Шкала элек тро маг нит ных волн. Электромагнитные колебания: свойства и шкала

Тема нашего урока: «Шкала электромагнитных волн и свойства электромагнитных волн». Мы подведем итог тем вопросам, которые мы рассматривали на предыдущих уроках. В первую очередь мы с вами изучили вопросы создания электромагнитных волн, их излучение и их использование. Сегодня мы рассмотрим свойства, на которых основано применение электромагнитных волн, и обсудим это

Электромагнитная волна обладает всеми характеристиками волн, то есть длина волны и частота. Для обычных механических волн существует взаимосвязь между скоростью волны, длиной волны и частотой. Такая же связь наблюдается и у электромагнитных волн. Рассмотрим уравнение для механической волны:

υ = λ · ν

Скорость волны равна длине волны, умноженной на частоту. Для электромагнитных волн скорость распространения - величина постоянная и равная c = 3·10 8 м/с, то есть

c = λ · ν

Для электромагнитных волн произведение длины волны и частоты всегда остается величиной постоянной.

Рис. 1. Шкала электромагнитных волн ()

Возьмем шкалу (рис. 1) и отметим на ней частоту, по направлению шкалы происходит возрастание частоты, вторая шкала соответствует длине волны, и на ней мы видим

уменьшение длины волны. Для одной и той же электромагнитной волны произведение частоты на длину волны всегда будет оставаться величиной постоянной.

λ 1 · ν 1 = С

λ 2 · ν 2 = С

Для всех электромагнитных волн скорость будет оставаться постоянной: 3·10 8 м/с.

Такое распределение позволяет создать шкалу, по которой мы можем разложить все электромагнитные колебания по их частоте или длине волны и обсудить их свойства. По такой шкале очень удобно обсуждать вопрос происхождения электромагнитных волн, то есть как эти электромагнитные волны появляются и, соответственно, что является источником этих электромагнитных волн.

Электромагнитную шкалу можно разделить на две части: низкочастотные колебания и радиоволны. К низкочастотным колебаниям относятся те, которые производятся при помощи генератора, самым ярким представителем является переменный ток, и, соответственно, эти колебания распространяются в основном по проводам, а те электромагнитные волны, которые создаются такими колебаниями, на большие расстояния не распространяются, они очень быстро поглощаются окружающей средой.

Вторая часть - радиоволны - может быть разделена на большое количество поддиапазонов.

Это, в первую очередь, длинные волны, средние, короткие и ультракороткие волны. Каждый из этих диапазонов используется по своему назначению. Например, длинные волны очень хорошо поглощаются окружающей средой, ионосферой и поверхностью Земли, и поэтому на большие расстояния они распространяться не могут. При мощных передатчиках длинные волны используют для радиовещания. Для вещания на весь мир используются короткие волны, в результате многократного отражения они отражаются от земной поверхности и ионосферы и распространяются по всему земному шару. Ультракороткие волны распространяются в пределах прямой видимости, они достаточно плохо отражаются, но хорошо преломляются и используются для связи с космическими аппаратами или для телевидения.

Источниками для распространения радиоволн являются генераторы высокой частоты, колебательный контур Томпсона, открытый колебательный контур Герца и другие излучатели высокочастотных электромагнитных колебаний волн. Данные для электромагнитной шкалы сведены в схему, изображенную на рисунке 2.

Рис. 2. Данные электромагнитной шкалы ()

Длина волны располагается по уменьшению, а частота по нарастанию.

Все электромагнитные волны похожи друг на друга, все они порождаются ускоренно движущимся электрическим зарядом и обнаруживаются по действию на другой электрический заряд. Проявление свойств может быть различным, в зависимости от длины волны или от частоты волны ведут себя по-разному. Вектор магнитной индукции и вектор напряженности вихревого электрического поля взаимно перпендикулярны, но, кроме этого, плоскость, где располагается вектор индукции и вектор напряженности, соответственно перпендикулярна вектору, вдоль которого направлена скорость распространения электромагнитной волны. Все это объединяет электромагнитные волны. Но в результате зависимости от длины волны или частоты проявляются следующие особенности: поглощение волн окружающей средой будет различным. Одни волны поглощаются достаточно хорошо, другие, наоборот, преобладают над поглощением-отражением, поэтому длинные волны не могут распространяться на большие расстояния, а короткие достаточно хорошо это делают. С другой стороны, волны могут существовать в одном пространстве от разных источников, никак при этом не мешая друг другу. Волны могут от одного и того же источника складываться друг с другом и, соответственно, огибать препятствия. Эти возможности называются интерференция и дифракция волн, то есть сложение волн и огибание препятствий, которые приводят к определенному результату. Радиолокация, например, связана с ультракороткими волнами, потому что она эффективна в том случае, когда размеры объекта много больше, чем длина волны.

Общие свойства и характеристики электромагнитных волн

СВОЙСТВА

ХАРАКТЕРИСТИКИ

Распространяются в пространстве с течением времени.

Скорость распространения электромагнитных волн в вакууме постоянна и равна 3·10 8 м/с.

Все волны поглощаются веществом.

Различные коэффициенты поглощения.

Все волны на границе раздела двух сред частично отражаются, частично преломляются.

Законы отражения и преломления.

Коэффициенты отражения для различных волн и различных сред.

Все электромагнитные излучения проявляют свойства волн: складываются, огибают препятствия. Несколько волн могут существовать в одной области пространства.

Принцип суперпозиции. Для когерентных волн правила определения максимумов принцип Гюйгенса-Френеля. Волны между собой не взаимодействуют.

Сложные электромагнитные волны при взаимодействии с веществом раскладываются в спектр.

Зависимость показателя преломления среды от частоты волны. Скорость волны в веществе зависит от преломления среды

Волны разной интенсивности.

Плотность потока излучения..

Таблица состоит из двух столбцов, в левом размещены свойства, а в правом - характеристики. Свойства расположены в соответствии характеристикам.

Шкала электромагнитных волн не ограничивается только радиоволнами, она может продолжаться и дальше, существуют другие излучения, которые также соответствуют электромагнитным волнам. Эти вопросы мы рассмотрим в дальнейшем.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Какая связь между характеристиками электромагнитных волн?
  2. На какие части подразделяется шкала электромагнитных волн?
  3. Особенности электромагнитных волн?
  1. Интернет-портал Bourabai.kz ( ).
  2. Интернет-портал 900igr.net ().
  3. Интернет-портал Do.gendocs.ru ().

«УФ излучение» - На фотоэффекте, вызываемом УФ излучением, основана Фотоэлектронная спектроскопия. Входящими в состав стекла. Вакуумное УФ излучение до 130 нм. Более мощный источник Ультрафиолетового излучения – любая высокотемпературная плазма. Приёмники Ультрафиолетового излучения. Интенсивное УФ излучение непрерывного спектра испускают электроны в ускорителе.

«Влияние электромагнитного излучения» - Ослабление памяти. Российские ученые. Негативное влияние ПК. Влияние телевизора на человека. Здоровье человека. Влияние мобильных телефонов на человека. Влияние ЭМИ на эндокринную систему. Организм. Профессор Генри Лей. Слабые электромагнитные поля. Психотронное воздействие. Исследование. Излучение телефонов.

«Виды электромагнитных излучений» - Низкочастотные колебания. Ультрафиолетовое излучение. Радиоволны. Биологическое действие. Шкала электромагнитных излучений. Гамма излучение. Рентгеновское излучение. Видимое излучение. Психологический тест. Инфракрасное излучение.

«Видимое излучение» - Применение. Инфракрасное излучение испускают возбуждённые атомы или ионы. Видимое излучение (свет) далеко не исчерпывает возможные виды излучений. Наиболее опасно, когда излучение не сопровождается видимым светом. Инфракрасное излучение. С видимым излучением соседствует инфракрасное. В таких местах необходимо надевать специальные защитные очки для глаз.

«Шкала электромагнитных волн» - Интерактивная модель шкалы электромагнитных волн. Шкала электромагнитных излучений.

«Физика Инфракрасное излучение» - Термограмма - изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Способы защиты. ИК волны излучают нагретые тела, молекулы которых движутся интенсивно. Флюорография. Термограммы используют в медицине для диагностики заболеваний. Источники УФ излучения. Рентгеновская трубка, ускорители заряженных частиц, радиоактивный распад ядер.

Электромагнитные волны классифицируются по длине волны λ или связанной с ней частотой волны f . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.


Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.


Рассмотрим спектр электромагнитных волн более подробно.

Низкочастотные волны

Низкочастотные волны представляют собой электромагнитные волны, частота колебаний которых не превышает 100 КГц). Именно этот диапазон частот традиционно используется в электротехнике. В промышленной электроэнергетике используется частота 50 Гц, на которой осуществляется передача электрической энергии по линиям и преобразование напряжений трансформаторными устройствами. В авиации и наземном транспорте часто используется частота 400 Гц, которая дает преимущества по весу электрических машин и трансформаторов в 8 раз по сравнению с частотой 50 Гц. В импульсных источниках питания последних поколений используются частоты трансформирования переменного тока единицы и десятки кГц, что делает их компактными, энергонасышенными.
Коренным отличием низкочастотного диапазона от более высоких частот является падение скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тыс. км/с при 100 кГц до примерно 7 тыс км/с при 50 Гц.

Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 1 мм (частота меньше 3 10 11 гц = 300 Ггц) и менее 3 км (выше 100 кГц).

Радиоволны делятся на:

1. Длинные волны в интервале длин от 3 км до 300 м(частота в диапазоне 10 5 гц - 10 6 гц= 1 МГц);


2. Средние волны в интервале длин от 300 м до 100 м (частота в диапазоне 10 6 гц -3*10 6 гц=3мгц);


3. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);


4. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).


Ультракороткие волны в свою очередь делятся на:


А) метровые волны;


Б) сантиметровые волны;


В) миллиметровые волны;


Волны с длиной волны меньше, чем 1 м (частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).


Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла . Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.
Коренным отличием радиоволн от более высоких частот является иное термодинамическое соотношение между длиной волны носителя волн (эфира), равной 1 мм (2,7°К), и электромагнитной волны, распространяющейся в этой среде.

Биологическое действие радиоволнового излучения

Страшный жертвенный опыт применения мощного радиоволнового излучения в радиолокационной технике показал специфичное действие радиоволн в зависимости от длины волны (частоты).

На человеческий организм разрушительное действие оказывает не столько средняя, сколько пиковая мощность излучения, при которой происходят необратимые явления в белковых структурах. К примеру, мощность непрерывного излучения магнетрона СВЧ-печи (микроволновки), составляющая 1 КВатт, воздействует лишь на пищу в малом замкнутом (экранированном) объеме печи, и почти безопасна для человека, находящегося рядом. Мощность радиолокационной станции (РЛС, радара) в 1 КВатт средней мощности, излучаемой короткими импульсами скважностью 1000:1 (отношение периода повторения к длительности импульса) и, соответственно, импульсной мощностью в 1 МВатт, очень опасна для здоровья и жизни человека на расстоянии до сотен метров от излучателя. В последнем, конечно, играет роль и направленность излучения РЛС, которая подчеркивает разрушительное действие именно импульсной, а не средней мощности.

Воздействие метровых волн

Метровые волны большой интенсивности, излучаемые импульсными генераторами метровых радиолокационных станций (РЛС), имеющих импульсную мощность более мегаватта (таких, например, как станция дальнего обнаружения П-16) и соизмеримые с протяженностью спинного мозга человека и животных, а таже длиной аксонов, нарушают проводимость этих структур, вызывая диэнцефальный синдром (СВЧ-болезнь). Последняя приводит к быстрому развитию (в течение от нескольких месяцев до нескольких лет) полному или частичному (в зависимости от полученной импульсной дозы излучения) необратимому параличу конечностей человека, а также нарушению иннервации кишечника и других внутренних органов.

Воздействие дециметровых волн

Дециметровые волны соизмеримы по длине волны с кровеносными сосудами, охватывающими такие органы человека и животных, как легкие, печень и почки. Это одна из причин, почему они вызывают развитие "доброкачественных" опухолей (кист) в этих органах. Развиваясь на поверхности кровеносных сосудов, эти опухоли приводят к остановке нормального кровообращения и нарушению работы органов. Если вовремя не удалить такие опухоли оперативным путем, то наступает гибель организма. Дециметровые волны опасных уровней интенсивности излучают магнетроны таких РЛС, как мобильная РЛС ПВО П-15, а также РЛС некоторых воздушных судов.

Воздействие сантиметровых волн

Мощные сантиметровые волны вызывают такое заболевание, как лейкемию - "белокровие", а также другие формы злокачественных опухолей человека и животных. Волны достаточной для возникновения этих заболеваний интенсивности генерируют РЛС сантиметрового диапазона П-35, П-37 и практически все РЛС воздушных судов.

Инфракрасное, световое и ультрафиолетовое излучения

Инфракрасное, световое, ультрафиолетовое излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Этот спектр занимает диапазон длин электромагнитных волн в интервале от 2·10 -6 м = 2мкм до 10 -8 м = 10нм (по частоте от1,5·10 14 гц до 3·10 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов. Инфракрасное излучение является видимым для многих членистоногих (насекомых, пауков и пр.) и рептилий (змей, ящериц и пр.) , доступным для полупроводниковых датчиков (инфракрасных фотоматриц), но его не пропускает толща атмосферы Земли, что не позволяет наблюдать с поверхности Земли инфракрасные звезды - "коричневые карлики", которые составляют более 90% всех звёзд в Галактике.

Ширина оптического диапазона по частоте составляет примерно 18 октав, из которых на оптический диапазон приходится примерно одна октава (); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Свет

Свет, световое, видимое излучение - видимая глазами человека и приматов часть оптического спектра электромагнитного излучения, занимает диапазон длин электромагнитных волн в интервале от 400 нанометров до 780 нанометров, то есть менее одной октавы - двухкратного изменения частоты.

Рис. 1.14. Шкала электромагнитных волн

Словесный мем-запоминалка порядка следования цветов в световом спектре:
"К аждая О безьяна Ж елает З нать Г лавный С екрет Ф изики" -
"Красный , Оранжевый , Желтый , Зелёный , Голубой , Синий , Фиолетовый ".

Рентгеновское и гамма излучение

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.


Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.


Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии , соответствующего данной частоте излучения.


Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.


Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный (дневной, солнечный) свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого человеком спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.


Гармонические электромагнитные волны светового диапазона называются монохроматическими . Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:



Где - вектор Пойнтинга.


Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:




Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим . Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.


Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.


В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .


Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.


Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.


Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.


В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений кажущегося дуализма света, приведшего, как известно, к формулировке логически противоречивых принципов квантовой механики.

На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения" , электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv , где h =const , в эфире . Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h - постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов - квантов звукового излучения.

За "copy-and-paste" совмещение открытия Макса Планка 1900 года с открытым еще в 1887 году Генрихом Герцем фотоэффектом, в 1921 году Нобелевский комитет присудил премию Альберту Эйнштейну

1) Октавой по определению называется диапазон частот между произвольной частотой w и её второй гармоникой, равной 2w.


ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 103 м (радиоволны) до 10-8 см (рентгеновские лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые ускоренно движущимися заряженными частицами. Обнаруживаются электромагнитные волны в конечном счете по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяются со скоростью 300000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и гамма-излучениям, сильно поглощаемым атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волн. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Радиоволны

n= 105-1011 Гц, l»10-3-103 м.

Получают с помощью колебательных контуров и макроскопических вибраторов.

Свойства: Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое)

n=3*1011-4*1014 Гц, l=8*10-7-2*10-3 м.

Излучается атомами и молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны l»9*10-6 м.

Свойства:

1. Проходит через некоторые непрозрачные тела, также сквозь дождь, дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение: Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

n=4*1014-8*1014 Гц, l=8*10-7-4*10-7 м.

Свойства: Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Ультрафиолетовое излучение

n=8*1014-3*1015 Гц, l=10-8-4*10-7 м (меньше, чем у фиолетового света).

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых t>1000оС, а также светящимися парами ртути.

Свойства: Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Применение: В медицине, в промышленности.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (p=10-3-10-5 Па) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01нм).

Свойства: Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь.

Применение: В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

g-Излучение

n=3*1020 Гц и более, l=3,3*10-11 м.

Источники: атомное ядро (ядерные реакции).

Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие.

Применение: В медицине, производстве (g-дефектоскопия).

Вывод

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

По современным представлениям, свет это поток частиц электромагнитного поля, называемых фотонами и имеющих двойственные корпускулярно-волновые свойства (т.е. свет обладает свойствами потока частиц и волн). Основной характеристикой световых волн является частота колебаний ν (частота колебаний векторов напряженностей Е и Н электромагнитного поля). Чаще используется связанная с ней длина волны в вакууме λ = сТ = c/ν, где с - скорость света в вакууме округленно принимается с = 3 10 8 м/с, Т – период колебания.

В соответствии с условиями возбуждения и свойствами излучения электромагнитные волны делятся по частоте (или длине волны) на несколько диапазонов, составляющих шкалу электромагнитных волн: радиоволны, оптическое излучение, рентгеновское излучение, гамма-излучение. Границы этих диапазонов условны, так как они в значительной мере определяются источниками излучения и поэтому могут взаимно перекрываться (рис.1).


Рис.2.

Электромагнитное излучение с длинами волн в пределах от 400 мкм до 10 нм называется оптическим излучением. Оптическое излучение в пределах длин волн от 760 до 380 нм, действуя на глаз, вызывает ощущение света. Оно называется видимым излучением. В сторону более длинных волн от него в спектре расположено невидимое инфракрасное излучение, в сторону более коротких волн - невидимое ультрафиолетовое.

Излучение может быть простым (или монохроматическим) и сложным. Монохроматическим называется излучение какой-либо одной длины волны. Это идеализированное представление; практически монохроматическим считают такое излучение, в котором длины составляющих его волн различаются не больше чем на десятые доли нанометра. Монохроматическое излучение в видимой части спектра определенной длины волны, действуя на глаз, вызывает ощущение соответствующего цвета. Излучение, состоящее из волн различной длины, называется сложным. В зависимости от его спектрального состава оно может вызывать различные цветовые ощущения,

Рис.3

Среди множества возможных видов сложного излучения выделяют белый свет. Белым светом называют видимую часть излучения Солнца (рис.2), а также излучения нагретых до высокой температуры (несколько тысяч градусов) непрозрачных твердых и жидких тел. Это излучение содержит все волны видимого диапазона в определенном соотношении по интенсивности.

Спектр электромагнитного излучения это упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра – хорошо известная всем радуга. Возможность разложения солнечного света на непрерывную последовательность лучей разных цветов впервые экспериментально показал И.Ньютон в 1666. Направив на трехгранную призму узкий пучок света (рис.3), проникавший в затемненную комнату через маленькое отверстие в ставне окна, он получил на противоположной стене изображение окрашенной полоски с радужным чередованием цветов, которая была названа им латинским словом spectrum. Проводя опыты с призмами, Ньютон пришел к следующим важным выводам: 1) обычный «белый» свет является смесью лучей, каждый из которых имеет свой собственный цвет; 2) лучи разных цветов, преломляясь в призме, отклоняются на различные углы, вследствие чего «белый» свет разлагается на цветные составляющие.


Исследование спектров. Спектральные приборы.

На дисперсии сложного излучения в трехгранной призме из прозрачного вещества (для видимого света - тяжелое стекло-флинт, для ультрафиолетового излучения - кварц и для инфракрасного - каменная соль или сильвин) основано устройство приборов для исследования спектра и измерения длины волн сложного излучения (спектроскопов и спектрографов).

Простейший призменный спектроскоп (рис. 4, б) состоит из штатива О, на котором укреплен горизонтальный диск Д с делениями. В центре диска устанавливается призма П, по краям диска расположены две трубы: коллиматор К и зрительная 3, которая с помощью винта В может устанавливаться под необходимым углом. Коллиматор (рис. 4, а) имеет на конце щель, перед которой помещается источник света; линза О, образует пучок параллельных лучей, что необходимо для того, чтобы лучи, прошедшие через призму, состояли также из параллельных пучков. Эти пучки объективом О2 зрительной трубы фокусируются в его фокальной плоскости FF и образуют каждый изображение щели соответствующего цвета, которое называется спектральной линией. Совокупность этих линий образует исследуемый спектр, который в увеличенном виде наблюдается через окуляр Ок. Спектрограф (рис. 5: а -общий вид и б - схема устройства) - более сложный прибор, приспособленный для фотографирования спектров. Свет через щель Д и линзу Л1 направляется на дисперсионную призму П, пучки спектрально разложенного света фокусируются линзой Л2 на фотопластинке Ф.

Рис. 5

Пользуясь спектральным прибором, можно получить монохроматический свет необходимой длины волны. Для этого в фокальной плоскости второй линзы Л2 помещают щелевую диафрагму, с помощью которой и выделяют из спектра желаемую линию. Такой прибор называется монохроматором.

Классификация спектров.

Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры.

Спектры, состоящие из ярких линий или полос на темном фоне, называются спектрами испускания. Они возникают, когда вещество сильно нагревается или подвергается бомбардировке электронами. Спектры поглощения, состоящие из темных участков на ярком фоне, получаются, когда белый свет проходит сквозь полупрозрачную среду, которая поглощает некоторые частоты.

Рис.6. Спектр испускания железа Fe

Линейчатый спектр является спектром, в котором появляются только определенные длины волн, или «линии». Полосатый спектр состоит из линий, сгруппированных в полосы. Спектры испускания и поглощения индивидуальны для каждого вещества, поэтому их применяют для идентификации веществ в науке спектроскопии. Спектры являются результатом переходов электронов между различными энергетическими уровнями в атомах или молекулах вещества, что приводит к испусканию или поглощению электромагнитного излучения.

Эмиссионные спектры (спектры испускания) возбуждаются для паров и газов путем электрического разряда, для жидких и твердых тел - путем нагревания до высокой температуры, например в бесцветном пламени газовой горелки. Для органических веществ, разрушающихся под действием высокой температуры, обычно исследуются абсорбционные спектры, или спектры поглощения. Спектром поглощения называется совокупность темных линий или полос, образующихся в сплошном спектре белого света при прохождении его сквозь данную прозрачную среду. Для получения спектра поглощения в спектральном приборе между источником белого света (например, электрической дугой и щелью коллиматора или между коллиматором и призмой) по метается исследуемое вещество, например плоскопараллельная кювета с исследуемым раствором.

Теория Бopa. Спектр атома водорода

В 1913 г. Н. Бор предложил теорию механизма излучения света атомами, учитывающую квантовую природу света. Теория основывается на двух постулатах:

1. Внутренняя энергия атома дискретна; она может принимать только определенные дозволенные значения (или уровни), характерные для данного атома. Состояния атома, соответствующие этим уровням энергии, являются стационарными: в таком состоянии атом не излучает электромагнитных волн, несмотря на происходящее в нем движение электронов.

2. При переходе атома из одного стационарного состояния в другое испускается (или поглощается) монохроматическое электромагнитное излучение, частота которого обусловлена энергией, равной разности энергетических уровней Е 2 и E 1 , соответствующих этим состояниям:

где h - постоянная Планка.

Используя ядерную модель атома, Бор предложит считать, что стационарным состояниям, или дозволенным энергетическим уровням, атома соответствует движение электронов по орбитам определенного радиуса.

Исходя из условия квантования, Бор рассчитал энергетические уровни для атома водорода. В атоме электрон удерживается на орбите силой кулоновского притяжения к ядру, обусловливающей центростремительное ускорение.

Для первой, основной, орбиты радиус r 1 = 0,53 10 -8 см, что согласуется с расчетами на основании кинетической теории газов. Скорость движения электрона по стационарной орбите для основной орбиты атома водорода v 1 = 2,3 10 8 см/с. Таков порядок скорости движения электронов по орбите.

Полная энергия электрона Ев = Ек + Еп, причем потенциальная энергия зависит от радиуса орбиты. Энергетические уровни обратно пропорциональны квадрату квантового числа и их значения представлены в таблице1.

Поскольку с увеличением радиуса орбиты отрицательные значения энергии электрона убывают по абсолютной величине, можно считать, что энергетические уровни при этом повышаются.

Таким образом, по мере удаления от ядра энергетические уровни атома возрастают:

Е1 < E2

С возрастанием числа n разность между каждыми двумя соседними уровнями по абсолютной величине уменьшается:

ΔE’> ΔE’’ > ΔE’’’ > …

где ΔE’=E 2 -E 1 ; ΔE’’=E 3 –E 2 ; ΔE’’’=E 3 –E 2 . Стационарный уровень с наименьшей энергией называется основным, он соответствуем состоянию атома, не подвергающегося никаким внешним воздействиям. Остальные стационарные уровни называются возбужденными. Возбуждение атома, т. е. переход электрона на орбиту большего радиуса, требует сообщения дополнительной энергии и, следовательно, происходит в результате каких-либо внешних воздействий: при соударении частиц в процессе интенсивного теплового движения, электрическом разряде в газах, поглощении электромагнитного излучения, в результате рекомбинации ионов в газе или электронов и дырок в полупроводнике, при действии на атом радиоактивного излучения и некоторых других воздействиях.

Возбужденное состояние атома неустойчиво, примерно через 10 -8 с электрон возвращается на основную орбиту, при этом излучается один фотон с энергией hv, равной энергии, полученной при возбуждении (рис.8, а), и атом переходит в основное состояние. Электрон может возвращаться на основную орбиту не только единым переходом, но и через промежуточные уровни. В этом случае при переходе будут излучаться несколько фотонов с энергиями hv" и hv", равными разности энергий этих уровней (рис.8, б).

Теория Бора объяснила не только происхождение линейчатых спектров, но и структуру спектра излучения атомов водорода. В зависимости от энергии, полученной при возбуждении атома, электрон переходит на различные возбужденные уровни. При возвращении его на основной уровень (особенно если этот переход совершается ступенчато) излучаются кванты различной энергии. Поэтому в спектре излучения атома водорода должно быть значительное число линий, расположение которых соответствует энергетическим уровням атома и возможным переходам электрона.

Еще до создания теории Бора было установлено, что в спектра водорода имеются группы, или серии, линий, частоты которых находятся между собой в определенных соотношениях, например, серия Лаймана (в ультрафиолетовой части спектра), Бальмера (в видимой части спектра), Пашенна (в инфракрасной области) и др.

Рис.9. Спектральные серии атома водорода. а- переход электрона, б- энергетические уровни, в- расположение линий в спектре излучения (видимая область спектра см. рис 7).

Теория Бора объяснила происхождение этих серий (риc. 9). Энергия излучаемых -фотонов равна разности энергетических уровней Еп и Ет перехода электрона: hv = Е n - Е n0 , откуда v = (Е n - E n 0)/h. Таким образом, по теории Бора, к серии Лаймана, например, относятся все переходы электронов с возбужденных уровней (n = 2, 3, 4, ...) на основной (n 0 = 1), к серии Бальмера - переходы с более высоких (n - 3, 4, 5, ...) на первый возбужденный уровень (n 0 = 2) и т. д.

Теория Бора получила подтверждение в спектральных закономерностях атома водорода. Однако попытка применить ее к спектрам более сложных атомов встретила значительные затруднения.

Молекулярные спектры

Если энергия, сообщенная атому, незначительна, то на возбужденные уровни в основном переходят валентные электроны. Частота излучения при этом соответствует оптической части спектра (видимое и близкие к нему части инфракрасного и ультрафиолетового излучений). У атомов с высоким порядковым номером более значительная энергия возбуждения обусловливает переходы электронов между уровнями, соответствующими внутренним слоям. Излучение при переходах электронов между этими уровнями имеет значительно более высокую частоту и относится к дальнему ультрафиолетовому и рентгеновскому.

Молекулы имеют более сложные спектры излучения (или поглощения), чем атомы того же вещества. При соединении атомов в молекулу изменяется конфигурация оболочки с валентными электронами, в твердых телах образуются энергетические зоны, в связи с чем число возможных переходов электронов и соответствующих им спектральных линии значительно возрастает.

Кроме уровней (Е e), связанных о переходами электронов, у молекул появляются энергетические уровни (Е м), обусловленные, во-первых, колебательным движением ядер атомов, образующих молекулу около положения равновесия (Е кол), и, во-вторых, вращательным движением самой молекулы (Е вр). Энергия этих видов движения также квантуется, т. е. имеет свои дозволенные (квантованные) энергетические уровни Таким образом, молекулярные спектры состоят из трех компонентов - электронного, колебательного и вращательного. Внешние воздействия усиливают интенсивность этих видов молекулярного движения, т. е. возбуждают молекулу, которая затем возвращается в основное состояние, излучая фотон с энергией, равной разности энергетических уровней перехода.

Все эти компоненты дают в спектре множество близко расположенных линий, которые в совокупности образуют полосатые (преимущественно у паров и газов) или сплошные (у твердых и жидких тел) спектры.

Как показывают теория и опыт, Е вр <

Анализ молекулярных спектров, особенно в инфракрасной области широко используется при изучении строения молекул.

Вращательная составляющая молекулярных спектров может занимать также область коротких радиоволн. Исследование спектров излучения и поглощения в этом диапазоне называют радиоспектроскопией. Эти данные дополняют сведения о строении молекул, полученные с помощью оптической спектроскопии.

Наиболее распространенным методом радиоспектроскопии является метод электронного парамагнитного резонанса (ЭПР). В случае непарамагнитных тел для аналогичных целей используется явление ядерного магнитного резонанса (ЯМР).

Возбужденное состояние атома или молекулы может разрешаться не только путем излучения фотона. Оно может вызвать фотохимическую реакцию, перестройку структуры сложной молекулы, а полученная при возбуждении энергия может быть передана другим частицам в процессе теплового движения. Эти явления носят название безызлучательных энергетических переходов.

Рассеяние и поглощение света. Закон Бугера-Ламберта-Бера.

При прохождении через вещественную среду световая волна постепенно ослабляется. Это происходит в связи с рассеянием и поглощением света.

Рассеяние света происходит в неоднородных средах при условии, что размеры неоднородностей соизмеримы с длиной волны света. Если неоднородность среды образована посторонними частицами, беспорядочно распределенными в массе среды, то рассеяние света называют явлением Тиндаля, а среды - мутными, например мелкий туман, дым, различные взвеси и эмульсии и т. п. Это явление можно наблюдать, например, когда узкий пучок солнечных лучей проходит сквозь запыленную атмосферу: свет рассеивается на пылинках н весь пучок становится видимым при наблюдении с любой стороны.

Длина волны света при рассеянии не изменяется, а интенсивность рассеянного света тем выше, чем меньше размеры этих неоднородностей сравнительно с длиной волны. Интенсивность рассеяния зависит также от длины волны света: короткие волны рассеиваются значительно сильнее, чем длинные. Можно считать, что интенсивность рассеянного света обратно пропорциональна примерно второй степени длины волны для более крупных и третьей степени - для более мелких частиц. Поэтому, например, мелкодисперсный туман имеет синий цвет, а состоящий из более крупных капелек - белый

Рассеяние света может происходить также и в однородной среде на мгновенных неоднородностях (флуктуациях) плотности вещества, образующихся в связи с тепловым движением атомов и молекул, например в чистом газе в процессе теплового движения молекулы в различные моменты сближаются в одних точках объема газа и разреживаются в других. Этот вид рассеяния называется молекулярным рассеянием. Интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны падающего света (закон Рэлея). В связи с этим, например, свечение неба наблюдается сине-голубым, а прямое солнечное излучение приобретает желто-красный оттенок, особенно при восходе и заходе Солнца, когда это излучение проходит более длинный путь в атмосфере.

При рассеянии света в однородных жидкостях и кристаллах в рассеянном свете кроме падающей волны частотой ω 0 появляются волны с частотой ω м, отличающейся от нее на определенную величину Δω, характерную для молекулярной структуры данного вещества. Этот вид молекулярного рассеяния называется комбинационным рассеянием света и имеет значение для изучения структуры вещества.

Рис. 10

При рассеянии света энергия сохраняет свою электромагнитную природу. При поглощении света она переходит в другие виды внутренней энергии, при этом в веществе могут происходить различные явления: повышение интенсивности теплового движения (тепловой эффект), возбуждение и ионизация атомов и молекул, активация молекул (фотохимический эффект) и т. п.

Закон поглощения в однородной среде для параллельного пучка монохроматического света был установлен Н. Бугером: в каждом последующем слое среды одинаковой толщины поглощается одинаковая часть потока энергии падающей на него световой волны, независимо от его абсолютной величины.

Определим на основании этого закона интенсивность I d световой волны, прошедшей слой среды толщиной d, если падающая на поверхность среды волна имеет интенсивность I 0 . Для этого выделим на расстоянии х от поверхности слой среды толщиной dx (рис. 10, а). Убывание dI x интенсивности I x волны вследствие поглощения света этим слоем по закону Бугера пропорционально величине I x и толщине слоя dx:

где α - коэффициент пропорциональности. Уравнению можно придать вид dI x /I x = - α dx.

Решая это уравнение, получим для слоя толщиной х = d

График изменения интенсивности света I x в зависимости от толщины слоя среды, который проходит свет, показан на рис. 10, б (экспоненциальная кривая).

Коэффициент пропорциональности α называется показателем поглощения и характеризует поглощательную способность вещества.

Он зависит от его природы и состояния, а также от частоты (длины волны λ 0) света. У металлов показатель поглощения весьма высок (порядка 10 3 -10 8 см - 1) Это объясняется наличием в металлах свободных электронов, вынужденные колебания которых легко возбуждаются и имеют значительную амплитуду. Падающая на поверхность металла световая волна быстро расходует свою энергию и потому проникает на самую малую глубину.

У диэлектриков показатель поглощения в общем невелик (порядка 10 -3 – 10 -5 см -1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волны, в которых показатель поглощения резко возрастает. Это связано с тем, что в диэлектриках нет свободных электронов и значительное поглощение света происходит только при резонансных колебаниях, т. е. при частотах световой волны, близких к собственным (или кратным им) частотам колебаний электронов диэлектрика. Это явление объясняет, например, линейчатые спектры поглощения газов в атомарном состоянии.

Рис.11

Примерный характер зависимости показателя поглощения от длины волны к показан на рис. 11. На рис. 11, а - график 1 для тел, равномерно поглощающих свет любой длины волны (черные и серые тела), 2 - для тел, поглощающих свет любых длин волн начиная с некоторой граничной λ гр, 3 - для тел, имеющих широкую полосу поглощения в пределах длин волн от λ 1 до λ 2 . На рис. 11 б - для тел с селективным (резонансным) поглощением при определенных длинах волн λ 1 , λ 2 и λ 3.

Постепенное убывание интенсивности света при прохождении через среду вследствие рассеяния также подчиняется закону Бугера, формула которого с учетом как поглощения, так и рассеяния принимает вид

где σ - показатель ослабления света вследствие рассеяния.

Исследуя поглощение монохроматического света растворами окрашенных веществ (при условии, что растворитель не поглощает света данной длины волны и раствор имеет невысокую концентрацию), А. Бер показал, что оно подчиняется закону Бугера, причем показатель поглощения α прямо пропорционален концентрации вещества в растворе (закон Бера): α = χС, где χ - показатель поглощения для раствора единичной концентрации. Тогда формула закона Бугера-Ламберта-Бера примет вид

или в системе десятичных логарифмов , где

Отношение I d /I 0 = τ называют коэффициентом пропускания или прозрачностью раствора, а величину D = lg (I d /I 0) = -lg τ - оптической плотностью. В соответствии с приведенной выше формулой оптическая плотность раствора D = χ"Cd.

Рис.13

На законе Бугера-Бера основан метод определения концентрации растворов путем сравнения толщин d 1 и d 2 слоев двух растворов одного и того же вещества, исследуемого с концентрацией С 1 и стандартного С 2 , в которых имеет место одинаковое поглощение света. В приборе, называемом концентрационным колориметром, свет от одного и того же источника проходит через слои d 1 и d 2 растворов; изменением толщины слоев уравнивается яркость двух половин поля зрения, освещенного светом, прошедшим через эти растворы (рис. 13). При этом уравниваются и оптические плотности растворов: D 1 = D 2 , или C 1 d 1 = C 2 d 2 , откуда C 1 /C 2 = d 1 /d 2 , т. е. концентрации С 1 и С 2 обратно пропорциональны толщинам слоев d 1 и d 2 .

Аналогичный метод определения концентрации вещества в коллоидном растворе называется нефелометрией. При этом сравниваются интенсивности света, рассеянного частицами в стандартном и исследуемом растворах: при относительно невысоких концентрациях они пропорциональны концентрации взвешенных частиц и высоте столба раствора. Растворы освещаются боковым светом.


Спектральный анализ

Спектры (как эмиссионный, так и абсорбционный) тесно связаны со строением атомов и молекул вещества. Поэтому по их характеру можно судить о природе и составе как простых, так и сложных веществ. Метод качественного или количественного определения состава вещества по его спектру называется спектральным анализом Основное преимущество его в том, что для анализа требуется исключительно малое количество вещества Путем спектрального анализа может быть обнаружено присутствие вещества в количестве до 10 -8 г. С помощью спектрального анализа, например, было установлено, что живые организмы содержат в крайне незначительных количествах многие металлы - кобальт, хром, титан и др. Спектральный анализ позволяет установить следы крови (судебная медицина), микропримеси металлов в консервированных продуктах (пищевая гигиена и т. п.).

Абсорбционная спектрофотометрия.

Для исследования молекулярного состава органических веществ применяют абсорбционную спектроскопию, обычно при этом исследуемое вещество растворяют в воде, которая сама не дает спектра поглощения в области видимого света. С помощью абсорбционной спектроскопии, например, был установлен молекулярный состав многих витаминов, гормонов и т. п.

Применение абсорбционной спектрофотометрии в видимой и ультрафиолетовой областях спектра для методик количественного определения основано на том факте, что поглощаемость вещества обычно является константой, независимой от интенсивности падающего излучения, длины кюветы и концентрации, вследствие чего концентрация может быть определена фотометрически. Отклонения от приведенных выше величин могут быть обусловлены физическими, химическими или инструментальными переменными. Отклонения вследствие инструментальной ошибки могут быть вызваны влиянием ширины щели, рассеянием света или полихроматическим излучением. Очевидные ошибки могут также появиться в результате изменения концентрации растворенных молекул вследствие ассоциации между молекулами растворенного вещества, между молекулами растворенного вещества и растворителя, а также вследствие диссоциации или ионизации

Свойство атомов и молекул поглощать свет с определенной длиной волны, характерной для данного вещества, широко используется в медицине и фармации для качественных и количественных исследований. Измерение спектров поглощения позволяет судить о химическом составе вещества и его состоянии в биологических структурах. Для регистрации спектров поглощения используются приборы спектрофотометры.

Спектр поглощения - часто выражаемое графически отношение поглощения или любой функции поглощения к длине волны или любой функции длины волны (см. рис.7, 11). Спектры поглощения веществ определяются разностью энергий между энергетическими уровнями молекул, составляющими вещество, а также вероятностями перехода между ними. Разность энергий определяет длину волны, на которой происходит поглощение света, вероятность перехода - коэффициент поглощения вещества. Для биологически важных молекул характерны широкие полосы поглощения, обусловленные электронными, колебательными и вращательными уровнями. Молекулярные группы, поглощающие свет, называют хромофорами.

Стандартный диапазон измерений в абсорбционной спектрофотометрии: 180-1100 нм. Он включает в себя три области спектра: ближнюю ультрафиолетовую область (УФ) -180-380 нм; видимую (ВИД) - 380-760 нм и ближнюю инфракрасную (ИК) - 760-1100 нм.

Нуклеиновые кислоты поглощают только в УФ области (180-220 и 240-280 нм). Их хромофорами являются, в основном, пуриновые и пиримидиновые основания.

Белки имеют три типа хромофорных групп: собственно пептидные группы, боковые группы аминокислотных остатков и простетические группы. Первые две поглощают в УФ области и не поглощают в видимой области. Пептидные группы -CO-NH- поглощают в районе 190 нм. Боковые группы трех ароматических кислот - триптофана, тирозина и фенилаланина - также поглощают на этих длинах волн, причем значительно сильнее, чем пептидные группы. Кроме того они имеют полосу поглощения в диапазоне 260-280 нм.

Простетические группы (гем в гемоглобине и др. хромофоры) поглощают в УФ и в видимой области. Именно они придают белку цвет (например, красный цвет гемоглобину). Спектр поглощения гемоглобина (рис. 15) имеет характерные максимумы в видимой области (~400 нм и 525-580 нм), а также в ближней ИК-области (900 нм). Спектры поглощения гемоглобина, связавшего кислород (оксигемоглобин) – красная линия и свободного гемоглобина (деоксигемоглобин) – синяя иния отличаются. Поэтому с помощью спектров поглощения можно измерить содержание кислорода в крови человека.

Рис.15. Спектры поглощения гемоглобина и оксигемоглобина в оптической области излучения

Примеры использования спектрофотометрии в биологии, медицине и фармации.

· Измерение концентрации белков и нуклеиновых кислот.

· Оценка кровоснабжения тканей на основе измерений степени оксигенации гемоглобина.

· Измерение рН среды с помощью красителей, изменяющих спектр поглощения с изменением рН.

· Определение концентрации различных лекарственных средств, имеющих характерные спектры поглощения (рутин, берберин).

· Отслеживание динамики размножения микроорганизмов по изменению оптической плотности среды, в которой они находятся.

Принципиальная схема спектрофотометра.

Спектрофотометр состоит из следующих основных блоков (рис.16): источника света (И), монохроматора (М), измерительной кюветы (К1) и кюветы сравнения (К2), фотоприемника (Ф) и регистратора (индикатора) (Р).



Понравилась статья? Поделитесь с друзьями!