin türevini zaten bulmuştuk. Mevcut örnekte payda ikinci faktör olan çarpımın eksi işaretiyle alındığını da unutmayalım:

Bir fonksiyonun türevini bulmanız gereken, sürekli bir kök ve kuvvet yığınının bulunduğu sorunlara çözüm arıyorsanız, örneğin, , o zaman sınıfa hoş geldiniz "Kuvvetleri ve kökleri olan kesirlerin toplamlarının türevi" .

Sinüs, kosinüs, teğet ve diğer trigonometrik fonksiyonların türevleri hakkında daha fazla bilgi edinmek istiyorsanız, yani fonksiyon şuna benzer: o zaman sana bir ders "Basit trigonometrik fonksiyonların türevleri" .

Örnek 5.Örnek 1.

Çözüm. Bu fonksiyonda, türev tablosunda türevine aşina olduğumuz, faktörlerinden biri bağımsız değişkenin karekökü olan bir çarpım görüyoruz. Çarpımı ve karekök türevinin tablo değerini farklılaştırma kuralını kullanarak şunu elde ederiz:

Örnek 6.Örnek 1.

Çözüm. Bu fonksiyonda, payı bağımsız değişkenin karekökü olan bir bölüm görüyoruz. Örnek 4'te tekrarladığımız ve uyguladığımız bölümlerin farklılaşma kuralını ve karekök türevinin tablolaştırılmış değerini kullanarak şunu elde ederiz:

Paydaki kesirden kurtulmak için pay ve paydayı ile çarpın.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!