Копенгагенский эксперимент с двумя щелями. Копенгагенская и ансамблевая интерпретации квантовой механики

волновой функции , данную М. Борном , и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма , в частности на вопрос об измерении .

Основные идеи копенгагенской интерпретации

Физический мир состоит из квантовых (малых) объектов и классических измерительных приборов.

Квантовая механика является статистической теорией, вследствие того, что измерение начальных условий микрообъекта изменяет его состояние и приводит к вероятностному описанию исходного положения микрообъекта, которое описывается волновой функцией . Центральным понятием квантовой механики является комплексная волновая функция . Можно описать изменение волновой функции до нового измерения. Его ожидаемый результат зависит вероятностным образом от волновой функции. Физически значимым является лишь квадрат модуля волновой функции, означающий вероятность нахождения изучаемого микрообъекта в некотором месте пространства.

Закон причинности в квантовой механике выполняется по отношению к волновой функции, изменение которой во времени полностью определяется её начальными условиями, а не по отношению к координатам и скоростям частиц, как в классической механике. Вследствие того, что физический смысл имеет лишь квадрат модуля волновой функции, начальные значения волновой функции невозможно полностью найти в принципе, что приводит к неопределённости знаний о начальном состоянии квантовой системы.

…соотношения неопределённостей Гейзенберга…дают связь (обратную пропорциональность) между неточностями допустимого в квантовой механике фиксирования тех кинематических и динамических переменных, которыми в классической механике определяется состояние физической системы.

Серьёзным преимуществом копенгагенской интерпретации является то, что она не использует детальных высказываний о непосредственно физически не наблюдаемых величинах и при минимуме используемых предпосылок выстраивает систему понятий, которые исчерпывающим образом описывают имеющиеся на сегодня экспериментальные факты .

Смысл волновой функции

Копенгагенская интерпретация предполагает, что на волновую функцию могут влиять два процесса:

  • унитарная эволюция согласно уравнению Шрёдингера
  • процесс измерения

По поводу первого процесса не возникает разногласий ни у кого, а по поводу второго имеется ряд различных интерпретаций, даже в пределах самой копенгагенской интерпретации. С одной стороны, можно полагать, что волновая функция является реальным физическим объектом и что она во время второго процесса претерпевает коллапс , с другой стороны, можно считать, что волновая функция - лишь вспомогательный математический инструмент (а не реальная сущность), единственное предназначение которой - это давать нам возможность рассчитывать вероятности. Бор подчёркивал, что единственное, что можно предсказывать - это результаты физических опытов, поэтому дополнительные вопросы относятся не к науке, а к философии. Бор разделял философскую концепцию позитивизма, которая требует, чтобы наука говорила только о реально измеримых вещах.

Иллюстрируя это, Эйнштейн писал Борну : «Я убеждён, что Бог не бросает кости », - а также восклицал в беседе с Абрахамом Пайсом : «Вы и вправду думаете, что Луна существует, лишь когда вы на неё смотрите? ». Н. Бор отвечал ему: «Эйнштейн, не указывайте Богу, что делать». Эрвин Шрёдингер придумал знаменитый мысленный эксперимент про кота Шрёдингера , которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим .

Аналогично вызывает проблемы необходимый «мгновенный» коллапс волновой функции во всём пространстве. Теория относительности Эйнштейна говорит, что мгновенность, одновременность, имеет смысл только для наблюдателей, находящихся в одной системе отсчёта - не существует единого для всех времени , поэтому мгновенный коллапс тоже остаётся не определён.

Распространённость среди учёных

Многие физики склоняются к так называемой «никакой» интерпретации квантовой механики, ёмко выраженной в афоризме Дэвида Мермина: «Заткнись и считай!» (ориг.

Копенгагенская интерпретация квантовой теории далеко увела физиков от простых материалистических воззрений, господствующих в естествознании XIX столетия. Так как эти воззрения были не только самым тесным образом связаны с естествознанием того времени, но и очень обстоятельно проанализированы в некоторых философских системах и благодаря этому очень глубоко проникли в само мышление человечества, то вполне понятно, что было предпринято много попыток подвергнуть копенгагенскую интерпретацию критике и заменить ее другой, более соответствующей представлениям классической физики и материалистической философии.

Эти попытки предпринимаются с позиций, которые можно разделить на три различные группы. Представители первой группы хотя и принимают полностью копенгагенскую интерпретацию экспериментов, по крайней мере поскольку это касается экспериментов, проведенных до настоящего времени, но не удовлетворены используемым при этом языком, т. е. лежащей в основе ее философией, и заменяют ее другой. Другими словами; они пытаются изменить философию, не меняя при этом физики. В некоторых работах представителей этой первой группы согласие с копенгагенской интерпретацией ограничивается экспериментальными предсказаниями этой интерпретации относительно всех экспериментов, которые были до сих пор проведены или которые только имеют отношение к обычной физике электронов.

Представители второй группы ясно представляют себе, что копенгагенская интерпретация является единственно приемлемым истолкованием, если экспериментальные данные действительно повсюду согласуются с предсказаниями этой интерпретации. Поэтому в работах этой группы делаются попытки в определенных критических пунктах изменить квантовую теорию. Наконец, представители третьей группы просто выражают свою общую неудовлетворенность квантовой теорией, не выдвигая при этом определенных контрпредложений, будь они физического или философского характера. К представителям этой группы можно причислить Эйнштейна, Лауэ и Шредингера. Исторически возражения против копенгагенской интерпретации выдвигались прежде всего этой группой.



Все оппоненты квантовой теории едины, однако, в одном пункте. Было бы желательно, по их мнению, возвратиться к представлению о реальности, свойственному классической физике, или, говоря на более общем философском языке, к онтологии материализма, то есть к представлению об объективном, реальном мире, мельчайшие части которого существуют столь же объективным образом, что и камни и деревья, независимо от того, наблюдаем мы их или нет.

Но, как разъяснено в одной из предыдущих глав, это невозможно или, во всяком случае, вследствие природы атомных явлений, возможно не полностью. Нашей задачей не может являться высказывание пожеланий относительно того, какими должны быть, собственно говоря, атомные явления. Нашей задачей может быть только понимание их.

Когда разбирают работы представителей первой группы, то важно с самого начала иметь в виду, что толкования, содержащиеся в этих работах, не могут быть опровергнуты экспериментом, так как они ведь только повторяют копенгагенскую интерпретацию на другом языке. Со строго позитивистской точки зрения можно было бы даже сказать, что здесь мы имеем дело совсем не с контрпредложениями, выдвинутыми против копенгагенской интерпретации, а с их точным повторением на другом языке. Поэтому можно только спорить о целесообразности этого языка. Эта группа контрпредложений использует идею «скрытых параметров». Так как законы квантовой теории предсказывают результаты эксперимента, вообще говоря, только статистически, то, основываясь на классической точке зрения, можно было бы предположить, что существуют скрытые параметры, которые, будучи ненаблюдаемы в любом обычном эксперименте, в действительности определяют результат эксперимента, как это всегда считалось ранее в соответствии с принципом причинности. Поэтому в некоторых работах была предпринята попытка изобрести такие параметры внутри рамок квантовой механики.

В этом плане выдвинул, например, свои контрпредложения против копенгагенской интерпретации Бом, идеи которого недавно были до некоторой степени поддержаны также де Бройлем 10 . Интерпретация Бома разработана вплоть до деталей. Поэтому она может служить здесь основой обсуждения. Бом рассматривает частицы как объективно существующие структуры, подобно материальным точкам классической механики. Волны в конфигурационном пространстве являются в его интерпретации также «объективно существующими», подобно электрическим полям. Правда, конфигурационное пространство представляет собой пространство многих измерений, относящихся к различным координатам всех принадлежащих систем частиц. В связи с этим возникает первая трудность: что имеют в виду, когда называют волны в конфигурационном пространстве «реально существующими»? Конфигурационное пространство представляет собой очень абстрактное пространство. Слово же «реальное» происходит от латинского слова «res» и означает «предмет», «вещь». Но вещи существуют в обычном, трехмерном, а не в абстрактном конфигурационном пространстве. Рассмотрение волн в конфигурационном пространстве в качестве объективных имело бы оправдание лишь в том случае, если бы мы этим рассмотрением хотели сказать, что эти волны не зависят от наблюдателя. Но все же их вряд ли можно назвать действительно существующими, или реальными, если мы только не хотим произвольно менять значение слов. Бом определяет затем линии, пересекающие поверхности постоянной фазы под прямым углом, как возможные траектории частиц. Какая из этих линий окажется действительной траекторией частицы, зависит, по мнению Бора, от истории системы и свойств измерительного прибора, и решить этот вопрос, не зная о системе и измерительном приборе больше того, что фактически может быть известно, нельзя. Эта история (системы и прибора) фактически содержит в таком случае «скрытые параметры», а именно реальную траекторию электрона до того, как эксперимент начался.

Одним из следствий этой интерпретации, как подчеркнул Паули, является то, что электроны многих атомов в стационарном состоянии должны покоиться, что они, стало быть, не должны совершать никаких движений по орбитам вокруг атомного ядра. Это кажется на первый взгляд противоречащим эксперименту, так как измерения скоростей электронов в основном состоянии (например, с помощью Комптон‑эффекта) всегда дают в итоге некоторое распределение электронов основного состояния по скоростям, которое в соответствии с правилами квантовой механики дается квадратом волновой функции в пространстве скоростей (импульсов). В этом случае, однако, Бом может ответить, что измерение не подлежит больше рассмотрению на основании прежних законов. Поэтому хотя при обычной оценке результата измерения в качестве распределения по скоростям будет получаться квадрат волновой функции в пространстве скоростей (импульсов), но если при рассмотрении измерительной аппаратуры принимать во внимание квантовую теорию и особенно введенные Бором ad hoc квантово‑механические потенциалы, то вывод – в действительности электроны в стационарном состоянии всегда покоятся – был бы все‑таки допустим. Этому соответствует тот факт, что введенные Бором в этой связи квантовые потенциалы имеют очень странные свойства; например, они отличны от нуля на любом сколь угодно большом расстоянии. Такой ценой Бом надеется получить возможность утверждать: «Для нас нет необходимости отказываться в области квантовой теории от точного, рационального и объективного описания индивидуальных систем». Но такое объективное описание разоблачает себя при этом как разновидность идеологической надстройки, только в очень малой степени связанной с непосредственной физической реальностью. Ибо ведь скрытые параметры в интерпретации Бора таковы, что они никогда не могут встретиться в описании реальных процессов, поскольку квантовая теория остается неизменной.

Чтобы избежать этой трудности, Бор высказал надежду, что в будущих экспериментах (например, на расстояниях, меньших 10 –13 см) скрытые параметры все‑таки еще будут иметь физический смысл и тем самым квантовая теория может оказаться ложной. Бор по поводу высказывания таких надежд обычно говорит, что по структуре они подобны приблизительно такому утверждению: «Можно надеяться, что впоследствии окажется, что в некоторых случаях 2 X 2 = 5, ибо это было бы выгодно для наших финансов». На самом деле исполнение надежд Бора лишило бы почвы не только квантовую механику, но тем самым и интерпретацию Бора. Конечно, в то же время необходимо подчеркнуть, что приведенная аналогия, хотя она и представляется полной, не является с точки зрения логики неотразимым аргументом против возможного будущего изменения квантовой теории в предлагаемом Бором направлении. Ибо в принципе можно себе представить, что, например, последующее развитие математической логики может придать определенный смысл утверждению, что в исключительных случаях 2X2 может быть равно 5 и что в таком случае эта обобщенная математика, возможно, даже будет использоваться для вычислений в области экономики. И все же на основании фактов, не прибегая даже к убедительным логическим аргументам, мы убеждены, что такие изменения в математике ничем не смогут помочь нашим финансам. Поэтому непонятно и то, как могут быть применены для описания физических явлений те математические идеи, на которые Бом указывает как на возможное осуществление своих надежд.

Если отвлечься от этого возможного изменения квантовой теории, то язык Бома, как уже отмечалось, не говорит в отношении физики ничего иного, чем язык копенгагенской интерпретации. В таком случае остается только вопрос о целесообразности этого языка. Наряду с тем, что мы уже отмечали о траекториях частиц, когда рассматривали эти рассуждения как ненужную идеологическую надстройку, следует также отметить, что язык Бома разрушает присущую квантовой теории симметрию координат и скоростей, или, точнее говоря, координат и импульсов. Так как свойства симметрии всегда имеют отношение к сокровеннейшей физической сущности теории, то остается непонятным, что мы выиграем от устранения их в соответствующем языке.

Подобное же возражение в несколько другой форме можно привести и против статистической интерпретации Боппа и несколько отличной от нее интерпретации Феньеша. Бопп принимает в качестве основного квантово‑ме­ха­нического процесса возникновение и уничтожение частиц, которые являются реальными в классическом смысле слова, а именно в смысле материалистической онтологии, и законы квантовой механики рассматриваются как особый случай корреляционной статистики, которая здесь применяется к процессам возникновения и порождения частиц. Такая интерпретация может быть проведена, как показал Бопп, без противоречий, и она проливает свет на интересные связи между квантовой теорией и корреляционной статистикой. С физической точки зрения она ведет к тем же самым выводам, что и копенгагенская интерпретация. В позитивистском смысле она, следовательно, опять же изоморфна этой интерпретации, так же как и интерпретация Бома. Однако в ее языке нарушается симметрия волн и частиц, являющаяся обычно особенно характерной чертой математической схемы квантовой теории. Уже в 1928 г. Иордан, Клейн и Вигнер показали, что эта математическая схема может быть истолкована не только как квантование движения частиц, но и как квантование трехмерных материальных волн. Нет, следовательно, основания считать волны материи менее реальными, чем частицы. Симметрия волн и частиц могла бы в интерпретации Боппа сохраниться, пожалуй, в том случае, если бы соответствующая корреляционная статистика была развита и в применении к материальным волнам в пространстве и времени и если бы, таким образом, можно было оставить открытым вопрос о том, частицы или волны следует считать настоящей реальностью.

Предположение о реальном в смысле материалистической онтологии существовании частиц всегда необходимо ведет к попыткам считать, что по крайней мере в принципе возможны отклонения от соотношения неопределенностей. Например, Феньеш утверждает, что существование соотношения неопределенностей, которое он также связывает с определенными статистическими соотношениями, никоим образом не исключает возможность одновременного и сколь угодно точного измерения координат и скорости. Однако Феньеш не указывает, как такие измерения должны практически выглядеть, и поэтому его соображения, по‑видимому, остаются абстрактно‑ма­те­ма­тическими.

Вейцель, предложения которого родственны предложениям Бома и Феньеша, связывает искомые скрытые параметры с новым, придуманным ad hoc сортом частиц, зеронами, которые никаким способом невозможно наблюдать. Представление такого рода таит в себе опасность, что взаимодействие реальных частиц с зеронами приведет к рассеянию энергии по большому числу степеней свободы поля зеронов, так что вся термодинамика превратится в хаос. Вейцель не объяснил, как он сможет преодолеть эту опасность.

Точку зрения, из которой исходили в критике копенгагенской интерпретации все группы рассмотренных до сих пор физиков, вероятно, можно лучше всего охарактеризовать, если вспомнить дискуссию, посвященную специальной теории относительности. Те, кто не был удовлетворен устранением Эйнштейном абсолютного пространства и абсолютного времени, могли аргументировать примерно следующим образом. Специальная теория относительности никоим образом не доказала, что не существует абсолютное пространство и абсолютное время. Она только показала, что истинное пространство и истинное время во всех обычных экспериментах себя не проявляют. Но если правильно учесть соответствующие законы природы и таким образом ввести для движущихся систем координат правильные кажущиеся времена, то ничто не будет говорить против предположения об абсолютном пространстве. Было бы даже правдоподобно предположить, что центр тяжести нашей Галактики (по крайней мере приближенно) покоится в абсолютном пространстве. Критик специальной теории относительности мог еще добавить, что можно надеяться, что в будущем измерения сделают определение абсолютного пространства, так сказать «скрытого параметра» теории относительности, возможным и тем самым теория относительности будет опровергнута.

Эту аргументацию нельзя, как это сразу видно, опровергнуть экспериментально, так как при этом не делается никаких утверждений, отличающихся от утверждений специальной теории относительности. Но такая интерпретация теории относительности нарушала бы, по крайней мере на применяемом языке, как раз важнейшее свойство симметрии теории относительности, а именно инвариантность относительно преобразований Лоренца, и поэтому ее следует считать неприемлемой.

Аналогия обсуждений специальной теории относительности с обсуждениями квантовой теории очевидна. Законы квантовой механики таковы, что введенные ad hoc скрытые параметры никогда нельзя будет наблюдать. Кроме того, важнейшие свойства симметрии были бы нарушены, если бы мы ввели в интерпретацию теории скрытые параметры в качестве фиктивных величин.

Возражения, которые содержатся в работах Блохинцева и Александрова, по самой постановке довольно отличны от обсужденных выше. Эти возражения с самого начала ограничиваются исключительно философской стороной вопроса. В физическом плане Блохинцев и Александров без всяких оговорок соглашаются с копенгагенской интерпретацией. Тем более резкими оказываются внешние формы полемики: «Среди самых разнообразных идеалистических направлений в современной физике так называемая «копенгагенская школа» – наиболее реакционная. Разоблачению идеалистических и агностических спекуляций этой школы вокруг коренных проблем квантовой механики и посвящена данная статья», – пишет Блохинцев во введении к одной из своих статей. Резкость полемики показывает, что здесь идет речь не только о науке, но и о веровании. Цель критики высказана в заключение статьи цитатой из сочинения Ленина: «Как ни диковинно с точки зрения «здравого смысла» превращение невесомого эфира в весомую материю и обратно, как ни «странно» отсутствие у электрона всякой иной массы, кроме электромагнитной, как ни необычно ограничение механических законов движения одной только областью явлений природы и подчинение их более глубоким законам электромагнитных явлений и т. д. – все это только лишнее подтверждение диалектического материализма». Хотя, стало быть, предпосылки работ Блохинцева и Александрова лежат вне области естествознания, все же обсуждение их аргументов весьма поучительно.

В данном случае главная задача заключается в спасении материалистической онтологии, поэтому атакам подвергается прежде всего введение в интерпретацию квантовой теории наблюдателя. Александров пишет: «Поэтому под результатом измерения в квантовой механике нужно понимать объективный эффект взаимодействия электрона с подходящим объектом. Разговоры о наблюдателе нужно исключить и иметь дело с объективными условиями и объективными эффектами, физическая величина есть объективная характеристика явления, а не результат наблюдения». Волновая функция характеризует, согласно Александрову, объективное состояние электрона.

В своем изложении Александров упускает, что взаимодействие системы с измерительным прибором в том случае, когда прибор и система считаются изолированными от остального мира и в целом рассматриваются в соответствии с квантовой механикой, как правило, не ведет к определенному результату (например, к почернению фотопластинки в определенной точке). Когда против этих заключений выдвигают утверждение: «Но в действительности пластинка после взаимодействия все‑таки почернела в определенном месте», то тем самым от квантово‑механического рассмотрения изолированной системы, состоящей из электрона и пластинки, отказываются. В этом заключается фактический характер события, которое может быть описано с помощью понятий повседневной жизни, в математическом формализме квантовой теории непосредственно не содержится и в копенгагенскую интерпретацию входит благодаря введению представления о наблюдателе. Конечно, не следует понимать введение наблюдателя неправильно, в смысле внесения в описание природы каких‑то субъективных черт. Наблюдатель выполняет скорее функции регистрирующего «устройства», то есть регистрирует процессы в пространстве и времени; причем дело не в том, является ли наблюдатель аппаратом или живым существом; но регистрация, то есть переход от возможного к действительному, в данном случае, безусловно, необходима и не может быть исключена из интерпретации квантовой теории. В этом пункте квантовая теория самым тесным образом связана с термодинамикой, поскольку всякий акт наблюдения по всей своей природе является необратимым процессом. Только посредством таких необратимых процессов формализм квантовой теории может быть непротиворечивым образом связан с действительными процессами в пространстве и времени. С другой стороны, необратимость, если ее снова перевести на язык математического изображения событий, является следствием неполноты знаний, которые наблюдатель имеет о системе, и поэтому не является все‑таки чем‑то вполне объективным.

Формулировки Блохинцева несколько иные, чем Александрова. «В квантовой механике состояние частицы характеризуется действительно не «само по себе», а принадлежностью частицы тому или иному ансамблю (смешанному или чистому). Эта принадлежность имеет совершенно объективный характер и не зависит от сведений наблюдателя». Такие формулировки уводят на самом деле уж очень далеко (даже слишком далеко) от онтологии материализма. Дело в том, что, например, в классической термодинамике положение иное. При определении температуры системы наблюдатель подразумевает, что система представляет собой только один образец, выбранный из канонического ансамбля, и он, следовательно, может считать, что система, по‑видимому, обладает различными энергиями. Однако в действительности система имеет в классической физике в определенный момент времени только определенное значение энергии, все другие значения не реализуются. Наблюдатель, следовательно, впадет в ошибку, если будет считать возможным, что в данный момент существует другое значение энергии. Отсюда канонический ансамбль содержит высказывания не только о самой системе, но и о неполноте сведений наблюдателя о системе. Когда Блохинцев пытается в квантовой теории считать принадлежность системы к ансамблю чем‑то вполне объективным, он употребляет слово «объективный» в смысле, отличающемся от употребления его в классической физике, ибо в ней эта принадлежность означает, как уже было отмечено, высказывание не только о системе, но и о степени знания системы наблюдателем. При рассмотрении квантовой теории необходимо кратко упомянуть об одном исключении. Если ансамбль характеризуется в квантовой теории только единственной волновой функцией в конфигурационном пространстве (а не как обычно – статистической матрицей), то создается особая ситуация (так называемый «чистый случай»), в котором описание может быть названо в известном смысле объективным и в котором элемент неполного знания непосредственно не обнаруживается. Но так как всякое измерение (из‑за связанных с ним необратимых процессов) снова вводит потом элемент неполного знания, то и эта ситуация «чистого случая» все‑таки не отличается принципиально от другого, ранее обсужденного более общего случая.

Из всего рассмотренного выше прежде всего видно, как трудно втиснуть новые идеи в старую систему понятий предшествующей философии, или, употребляя старинное выражение, как трудно наполнить новым вином старые меха. Такие попытки всегда неприятны, потому что заставляют снова и снова заниматься латанием неизбежных дыр в старых мехах, вместо того чтобы наслаждаться новым вином. С точки зрения здравого смысла нельзя ожидать, что мыслители, создавшие диалектический материализм более ста лет назад, могли предвидеть развитие квантовой теории. Их представления о материи и реальности не могут быть приспособлены к результатам нашей сегодняшней утонченной экспериментальной техники.

Здесь, пожалуй, следует сделать дополнительно несколько замечаний о позиции естествоиспытателя в отношении определенного мировоззрения. При этом безразлично, о религиозном или политическом мировоззрении идет речь. Принципиальное различие религиозного и политического мировоззрений, заключающееся в том, что последнее имеет отношение к непосредственной материальной реальности мира вокруг нас, в то время как первое имеет объектом другую реальность, лежащую по ту сторону материального мира, в данной постановке проблемы несущественно. Здесь следует обсудить проблему самой веры. Из того, что было до сих пор сказано, следует вывод, что ученый никогда не должен полагаться на какое‑то единственное учение, никогда не должен ограничивать методы своего мышления одной‑единственной философией. Ученый должен быть готов к тому, что благодаря новым экспериментальным данным могут быть изменены и самые основы его знания. Но это требование по двум соображениям снова представляло бы собой слишком большое упрощение нашего положения в жизни.

Первое соображение состоит в том, что весь образ нашего мышления формируется в нашей юности, благодаря тем идеям, с которыми мы в это время сталкиваемся, или благодаря тому, что мы вступаем в контакт с выдающимися личностями, у которых мы учимся. Этот образ мышления будет оказывать решающее влияние на всю нашу последующую работу, и вследствие этого вполне возможны затруднения в процессе приспособления к совершенно другим идеям и системам мышления. Второе соображение состоит в том, что мы всегда принадлежим некоему обществу или общности. Эту общность связывают воедино общие идеи, общий критерий моральных ценностей или общий язык, на котором говорят о всеобщих проблемах жизни. Эти общие идеи могут поддерживаться авторитетом церкви, партии или государства, и даже если это не будет иметь место, все равно очень трудно отойти от общепринятых идей, не противопоставляя себя обществу. Но результаты научных размышлений могут противоречить некоторым из общепринятых идей. Без сомнения, было бы неразумно требовать, чтобы ученый вообще не был лояльным членом общества, чтобы он принципиально отказался от всех благ, которые можно получить, принадлежа коллективу, и было бы столь же неразумно желать, чтобы общие идеи коллектива или общества, которые с научной точки зрения всегда необходимо являются упрощением, следует менять сразу же вслед за очередным успехом научного познания, что эти общие идеи должны быть, следовательно, такими же изменчивыми, как и научные теории. Поэтому и в наше время мы снова приходим к старой проблеме двойственности истины, которая неоднократно возникала в истории христианской религии в эпоху позднего средневековья. В то время появилось весьма спорное учение о том, что положительная религия независимо от того, какую форму она может принять, является для огромного большинства людей потребностью, в то время как ученый ищет собственно истину по ту сторону религии и может найти ее только там.

Наука является эзотерическим учением, – так было сказано, – она предназначена только для немногих. В наше время функции положительной религии в некоторых странах взяли на себя политические учения и общественные организации, но проблема, в сущности, осталась той же. Первым требованием в отношении ученого должно всегда оставаться требование интеллектуальной честности, в то время как общество часто будет просить ученого, вследствие изменчивости науки, подождать по крайней мере несколько десятилетий, прежде чем публично высказывать свое расходящееся с общепринятым мнение. Простого решения этой проблемы – если одной терпимости недостаточно, – вероятно, нет. Но, пожалуй, можно находить некоторое утешение в том факте, что здесь речь идет, несомненно, о довольно старой проблеме, относящейся к жизни человека во все времена.

Теперь снова возвратимся к контрпредложениям копенгагенской интерпретации квантовой теории и рассмотрим при этом контрпредложения представителей второй группы. В этих контрпредложениях попытка построения иной философской интерпретации связана даже со стремлением изменить квантовую теорию. Добросовестная попытка в этом направлении предпринята Яноши, который осознал, что предположение о строгой справедливости квантовой механики заставляет нас отойти от представлений о реальности классической физики. Он поэтому пытается так изменить квантовую механику, чтобы многие ее результаты оставались в силе, но ее структура приближалась к структуре классической физики. Направлением своей атаки он избрал так называемую редукцию волнового пакета, то есть тот факт, что описывающая систему волновая функция в момент, когда наблюдателю становится известным результат наблюдения, меняется скачком. Яноши констатирует, что эта редукция не может быть выведена из уравнения Шредингера, и полагает, что отсюда можно заключить о наличии непоследовательности «ортодоксальной» интерпретации. Как известно, редукция волнового пакета появляется в копенгагенской интерпретации всегда в тех случаях (на языке формализма – всегда для «статистической смеси» состояний), когда завершается переход от возможного к действительному, то есть когда действительное выбирается из возможного, что, согласно обычному описанию, делает наблюдатель. В основе этого лежит предположение, что интерференционные члены частично погашаются вследствие неконтролируемых взаимодействий измерительного прибора с системой и остальным миром (на языке формализма – взаимодействие «приготовляет» смесь). Яноши пытается в этом пункте, вводя затухание, так изменить квантовую механику, чтобы интерференционные члены по истечении конечного времени исчезали сами по себе. Даже если бы это соответствовало действительности, – а все проведенные доныне эксперименты не дают для этого никаких оснований, – то при такой интерпретации, как отмечает сам Яноши, остался бы еще ряд нежелательных следствий (например, волны, распространяющиеся быстрее скорости света, изменение временной последовательности причины и следствия для движущегося наблюдателя, то есть выделение определенных систем отсчета и т. д.). Поэтому мы вряд ли согласимся пожертвовать простотой квантовой теории ради такого рода представлений, пока нас не принудит к этому эксперимент.

Среди других оппонентов «ортодоксальной» интерпретации квантовой теории Шредингер занимает в определенном смысле исключительную позицию, поскольку он хотел бы приписывать объективную реальность не частицам, а волнам и не согласен интерпретировать волны только как волны вероятности. В своей работе «Существуют ли квантовые скачки?» он пытается вообще отвергнуть квантовые скачки. Но в работе Шредингера прежде всего содержится некоторое непонимание обычной интерпретации. Он упускает из виду, что волнами вероятности в обычной интерпретации являются только волны в конфигурационном пространстве – то, что на языке математики можно назвать матрицами преобразования, – а не трехмерные волны материи или излучения. Последние объективно реальны в столь же большой и в столь же малой степени, что и частицы, хотя они не имеют непосредственно никакого отношения к волнам вероятности, но обладают, подобно максвелловскому полю, непрерывной плотностью энергии и импульса. Конечно, Шредингер правильно подчеркивает, что эти процессы можно считать более непрерывными, чем это делается в большинстве случаев. Однако Шредингер не может этим устранить из мира элемент прерывности, который в атомной физике обнаруживается повсюду, например очень наглядно – на сцинтилляционном экране. В обычной интерпретации квантовой теории этот элемент содержится в переходе от возможного к действительному. Сам Шредингер не делает никаких контрпредложений относительно того, как он представляет себе, например, введение всюду наблюдаемого элемента прерывности иначе, чем это делается в обычной интерпретации.

Наконец, критика, которая содержится в различных работах Эйнштейна, Лауэ и других, сосредоточивается вокруг вопроса о том, дает ли копенгагенская интерпретация возможность однозначного, объективного описания физических фактов. Ее наиболее важные аргументы могут быть выражены примерно в следующей форме. Математическая схема квантовой теории кажется вполне достаточным описанием статистики атомных явлений. Но, даже если ее утверждения относительно вероятностей атомных процессов вполне правильны, эта интерпретация все‑таки не дает никакого описания того, что происходит на самом деле, независимо от наблюдений или между нашими наблюдениями. Что‑нибудь должно ведь, однако, происходить – в этом мы можем не сомневаться. Это «что‑нибудь», может быть, и нельзя описать с помощью понятий электрона, или волны, или светового кванта, но, поскольку оно не описывается каким‑либо образом, задача физики еще не выполнена. Нельзя допустить, что квантовая физика относится только к акту наблюдения. Физик должен предполагать в своей науке, что он изучает мир, который создал не он сам и который существовал бы также и без него и в основном точно таким же. Поэтому копенгагенская интерпретация не дает никакого действительного понимания атомных процессов.

Легко видеть, что эта критика требует просто возврата к старой материалистической онтологии. Что же можно ответить на эту критику с точки зрения копенгагенской интерпретации?

Можно сказать, что физика является частью естествознания и в этом качестве должна стремиться к описанию и пониманию природы. Однако понимание любого рода, будь оно научным или нет, зависит от нашего языка, от того, что мы можем передавать наши мысли. Всякое описание явлений, опытов и их результатов также основывается на языке как на единственном средстве понимания. Слова этого языка выражают понятия повседневной жизни, которые в научном языке физики могут быть уточнены до понятий классической физики. Эти понятия представляют собой единственное средство однозначной передачи сообщений о процессах, расположении приборов в опытах и их результатах. Поэтому когда физика‑атомника просят дать описание того, что реально происходит в его опытах, то слова «описание», «реальность» и «происходит» могут относиться только к понятиям повседневной жизни или классической физики. Как только физик попытался бы отказаться от этой базы, он потерял бы возможность однозначно объясняться и не смог бы развивать свою науку далее. Поэтому всякое высказывание о том, что на самом деле происходит или произошло, является высказыванием, использующим понятия классической физики. Оно по самой своей природе вследствие законов термодинамики и соотношения неопределенностей оказывается неполным в отношении тех деталей атомных процессов, о которых в данном случае идет речь. Требование, что следует описывать и то, что в квантово‑механическом процессе происходит в промежутке между двумя следующими друг за другом наблюдениями, является contradictio in adjecto, так как слово «описывать» имеет отношение только к применению классических понятий, тогда как эти понятия не могут быть применены в промежутках между двумя наблюдениями. Они могут применяться только в момент наблюдения.

Необходимо также подчеркнуть, что копенгагенская интерпретация квантовой теории никоим образом не является позитивистской. В то время как позитивизм исходит из чувственных восприятий элементов бытия, копенгагенская интерпретация рассматривает описываемые в классических понятиях объекты и процессы, то есть фактическое, в качестве основы всякого физического объяснения. Вместе с тем признается также, что статистичность природы законов микрофизики устранена быть не может, так как всякое знание «фактического» в силу квантово‑механических законов природы является знанием неполным.

Онтология материализма основывалась на иллюзии, что в атомную область можно экстраполировать способ существования, непосредственно данное окружающего нас мира. Но эта экстраполяция невозможна.

Можно было бы добавить еще некоторые замечания относительно формальной структуры контрпредложений в отношении копенгагенской интерпретации. Все выдвинутые до сих пор контрпредложения в отношении копенгагенской интерпретации заставляют жертвовать существенными свойствами симметрии квантовой теории. Поэтому вполне можно предположить, что копенгагенская интерпретация является необходимой, если эти свойства симметрии, подобно свойству инвариантности относительно преобразований Лоренца, считать существенными свойствами природы. В пользу этого говорят и все проведенные до сих пор эксперименты.

Копенга́генская интерпрета́ция - интерпретация (толкование) квантовой механики , которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года . Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции , данную М. Борном , и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма , в частности на вопрос об измерении .

Энциклопедичный YouTube

  • 1 / 5

    Физический мир состоит из квантовых (малых) объектов и классических измерительных приборов.

    Квантовая механика является статистической теорией, вследствие того, что измерение начальных условий микрообъекта изменяет его состояние и приводит к вероятностному описанию исходного положения микрообъекта, которое описывается волновой функцией . Центральным понятием квантовой механики является комплексная волновая функция . Можно описать изменение волновой функции до нового измерения. Его ожидаемый результат зависит вероятностным образом от волновой функции. Физически значимым является лишь квадрат модуля волновой функции, означающий вероятность нахождения изучаемого микрообъекта в некотором месте пространства.

    Закон причинности в квантовой механике выполняется по отношению к волновой функции, изменение которой во времени полностью определяется её начальными условиями, а не по отношению к координатам и скоростям частиц, как в классической механике. Вследствие того, что физический смысл имеет лишь квадрат модуля волновой функции, начальные значения волновой функции невозможно полностью найти в принципе, что приводит к неопределённости знаний о начальном состоянии квантовой системы.

    …соотношения неопределённостей Гейзенберга…дают связь (обратную пропорциональность) между неточностями допустимого в квантовой механике фиксирования тех кинематических и динамических переменных, которыми в классической механике определяется состояние физической системы.

    Серьёзным преимуществом копенгагенской интерпретации является то, что она не использует детальных высказываний о непосредственно физически не наблюдаемых величинах и при минимуме используемых предпосылок выстраивает систему понятий, которые исчерпывающим образом описывают имеющиеся на сегодня экспериментальные факты .

    Смысл волновой функции

    Копенгагенская интерпретация предполагает, что на волновую функцию могут влиять два процесса:

    • унитарная эволюция согласно уравнению Шрёдингера
    • процесс измерения

    По поводу первого процесса не возникает разногласий ни у кого, а по поводу второго имеется ряд различных интерпретаций, даже в пределах самой копенгагенской интерпретации. С одной стороны, можно полагать, что волновая функция является реальным физическим объектом и что она во время второго процесса претерпевает коллапс , с другой стороны, можно считать, что волновая функция - лишь вспомогательный математический инструмент (а не реальная сущность), единственное предназначение которой - это давать нам возможность рассчитывать вероятности. Бор подчёркивал, что единственное, что можно предсказывать - это результаты физических опытов, поэтому дополнительные вопросы относятся не к науке, а к философии. Бор разделял философскую концепцию позитивизма, которая требует, чтобы наука говорила только о реально измеримых вещах.

    Иллюстрируя это, Эйнштейн писал Борну : «Я убеждён, что Бог не бросает кости », - а также восклицал в беседе с Абрахамом Пайсом : «Вы и вправду думаете, что Луна существует лишь когда вы на неё смотрите? ». Н. Бор отвечал ему: «Эйнштейн, не указывайте Богу, что делать». Эрвин Шрёдингер придумал знаменитый мысленный эксперимент про кота Шрёдингера , которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим .

    Аналогично вызывает проблемы необходимый «мгновенный» коллапс волновой функции во всём пространстве. Теория относительности Эйнштейна говорит, что мгновенность, одновременность, имеет смысл только для наблюдателей, находящихся в одной системе отсчёта - не существует единого для всех

    Физики из Австрии и США опубликовали результаты опроса своих коллег по поводу того, как они понимают квантовую механику. Результаты оказались противоречивы - несмотря на то, что классическая копенгагенская интерпретация все еще чувствует себя довольно бодро, к ней постепенно подбирается теория квантовой информации. Гипотеза же многих миров сдает свои позиции.

    Корни проблемы

    История квантовой механики начинается в конце XIX века, когда статистическая физика столкнулась с парадоксом, получившим название ультрафиолетовой катастрофы. Столкновение это было тем более неожиданным, что речь шла про, казалось бы, простую физическую задачу: описание излучения, связанного с нагревом тела, - будь то металл, камень или уголь в камине. Скажем, хорошо известно, что свечение нагретого металла с ростом температуры меняется от красного к светло-голубому. Почему это так?

    Оказалось, что решение этой задачи сводится к изучению излучения так называемого абсолютно черного тела, абстракции, представляющей собой тело, которое поглощает все упавшее на него излучение. Название, как оказалось, было выбрано довольно неудачно - например, с достаточной степенью точности абсолютно черным телом можно считать Солнце.

    И в этот момент физики столкнулись вот с чем: модель излучения, которая была у них на руках (так называемый закон Рэлея-Джинса) неплохо описывала излучение для длинных волн, но для коротких не работала совершенно. Более того, она давала невозможный результат: энергия, излучаемая телом, равна бесконечности. Этот парадокс и получил имя ультрафиолетовой катастрофы.

    В 1900 году Макс Планк предложил совершенно неочевидное объяснение тому, что результаты экспериментов с короткими волнами противоречат теории - правда, сам термин «ультрафиолетовая катастрофа» появился только в 1911 году, а бесконечность энергии была обнаружена Рэлеем и Джинсом уже после появления планковского объяснения. Планк заявил, что излучение испускается не непрерывно, как считалось ранее, а порциями (квантами). Энергия каждого кванта оказывается связана с частотой излучения простым линейным законом. На основе этих предположений он вывел свой закон излучения, который показал отличное согласование с экспериментальными данными и принес Планку нобелевскую премию по физике в 1918 году.

    Обнаруженный закон невозможно было объяснить с точки зрения физики того времени, строго разделявшей две основные сущности - поля и частицы. Возник нетривиальный и, скорее, философский вопрос: если физика описывает нашу обычную действительность, то какую действительность описывают новые уравнения? Так вместе с квантовой механикой (именно с момента публикации работы Планка многие отсчитывают историю новой физической теории) появилась и проблема интерпретации квантовой механики.

    Сначала, конечно, странность уравнений Планка не вызывала у физиков особого волнения - им казалось, что здание физики незыблемо, поэтому странные уравнения найдут объяснения в рамках классической теории (сами физики, конечно, свою физику классической еще не считали - тем же уравнениям Максвелла не было тогда и 20 лет). Более того, с порционностью физикам уже приходилось сталкиваться: идея существования мельчайшей неделимой порции электрического заряда, равной заряду электрона, на тот момент была общепризнанной.

    Ситуация с квантами усугубилась в 1905 году. Дело в том, что в 90-х годах XIX века физики активно изучали фотоэффект - явление испускания электронов веществом под воздействием света. На основании экспериментов им удалось установить несколько эмпирических законов. В 1905 году Альберт Эйнштейн предложил объяснение всем этим законам, распространив теорию порционного излучения Планка на свет. Получившаяся теория вновь давала прекрасное согласование с экспериментальными данными и вновь не помещалась в классическую картину мира.

    Копенгагенская интерпретация

    Спустя буквально 20 лет научный мир находился в состоянии непримиримого противостояния. Суть разногласий сводилась к вопросу о том, насколько хорошо квантовая теория описывает реальность (сами уравнения и тот факт, что они прекрасно работают, ни у кого возражений не вызывали). Противники молодой физики утверждали, что все эти корпускулярно-волновые дуализмы (свойства материи быть частицей и волной одновременно) и прочие противоречащие тогдашнему здравому физическому смыслу объекты являются просто следствием несовершенства математического аппарата. На стороне классиков сражались Эйнштейн, Планк, Шредингер. Последний, кстати, придумал своего кота как раз для того, чтобы продемонстрировать абсурдность новой теории.

    В 1935 году Альберт Эйнштейн, Борис Подольский и Натан Розен опубликовали статью, в которой описали мысленный эксперимент, получивший название парадокса Эйнштейна-Подольского-Розена. Суть парадокса сводилась к тому, что в квантовом мире существует явление запутанности. Из-за этого в некотором случае измерение состояния одного объекта позволяет определить состояние другого, удаленного от первого на произвольное расстояние. При этом кажется, что нарушается причинно-следственная связь. Этот парадокс был предложен как доказательство неполноты квантовомеханического описания мира. Парадокс разрешается благодаря тому факту, что для передачи известной информации о втором объекте требуется канал связи, который не нарушает причинно-следственную связь. Позже явление запутанности неоднократно наблюдалось на практике.

    Адепты же квантовой механики отстаивали реальность всех этих загадочных явлений (хотя позже стало понятно, что и среди этих ученых имеются серьезные разногласия). В период с 1924 по 1927 год Нильс Бор и Вернер Гейзенберг, одни из главных защитников «новой физики», сформулировали основные положения «реальности» в смысле квантовой механики. Эти положения были представлены широкой научной общественности в 1927 году, когда Гейзенберг прочитал серию лекций в Чикагском университете о том, что из себя представляет квантовая механика. Так на свет появилась копенгагенская интерпретация квантовой механики (и Бор, и Гейзенберг в ту пору работали в университете Копенгагена) - самая, пожалуй, распространенная и популярная интерпретация.

    Главным отличием микромира от привычного нам макромира провозглашалась вероятностная природа происходящих там процессов. Материя демонстрирует корпускулярно-волновой дуализм. Основным объектом описания системы становилась волновая функция, которая характеризует амплитуду вероятности обнаружить систему в том или ином состоянии в данной конкретной точке. Со временем волновая функция эволюционирует, и эта эволюция описывается так называемым уравнением Шредингера. По сути состояния системы оказываются «размазаны» по времени и пространству. Традиционно это интерпретируется как нахождение квантовой системы в нескольких состояниях одновременно.

    В случае измерения происходит коллапс волновой функции к одному из классических состояний. Это связано с тем, что все измерительные приборы и все измерения в физике считаются классическими. По этой причине, помимо прочего, невозможно получить всю возможную информацию о системе. Иллюстрацией последнего положения является знаменитый принцип неопределенности Гейзенберга, утверждающий, что произведение неопределенностей при измерении импульса и координаты какой-нибудь механической системы всегда больше некоторого ненулевого значения. Наконец, последнее требование - для достаточно больших систем квантовое описание приближается к классическому.

    Копенгагенская интерпретация позволила физике смириться с многими парадоксальными результатами наблюдений. Для примера можно рассмотреть так называемый двухщелевой опыт. Представим экран, который отгорожен от источника света светонепроницаемой поверхностью, в которой прорезаны две щели. Когда свет проходит через щели, на экране возникает последовательность светлых и темных полос - типичная интерференционная картина. Это связано с тем, что свет - волна и, проходя через щели, разделяется на пару волн, взаимодействующих между собой. При этом такая картина наблюдается и в случае пролета единичных фотонов.

    Если у обеих щелей поставить детекторы, которые будут регистрировать проходящие через них фотоны, то срабатывать будет всегда только один из детекторов. Это и есть демонстрация корпускулярно-волнового дуализма. Более того, если один из детекторов убрать и не фиксировать прохождение фотона, интерференционная картина на экране все равно исчезает. С точки зрения копенгагенской интерпретации это является прямой демонстрацией того, что при измерении (пусть даже с отрицательным результатом) происходит коллапс волновой функции.

    Новые реальности

    В середине XX века копенгагенская интерпретация считалась стандартным объяснением квантовой механики. Ситуация изменилась к концу века - в физике стали возникать вопросы, которые даже не приходили в голову классикам. Вот, например, волновая функция - это что? Удобный инструмент для описания или же некий реально существующий объект? Или, скажем, как быть с квантовой запутанностью?

    В настоящее время вопрос интерпретации считается скорее философским, нежели физическим. Известный физик Ашер Перес - автор одноименного парадокса - считает, что интерпретации суть не более чем набор правил для оперирования экспериментальными данными, поэтому единственное требование, которое можно предъявить к интерпретациями - чтобы эти наборы правил были эквивалентны друг другу (среди прочего, это связано с тем фактом, что, как уже говорилось выше, математический аппарат у всех интерпретаций совершенно одинаковый).

    В настоящее время помимо копенгагенской интерпретации существует несколько ранее считавшихся немного безумными или даже научно-фантастическими альтернатив, которые со временем уверенно подвинули классику. И это не считая типично инструменталистской интерпретации Дэвида Мермина, выраженной в знаменитом афоризме «Заткнись и считай».

    Самой популярной из альтернатив является так называемая многомировая интерпретация, принадлежащая Хью Эверетту. Примечательно, что Эверетт оставил физику после нескольких работ, в том числе и из-за той критики, которой научное сообщество подвергло его взгляды. В основе многомировой интерпретации - отрицание реальности коллапса волновой функции, то есть разделения взаимодействий на классические и квантовые.

    Для этого Эверетт ввел понятие квантовой декогеренции, суть которой, достаточно условно (пытаясь пояснить формулы словами, всегда сталкиваешься с некоторыми неизбежными упрощениями), заключается в том, что исследуемая система и наблюдатель - измерительный прибор - оказываются объединены в одну огромную (по меркам микромира) систему. Факт этого включения и приводит к кажущемуся ощущению «классичности» - ведь тезис о том, что большие системы должны быть похожи на классические, этой интерпретацией не отрицается. При этом каждый из возможных вариантов включения системы оказывается реализован. С точки зрения двухщелевого опыта, если за одной из щелей стоит детектор, то при подлете фотона к поверхности с прорезями Вселенная раздваивается. В результате в одной из реальностей наблюдатель регистрирует фотон, а в другой - нет. При этом все бесчисленные Вселенные оказываются частью некоего глобального квантового мира, который никогда не теряет своей когеренции.

    Помимо многомировой интерпретации, есть еще и информационная интерпретация - точнее, даже несколько интерпретаций такого рода. В их основе лежит идея о том, что при измерении наблюдатель извлекает из системы некоторую информацию. Эта информация, с одной стороны, воспринимается как результат наблюдения, с другой - меняет саму измеряемую квантовую систему, поскольку та информацию теряет. Эти идеи носят идеалистический характер, поскольку помещают в основу реальности информацию, а не материю.

    Наконец, последней интерпретацией, которую стоит упомянуть (на самом деле их много больше), это интерпретация Пенроуза. В ней коллапс волновой функции признается объективной реальностью, то есть физическим процессом. Согласно этой теории, коллапс происходит случайно, а сам наблюдатель никакой роли в этом процессе не играет.

    Разброд и шатание

    В 1997 году известный физик и космолог Макс Тегмарк опросил 48 участников конференции «Фундаментальные проблемы в квантовой теории», чтобы выяснить, какая интерпретация этой самой теории кажется им предпочтительной. Несмотря на то, что опрос носил в целом неформальный характер, Тегмарк обнаружил, что многомировая интерпретация квантовой механики уступила копенгагенской, но не слишком (13 голосов против восьми). Это довольно неожиданный результат, если учесть, что в свое время, как говорилось выше, автор теории многомировой интерпретации Эверетт был вынужден уйти из науки.

    Теперь сразу три физика из Австрии и США повторили опрос Тегмарка. Местом его проведения была выбрана конференция «Квантовая механика и природа реальности», проходившая в июле 2011 года в Австрии. Каждому участнику съезда предлагалось выбрать из предложенных ответы к 16 вопросам. Сами исследователи признают, что, как и опрос Тегмарка, их исследование носило не слишком формальный характер. Ученым, например, разрешалось давать на один вопрос несколько ответов. Кроме этого в исследовании приняли участие 33 человека - то есть на 15 меньше, чем в предыдущем опросе.

    Оказалось, что 64 процента опрошенных уверены: случайность - это фундаментальное свойство природы. При этом 48 процентов заявили, что до измерения свойства объекта не определены. Это основные положения именно копенгагенской интерпретации. Что касается проблемы измерения - видимого и необратимого коллапса волновой функции - то тут мнения очень сильно разделились. Оказалось, что 27 процентов опрошенных считают ее псевдопроблемой (то есть математическим артефактом), еще 15 процентов полагают, что понятие декогеренции снимает вопрос об измерениях, 39 процентов думают, что эта проблема решена, и 24 процента - что эта проблема представляет серьезную трудность в квантовой картине мира. В сумме получается больше 100 процентов, но это именно потому, что можно было давать больше одного варианта ответа, а проценты считались как отношение количества ответов к количеству участников, помноженное на 100.

    Наиболее интересными были ответы на вопросы о квантовой информации - оказалось, что 76 процентов опрошенных считают идею квантовой информации «глотком свежего воздуха» для основ квантовой механики. Довольно необычный сдвиг для физиков, известных своим прожженным материализмом. Еще у физиков спрашивали, когда появится квантовый компьютер, и 42 процента опрошенных заявили, что это произойдет через 10-25 лет.

    Что касается самого главного вопроса: «какой интерпретации придерживаетесь вы?» - то тут результаты были следующими. Оказалось, что 42 процента поддерживают копенгагенскую интерпретацию, 24 процента - теорию квантовой информации и только 18 - многомировую интепретацию квантовой механики. Еще 9 процентов придерживаются интерпретации Пенроуза об объективности коллапса волновой функции.

    Вместо заключения

    Здесь, конечно, следовало бы сделать вывод о неожиданном укреплении позиций классики, которое, судя по всему, вызвано постепенным спадом интереса к многомировой интерпретации. Также можно было бы отметить популярность квантовой информации, которая, разумеется в ближайшее время будет только расти - ведь многие называют этот подход перспективным.

    Делать эти выводы, однако, бессмысленно. Похоже, такого же мнения придерживаются и сами ученые - на вопрос «будут ли через 50 лет проводиться конференции по основам квантовой механики?» 48 процентов опрошенных ответили «да» и еще 24 - «кто знает». Действительно, кто ж его знает?

    Копенгагенская интерпретация квантовой теории

    В. Гейзенберг

    Копенгагенская интерпретация квантовой теории начинается с парадокса. Каждый физический эксперимент, безразлично относится ли он к явлениям повседневной жизни или к явлениям атомной физики, должен быть описан в понятиях классической физики. Понятия классической физики образуют язык, с помощью которого мы описываем наши опыты и результаты. Эти понятия мы не можем заменить ничем другим, а применимость их ограничена соотношением неопределенностей. Мы должны иметь в виду ограниченную применимость классических понятий, и не пытаться выходить за рамки этой ограниченности. А чтобы лучше понять этот парадокс, необходимо сравнить интерпретацию опыта в классической и квантовой физике.

    Например, в ньютоновской небесной механике мы начинаем с того, что определяем положение и скорость планеты, движение которой собираемся изучать. Результаты наблюдения переводятся на математический язык благодаря тому, что из наблюдений выводятся значения координат и импульса планеты. Затем из уравнения движения, используя эти численные значения координат и импульса для данного момента времени, получают значения координат или какие-либо другие свойства системы для последующих моментов времени. Таким путем астроном предсказывает движение системы. Например, он может предсказать точное время солнечного затмения.

    В квантовой теории все происходит по-иному. Допустим, нас интересует движение электрона в камере Вильсона, и мы посредством некоторого наблюдения определили координаты и скорость электрона. Однако это определение не может быть точным. Оно содержит по меньшей мере неточности, обусловленные соотношением неопределенностей, и, вероятно, кроме того, будет содержать еще большие неточности, связанные с трудностью эксперимента. Первая группа неточностей дает возможность перевести результат наблюдения в математическую схему квантовой теории. Функция вероятности, описывающая экспериментальную ситуацию в момент измерения, записывается с учетом возможных неточностей измерения. Эта функция вероятностей представляет собой соединение двух различных элементов: с одной стороны -- факта, с другой стороны -- степени нашего знания факта. Эта функция характеризует фактически достоверное, поскольку приписывает начальной ситуации вероятность, равную единице. Достоверно, что электрон в наблюдаемой точке движется с наблюдаемой скоростью. "Наблюдаемо" здесь означает -- наблюдаемо в границах точности эксперимента. Эта функция характеризует степень точности нашего знания, поскольку другой наблюдатель, быть может, определил бы положение электрона еще точнее. По крайней мере в некоторой степени экспериментальная ошибка или неточность эксперимента рассматривается не как свойство электронов, а как недостаток в нашем знании об электроне. Этот недостаток знания также выражается с помощью функции вероятности.

    В классической физике в процессе точного исследования ошибки наблюдения также учитываются. В результате этого получают распределение вероятностей для начальных значений координат и скоростей, и это имеет некоторое сходство с функцией вероятности квантовой механики. Однако специфическая неточность, обусловленная соотношением неопределенностей, в классической физике отсутствует.

    Если в квантовой теории из данных наблюдения определена функция вероятности для начального момента, то можно рассчитать на основании законов этой теории функцию вероятности для любого последующего момента времени. Таким образом, заранее можно определить вероятность того, что величина при измерении будет иметь определенное значение. Например, можно указать вероятность, что в определенный последующий момент времени электрон будет найден в определенной точке камеры Вильсона. Следует подчеркнуть, что функция вероятности не описывает само течение событий во времени. Она характеризует тенденцию события, возможность события или наше знание о событии. Функция вероятности связывается с действительностью только при выполнении одного существенного условия: для выявления определенного свойства системы необходимо произвести новые наблюдения или измерения. Только в этом случае функция вероятности позволяет рассчитать вероятный результат нового измерения. При этом снова результат измерения дается в понятиях классической физики. Поэтому теоретическое истолкование включает в себя три различные стадии. Во-первых, исходная экспериментальная ситуация переводится в функцию вероятности. Во-вторых, устанавливается изменение этой функции с течением времени. В-третьих, делается новое измерение, а ожидаемый результат его затем определяется из функции вероятности. Для первой стадии необходимым условием является выполнимость соотношения неопределенностей. Вторая стадия не может быть описана в понятиях классической физики; нельзя указать, что происходит с системой между начальным измерением и последующими. Только третья стадия позволяет перейти от возможного к фактически осуществляющемуся.

    Мы разъясним эти три ступени на простом мысленном эксперименте. Уже отмечалось, что атом состоит из атомного ядра и электронов, которые двигаются вокруг ядра. Также было установлено, что понятие электронной орбиты в некотором смысле сомнительно. Однако вопреки последнему утверждению можно сказать, что все же, по крайней мере в принципе, можно наблюдать электрон на его орбите. Быть может, мы и увидели бы движение электрона по орбите, если бы могли наблюдать атом в микроскоп с большой разрешающей силой. Однако такую разрешающую силу нельзя получить в микроскопе, применяющем обычный свет, поскольку для этой цели будет пригоден только микроскоп, использующий г-лучи, с длиной волны меньшей размеров атома. Такой микроскоп до сих пор не создан, но технические затруднения не должны нас удерживать от обсуждения этого мысленного эксперимента. Можно ли на первой стадии перевести результаты наблюдения в функцию вероятности? Это возможно, если выполняется после опыта соотношение неопределенностей. Положение электрона известно с точностью, обусловленной длиной волны г-лучей. Предположим, что перед наблюдением электрон практически находится в покое. В процессе наблюдения по меньшей мере один квант г-лучей обязательно пройдет через микроскоп и в результате столкновения с электроном изменит направление своего движения. Поэтому электрон также испытает воздействие кванта. Это изменит его импульс и его скорость. Можно показать, что неопределенность этого изменения такова, что справедливость соотношения неопределенностей после удара гарантируется. Следовательно, первый шаг не содержит никаких трудностей. В то же время легко можно показать, что нельзя наблюдать движение электронов вокруг ядра. Вторая стадия -- количественный расчет функции вероятности -- показывает, что волновой пакет движется не вокруг ядра, а от ядра, так как уже первый световой квант выбивает электрон из атома. Импульс г-кванта значительно больше первоначального импульса электрона при условии, если длина волны г-лучей много меньше размеров атома. Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из атома. Следовательно, нельзя никогда наблюдать более чем одну точку траектории электрона; следовательно, утверждение, что нет никакой, в обычном смысле, траектории электрона, не противоречит опыту. Следующее наблюдение -- третья стадия -- обнаруживает электрон, когда он вылетает из атома. Нельзя наглядно описать, что происходит между двумя следующими друг за другом наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то подобие траектории, даже если невозможно эту траекторию установить. Такие рассуждения имеют смысл с точки зрения классической физики. В квантовой теории такие рассуждения представляют собой неоправданное злоупотребление языком. В настоящее время мы можем оставить открытым вопрос о том, касается ли это предложение формы высказывания об атомных процессах или самих процессов, то есть касается ли это гносеологии или онтологии. Во всяком случае, при формулировании положений, относящихся к поведению атомных частиц, мы должны быть крайне осторожны.

    Фактически мы вообще не можем говорить о частицах. Целесообразно во многих экспериментах говорить о волнах материи, например о стоячей волне вокруг ядра. Такое описание, конечно, будет противоречить другому описанию, если не учитывать границы, установленные соотношением неопределенностей. Этим ограничением ликвидируется противоречие. Применив понятия "волна материи" целесообразно в том случае, если речь идет об излучении атома. Излучение, обладая определенной частотой и интенсивностью, дает нам информацию об изменяющемся распределении зарядов в атоме; при этом волновая картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал применять обе картины. Их он назвал дополнительными. Обе картины, естественно, исключают друг друга, так как определенный предмет не может в одно и то же время быть и частицей (то есть субстанцией, ограниченной в малом объеме) и волной (то есть полем, распространяющимся в большом объеме). Но обе картины дополняют друг друга. Если использовать обе картины, переходя от одной к другой и обратно, то в конце концов получится правильное представление о примечательном виде реальности, который скрывается за нашими экспериментами с атомами.

    Бор при интерпретации квантовой теории в разных аспектах применяет понятие дополнительности. Знание положения частицы дополнительно к знанию ее скорости или импульса. Если мы знаем некоторую величину с большой точностью, то мы не можем определить другую (дополнительную) величину с такой же точностью, не теряя точности первого знания. Но ведь, чтобы описать поведение системы, надо знать обе величины. Пространственно-временное описание атомных процессов дополнительно к их каузальному или детерминистскому описанию. Подобно функции координат в механике Ньютона, функция вероятности удовлетворяет уравнению движения. Ее изменение с течением времени полностью определяется квантово-механическими уравнениями, но она не дает никакого пространственно-временного описания системы. С другой стороны, для наблюдения требуется пространственно-временное описание. Однако наблюдение, изменяя наши знания о системе, изменяет теоретически рассчитанное поведение функции вероятности.

    Вообще дуализм между двумя различными описаниями одной и той же реальности не рассматривается больше как принципиальная трудность, так как из математической формулировки теории известно, что теория не содержит противоречий. Дуализм обеих дополнительных картин ярко выявляется в гибкости математического формализма. Обычно этот формализм записывается таким образом, что он похож на ньютонову механику с ее уравнениями движения для координат и скоростей частиц. Путем простого преобразования этот формализм можно представить волновым уравнением для трехмерных волн материи, только эти волны имеют характер не простых величин поля, а матриц или операторов. Этим объясняется, что возможность использовать различные дополнительные картины имеет свою аналогию в различных преобразованиях математического формализма и в копенгагенской интерпретации не связана ни с какими трудностями. Затруднения в понимании копенгагенской интерпретации возникают всегда, когда задают известный вопрос: что в действительности происходит в атомном процессе? Прежде всего, как уже выше говорилось, измерение и результат наблюдения всегда описывается в понятиях классической физики. То, что выводится из наблюдения, есть функция вероятности. Она представляет собой математическое выражение того, что высказывания о возможности и тенденции объединяются с высказыванием о нашем знании факта. Поэтому мы не можем полностью определить результат наблюдения. Мы не в состоянии описать, что происходит в промежутке между этим наблюдением и последующим. Прежде всего это выглядит так, будто мы ввели субъективный элемент в теорию, будто мы говорим, что то, что происходит, зависит от того, как мы наблюдаем происходящее, или по крайней мере зависит от самого факта, что мы наблюдаем это происходящее. Прежде чем разбирать это возражение, необходимо совершенно точно выяснить, почему сталкиваются с подобными трудностями, когда стараются описать, что происходит между двумя следующими друг за другом наблюдениями. Целесообразно в этой связи обсудить следующий мысленный эксперимент. Предположим, что точечный источник монохроматического света испускает свет на черный экран, в котором имеются два маленьких отверстия. Поперечник отверстия сравним с длиной волны света, а расстояние между отверстиями значительно превышает длину волны света. На некотором расстоянии за экраном проходящий свет падает на фотографическую пластинку. Если этот эксперимент описывать в понятиях волновой картины, то можно сказать, что первичная волна проходит через оба отверстия. Следовательно, образуются две вторичные сферические волны, которые, беря начало у отверстий, интерферируют между собой. Интерференция произведет на фотографической пластинке полосы сильной и слабой интенсивности -- так называемые интерференционные полосы. Почернение на пластинке представляет собой химический процесс, вызванный отдельными световыми квантами.

    Поэтому важно также описать эксперимент с точки зрения представлений о световых квантах. Если бы можно было говорить о том, что происходит с отдельным световым квантом в промежутке между его выходом из источника и попаданием на фотографическую пластинку, то рассуждать можно было бы следующим образом. Отдельный световой квант может пройти или только через первое, или только через второе отверстие. Если он прошел через первое отверстие, то вероятность его попадания в определенную точку на фотографической пластинке не зависит от того, закрыто или открыто второе отверстие. Распределение вероятностей на пластинке будет таким, будто открыто только первое отверстие. Если эксперимент повторить много раз и охватить все случаи, в которых световой квант прошел через первое отверстие, то почернение на пластинке должно соответствовать этому распределению вероятностей. Если рассматривать только те световые кванты, которые прошли через второе отверстие, то почернение будет соответствовать распределению вероятностей, выведенному из предположения, что открыто только второе отверстие. Следовательно, общее почернение должно быть точной суммой обоих почернений, другими словами -- не должно быть никакой интерференционной картины. Но мы ведь знаем, что эксперимент дает интерференционную картину. Поэтому утверждение, что световой квант проходит или через первое, или через второе отверстие, сомнительно и ведет к противоречиям. Из этого примера видно, что понятие функции вероятности не дает пространственно-временного описания события, происходящего в промежутке между двумя наблюдениями. Каждая попытка найти такое описание ведет к противоречиям. Это означает, что уже понятие "событие" должно быть ограничено наблюдением. Этот вывод весьма существен, так как, по-видимому, он показывает, что наблюдение играет решающую роль в атомном событии и что реальность различается в зависимости от того, наблюдаем мы ее или нет. Чтобы сделать это утверждение более ясным, проанализируем процесс наблюдения.

    Уместно вспомнить, что в естествознании нас интересует не Универсум в целом, включающий нас самих, а лишь определенная его часть, которую мы и делаем объектом нашего исследования. В атомной физике обычно эта сторона представляет собой чрезвычайно малый объект, именно атомные частицы или группы таких частиц. Но дело даже не в величине; существенно то, что большая часть Универсума, включая и нас самих, не принадлежит к предмету наблюдения. Теоретическое истолкование эксперимента начинается на уровне обеих стадий, о которых уже говорилось. На первой стадии дается описание эксперимента в понятиях классической физики. Это описание в конечном счете связывается на данной стадии с первым наблюдением, и затем описание формулируется с помощью функции вероятности. Функция же вероятности подчиняется законам квантовой механики, ее изменение с течением времени непрерывно и рассчитывается с помощью начальных условий. Это вторая стадия. Функция вероятности объединяет объективные и субъективные элементы. Она содержит утверждения о вероятности или, лучше сказать, о тенденции (потенция в аристотелевской философии), и эти утверждения являются полностью объективными. Они не зависят ни от какого наблюдения. Кроме этого, функция вероятности содержит утверждения относительно нашего знания системы, которое является субъективным, поскольку оно может быть различным для различных наблюдателей. В благоприятных случаях субъективный элемент функции вероятности становится пренебрежительно малым в сравнении с объективным элементом, тогда говорят о "чистом случае".

    При обращении к следующему наблюдению, результат которого предсказывается из теории, важно выяснить, находился ли предмет до или по крайней мере в момент наблюдения во взаимодействии с остальной частью мира, например с экспериментальной установкой, с измерительным прибором и т. п. Это означает, что уравнение движения для функции вероятности содержит влияние взаимодействия, оказываемое на систему измерительным прибором. Это влияние вводит новый элемент неопределенности, поскольку измерительный прибор описывается в понятиях классической физики. Такое описание содержит все неточности в отношении микроскопической структуры прибора, известные нам из термодинамики. Кроме того, так как прибор связан с остальным миром, то описание фактически содержит неточности в отношении микроскопической структуры всего мира. Эти неточности можно считать объективными, поскольку они представляют собой простое следствие того, что эксперимент описывается в понятиях классической физики, и поскольку они не зависят в деталях от наблюдателя. Их можно считать субъективными, поскольку они указывают на наше неполное знание мира. После того как произошло взаимодействие, даже в том случае, если речь идет о "чистом случае", функция вероятности будет содержать объективный элемент тенденции или возможности и субъективный элемент неполного знания. Именно по этой причине результат наблюдения в целом не может быть точно предсказан. Предсказывается только вероятность определенного результата наблюдения, и это утверждение о вероятности может быть проверено многократным повторением эксперимента. Функция вероятности в отличие от математической схемы механики Ньютона описывает не определенное событие, а, по крайней мере в процессе наблюдения, всю совокупность (ансамбль) возможных событий. Само наблюдение прерывным образом изменит функцию вероятности: оно выбирает из всех возможных событий то, которое фактически совершилось. Так как наше знание под влиянием наблюдения изменяется прерывно, то и величины, входящие в его математическое представление, изменяются прерывно, и потому мы говорим о "квантовом скачке". Если кто попытается строить критику квантовой теории на основе старой поговорки: "Natura non facit saltus", то на это можно дать ответ, что наше знание, несомненно, изменяется прерывно. Именно этот факт -- прерывное изменение нашего знания -- оправдывает употребление понятия "квантовый скачок". Следовательно, переход от возможности к действительности совершается в процессе наблюдения. Если мы будем описывать, что происходит в некотором атомном событии, то должны будем исходить из того, что слово "происходит" относится только к самому наблюдению, а не к ситуации между двумя наблюдениями. При этом оно означает не психологический, а физический процесс наблюдения, и мы вправе сказать, что переход от возможности к действительности совершился, как только произошло взаимодействие объекта с измерительным прибором, а с помощью прибора -- и с остальным миром. Этот переход не связан с регистрацией результата наблюдения в сознании наблюдателя. Однако прерывное изменение функции вероятности происходит благодаря акту регистрации, так как в этом случае вопрос касается прерывного изменения нашего знания. Последнее в момент наблюдения отражается прерывным изменением функции вероятности. В какой мере мы пришли в конце концов к объективному описанию мира и особенно атомных явлений? Классическая физика основывалась на предположении -- или, можно сказать, на иллюзии, -- что можно описать мир или по меньшей мере часть мира, не говоря о нас самих. Действительно, в значительной степени это было возможно. Например, мы знаем, что существует город Лондон независимо от того, видим мы его или нет. Можно сказать, что классическая физика дает именно идеализацию мира, с помощью которой можно говорить о мире или о его части, при этом не принимая во внимание нас самих. Ее успех привел к всеобщему идеалу объективного описания мира. Давно уже объективность является высшим критерием ценности научных открытий. Соответствует ли этому идеалу копенгагенская интерпретация квантовой теории? По всей вероятности, мы вправе сказать, что насколько возможно, квантовая теория соответствует этому идеалу. Безусловно, квантовая теория не содержит никаких действительно субъективных черт, и она вовсе не рассматривает разум или сознание физика как часть атомного события. Но она начинает с разделения мира на объекты и остальной мир и с условия, что этот остальной мир описывается в понятиях классической физики. Само разделение в определенной степени произвольно. Но исторически оно является прямым следствием научного метода прошлых столетий. Применение классических понятий есть, следовательно, в конечном счете результат общего духовного развития человечества. В некотором роде это затрагивает нас самих, и потому наше описание нельзя назвать совершенно объективным.

    Вначале говорилось, что копенгагенская интерпретация квантовой теории начинается с парадокса. Она исходит, с одной стороны, из положения, что мы должны описывать эксперименты в понятиях классической физики, и с другой -- из признания, что эти понятия не точно соответствуют природе. Противоречивость этих исходных положений обусловливает статистический характер квантовой теории. В силу этого предлагали совсем отказаться от классических понятий, рассчитывая, по-видимому, что радикальное изменение понятий, описывающих эксперимент, приведет к нестатистическому, полностью объективному описанию природы. Однако эти соображения основываются на непонимании. Понятия классической физики являются уточненными понятиями нашей повседневной жизни и образуют важнейшую составную часть языка, являющегося предпосылкой всего естествознания. Наше действительное положение в естествознании таково, что для описания эксперимента мы фактически используем или должны использовать классические понятия. Иначе мы не поймем друг друга. Задача квантовой теории как раз и состоит в том, чтобы на этой основе объяснить эксперимент. Нет смысла толковать, что можно было бы предпринять, если бы мы были другой природы по сравнению с тем, что мы есть на самом деле. В этой связи мы должны отчетливо понимать, говоря словами Вейцзеккера, что "природа была до человека, но человек был до естествознания". Первая половина высказывания оправдывает классическую физику с ее идеалами полной объективности. Вторая половина объясняет, почему мы не можем освободиться от парадоксов квантовой теории и от необходимости применения классических понятий. При этом следует сделать несколько замечаний о фактическом методе квантово-теоретического истолкования атомных событий. Ранее отмечалось, что мы всегда стоим перед необходимостью разделять мир на объекты, подлежащие изучению, и остальной мир, включающий и нас самих. Это разделение в определенной степени произвольно. Однако это не должно приводить к различию в конечных результатах. Например, объединим измерительный прибор или его часть с объектом и применим закон квантовой теории к этому более сложному объекту. Можно показать, что подобное видоизменение теоретического подхода фактически не изменяет предсказания о результате эксперимента. Это математически следует из того, что законы квантовой теории для явлений, в которых постоянная Планка считается очень малой величиной, почти идентичны с классическими законами. Однако было бы ошибкой полагать, что такое применение законов квантовой теории может исключить фундаментальные парадоксы.

    Только тогда измерительный прибор заслуживает своего назначения, когда он находится в тесной связи с остальным миром, когда существует физическое взаимодействие между измерительным прибором и наблюдателем. Поэтому неточность в отношении микроскопического поведения мира, так же как и в случае первой интерпретации, проникает в квантово-механическое описание мира. Если бы измерительный прибор был изолирован от остального мира, он не мог быть описан в понятиях классической физики.

    По этому поводу Бор утверждал, что, по всей вероятности, правильнее было бы сказать по-другому, а именно: разделение мира на объекты и остальной мир не произвольно. При исследовании атомных процессов наша цель -- понять определенные явления и установить, как они следуют из общих законов. Поэтому часть материи и излучения, которая принимает участие в явлении, представляет собой естественный предмет теоретического истолкования и должна быть отделена от используемого прибора. Тем самым в описание атомных процессов снова вводится субъективный элемент, так как измерительный прибор создан наблюдателем. Мы должны помнить, что то, что мы наблюдаем, -- это не сама природа, а природа, которая выступает в том виде, в каком она выявляется благодаря нашему способу постановки вопросов. Научная работа в физике состоит в том, чтобы ставить вопросы о природе на языке, которым мы пользуемся, и пытаться получить ответ в эксперименте, выполненном с помощью имеющихся у нас в распоряжении средств. При этом вспоминаются слова Бора о квантовой теории: если ищут гармонии в жизни, то никогда нельзя забывать, что в игре жизни мы одновременно и зрители и участники. Понятно, что в научном отношении к природе наша собственная деятельность становится важной там, где приходится иметь дело с областями природы, проникнуть в которые можно только благодаря сложнейшим техническим средствам.



Понравилась статья? Поделитесь с друзьями!