Стоячая электромагнитная волна. Понятие отражения и стоячих волн в проектировании радиочастотных схем

1. Волны вдоль проводов . Любой участок двухпроводной линии обладает некоторой ёмкостью и индуктивностью. Поэтому любой участок такой линии обладает свойствами колебательного контура, а вся линия в целом может рассматриваться как система связанных колебательных контуров (рис.161).

Системы, подобные двухпроводной линии, называются распределёнными .

Пусть в какой-то точке бесконечной двухпроводной линии действует переменная гармоническая ЭДС. В результате по линии протекает переменный ток. Если скорость изменения ЭДС достаточно велика, то токи проводимости в проводах будут замыкаться токами смещения между ними (рис.162).

Но согласно первому уравнению Максвелла (Ф.19.3) эти токи смещения, то есть изменяющееся эл. поле E , вызывают появление магнитного поля B . Так как электрическое поле распространяется в проводнике с некоторой скоростью, то в рамках грубой наглядности можно сказать, что увеличивающаяся ЭДС на зажимах a и b вызывает появление первого токового кольца 1, а это токовое кольцо, согласно второму уравнению Максвелла (Ф.19.4) создаёт магнитное кольцо А . Это магнитное кольцо А создаёт, в свою очередь, новое вихревое кольцо электрического поля 2, а то – новое магнитное кольцо Б , и так далее. Каждый раз при создании нового кольца происходит уничтожение предыдущего. В результате вдоль проводов бежит импульс электромагнитной волны, несущий информацию о величине и направлении той ЭДС, которая была на зажимах а b в момент начала движения импульса.

Изменение электрического и магнитного полей в каждой точке пространства в любой момент времени совпадают по фазе между собой. Векторы E и B нормальны друг к другу и изменяются по гармоническому закону (рис.163).

, (22.1)

. (22.1)

Здесь v – фазовая скорость волны. Векторы E , B и v образуют правовращательную тройку векторов.

При малых частотах ω перенос электрического поля происходит, в основном, с помощью токов проводимости по проводам. Если же ω велика, то роль токов проводимости снижается, а перенос электрического поля происходит за счёт токов смещения. Электрические явления в этом случае в значительной степени определяются электромагнитными волнами.

При достаточно больших ω провода можно вообще убрать, электрическое поле будет распространяться в диэлектрической среде в виде электромагнитных волн.

2. Скин – эффект . (skin по англ. – кожа). Состоит в том, что быстропеременные токи текут по поверхности проводника, быстро уменьшаясь с глубиной.

Если по проводнику течёт постоянный ток, то его плотность во всех точках сечения проводника примерно одинакова.

На каждый заряд действует сила Лоренца, стремящаяся сместить его к центру провода (рис.164). При обычных токах в металлических проводниках эта сила невелика и не оказывает заметного влияния на плотность тока. И лишь при сильных разрядах в плазме эта сила приводит к сжатию плазменного шнура (пинч-эффект ).

Если ток в проводе переменный, то он генерирует переменное магнитное поле, а оно, в свою очередь, генерирует переменное вихревое электрическое поле. Рассмотрим механизм скин-эффекта при нарастании и убывании тока.

а . Ток нарастает . Нарастающая индукция магнитного поля B вызывает появление вихревого электрического поля E , которое у поверхности проводника направлено по току, а на оси проводника – противоположно току. В результате у поверхности ток усиливается, а центре – ослабляется (рис.165).

б . Ток убывает . В этом случае ослабевающая индукция B вызывает электрическое поле E , направленное противоположно первому случаю, то есть на оси – по току, а на поверхности – против тока (рис.166).

В обоих случаях вихревое эл. поле на оси проводника препятствует, а на поверхности – способствует изменениям тока. Поэтому на оси проводника переменный ток слабее, на поверхности – сильнее.


Амплитуды векторов E и B затухают с глубиной по экспоненциальному закону:

E = E 0 exp (-αx ), В = В 0 exp (-αx ). (22.3)

Здесь E 0 и В 0 – амплитудные векторы на поверхности проводника, x – глубина, отсчитываемая с поверхности, α – коэффициент затухания, , где ν – частота тока, g – удельная электропроводность проводника.

Чем больше частота тока ν , магнитная проницаемость проводника μ и его электропроводность g , тем больше затухание. С увеличением частоты ν толщина поверхностного слоя, по которому проходит ток, уменьшается. В результате сопротивление проводника возрастает. Поэтому с ростом ν роль токов проводимости уменьшается, а токов смещения – увеличивается.

Величина, обратная коэффициенту затухания, 1çα = δ есть глубина уменьшения амплитуды в е раз. При ν = 50 Гц для меди δ = 0,74 мм. Отсюда понятно, что линии многоканальной связи, работающей на ТВЧ, могут использовать не дешёвые стальные провода, а дорогие медные. Увеличение числа каналов линии связи требует увеличения частоты тока, а это приводит к недопустимо большому затуханию и в медных проводах. Практический путь к повышению пропускной способности линий связи состоит в замене металлических проводов оптическими световодами, позволяющими использовать для передачи информации электромагнитные волны сверхвысокой частоты.

3. Стоячие волны . Если проводящая линия ограничена в пространстве, то на её концах происходит отражение электромагнитных волн. При сложении отражённых и прямых волн возникают стоячие электромагнитные волны, в которых изменение величин Е и В уже не совпадает по фазе, поскольку при отражении одна из величин Е или В – обязательно меняет знак. В стоячей электромагнитной волне узлы электрического поля совпадают с пучностями магнитного поля, и наоборот (рис.167).

Условие существования стоячих волн: , (22.4)

где l длина линии, λ – длина электромагнитной волны, k = 1,2,3,… - натуральное число.

Если измерить λ , то, зная частоту генератора ν , из условия υ = λν можно найти экспериментально скорость распространения электромагнитных волн.

4. Опыты Герца . В 1888-89 годах Генрих Герц выполнил серию экспериментов, в которых убедительно доказал справедливость электромагнитной теории Максвелла. Генератор электромагнитных колебаний был искровой колебательный контур.

Опыты Герца по созданию электромагнитных колебаний с помощью вибраторов и по приёму этих колебаний на расстоянии в пределах лабораторной комнаты с помощью резонаторов показали, что от вибратора распространяется ЭМ-волна, способная отражаться от металлической поверхности и возбуждающая в приёмной антенне–резонаторе – токи той же частоты, что и колебания в вибраторе (рис.168).

Герц показал, что электромагнитная волна поляризуется и интерферирует, а проходя через границы раздела разных диэлектрических сред преломляется в соответствии с законами оптики.

Все открытые явления полностью укладывались в рамки теории Максвелла и тем самым подтвердили её.


5. Скорость распространения электромагнитных волн находится из системы уравнений Максвелла. Впервые эту работу выполнил Максвелл, получивший для скорости v ЭМ-волны выражение: . Закон Максвелла (22.5)

Здесь - скорость света (ЭМ-волны) в вакууме.

Поскольку ε > 1, а μ даже для наиболее сильных диамагнетиков очень мало отличается от единицы, то в целом произведение ε μ > 1. Это значит, что скорость распространения ЭМ-волн в веществе всегда меньше скорости в вакууме v < c и зависит практически лишь от диэлектрических свойств среды.

Величину называют показателем преломления среды . В оптике закон Максвелла обычно записывают в виде: . У всех сред n > 1, в вакууме n = 1. (22.6)

Электромагнитные волны представляют собой полевую форму материи, так называемое поле излучения. Поле излучения в отличие от других форм материи не может находиться в состоянии покоя. Оно всегда движения, причём скорость его в пустоте не зависит от выбора системы отсчёта и может принимать лишь одно значение c » 3·10 8 м/с.

6. Дисперсия волн . Материальные параметры ε и μ являются константами лишь в случае статических полей или в случае, когда поле изменяется очень медленно. Если же поле изменяется быстро, так что время его изменения сравнимо с временем релаксации τ электрического молекулярного диполя (или элементарного магнитного диполя), то параметры ε и μ сложным образом зависит от частоты колебаний поля ν . В результате и скорость распространения электромагнитных волн в веществе зависит от частоты n .

Явление зависимости скорости распространения волны от частоты (или длины волны), называется дисперсией .

Если источник излучает электромагнитные волны разных частот, то эти волны распространяются в веществе с разными скоростями. При прохождении границы раздела сред с разными ε (величина μ практически не влияет), электромагнитные волны в зависимости от скорости v , а, следовательно, в зависимости от частоты ν преломляются на разные углы. В результате плоско-параллельный пучок, состоящий из смеси волн разных частот, диспергирует, то есть расщепляется в веер лучей (рис.169).

Наиболее заметно дисперсия проявляется в электромагнитных волнах высоких частот, включая диапазон частот видимого света. Поэтому законы взаимодействия электромагнитных волн с веществом изучаются, как правило, в оптике. Скорость распространения волн в радиодиапазоне может быть установлена экспериментально путём измерения расстояний между узлами или пучностями стоячих волн известной частоты на вибраторах.

7. Перенос энергии и импульса в ЭМ-волне . Электромагнитные волны, как и любой волновой процесс, переносят в пространстве энергию.

В случае упругих волн эта энергия слагается из потенциальной энергии деформации среды и кинетической энергии движения её частиц. Энергия же электромагнитных волн слагается в любой момент времени из энергии взаимосвязанных электрического и магнитного полей.

Энергия, переносимая электромагнитными волнами, как и в механике, определяется вектором плотности потока энергии S , то есть количеством энергии, которое переносится волновым процессом через единичную площадку σ , ориентированную перпендикулярно вектору скорости движения волнового фронта v в данный момент времени (рис.170), . (22.7)

Здесь w 0 – плотность энергии ЭМ-поля. Так как

, то . (22.8)

Вектор S можно представить через характеристики ЭМ-поля E и B . Как и в колебательном контуре средние энергии электрического и магнитного полей в ЭМ-волне одинаковы. Но поскольку оба поля Е и В изменяются в одной фазе, то одинаковы и мгновенные значения плотности энергии, то есть εε 0 E 2 = B 2 çμμ 0 . Если с учётом этого обстоятельства преобразовать выражение (22.8) (см., например, , §240, с.529), то для вектора S получается выражение: . Вектор Пойнтинга 1883, (22.9)

Электромагнитное поле обладает не только энергией, но массой и импульсом. Из формулы Эйнштейна W = mc 2 = w 0 V , где V – объём, получаем пространственную плотность распределения массы поля: Þ . (22.10)

Импульс единичного объёма электромагнитной волны есть . (22.11)

8. Поток энергии ЭМ-поля в проводнике . Найдём поток электромагнитной энергии, втекающий в единичный объём длинного цилиндрического провода, по которому протекает электрический ток i .

Вектор Пойнтинга на поверхности цилиндрического провода направлен по радиусу (рис.171). Поэтому его поток через основание цилиндра равен нулю, а через боковую поверхность есть . (22.10)

Из закона Ома j = gE Þ E = jçg , где j – плотность тока в проводнике, g – удельная электропроводность проводника. Индукция магнитного поля на поверхности длинного цилиндрического провода есть (формула 13.8) (22.11)

Ток, текущий по проводу, I = j ×pR 2 . Объём провода V = pR 2 l . Отсюда

Поток энергии в единичный объём проводника (22.13)

оказался в точности равен тепловой энергии, выделяющейся в единичном объёме проводника в соответствии с законом Джоуля-Ленца.

Итак, энергия,идущая на нагрев проводника, поступает в него через боковую поверхность в виде энергии электромагнитного поля из окружающего проводник пространства , а не вдоль оси провода, как это кажется на первый взгляд. В это пространство она поступает из тех участков цепи, где действует ЭДС источников тока.

9. Излучение элементарного диполя . Заряд, движущийся в проводнике с постоянной скоростью, создаёт постоянное магнитное поле B . Это поле имеет постоянное во времени значение во всех точках пространства. Вдоль прямой, по которой движется заряд, магнитное поле равно нулю. (См. магнитное поле элемента тока, §12, п.6).


Для того, чтобы заряд излучал, он должен двигаться ускоренно . Это ускоренное движение можно реализовать с помощью элементарного диполя . В отличие от рассмотренного в п.3 макродиполя, длина которого l соизмерима с длиной волны l и связана с ней соотношением l = kl / 2, где k = 1,2,3,…, длина элементарного диоля много меньше длины излучаемой им волны, l << l .

Примером элементарного диполя являются два металлических шара, заряжаемые от какого-либо генератора электрических колебаний (рис.172). Если генератор создаёт гармоническую ЭДС, то заряд на шарах изменяется также по гармоническому закону, q = q 0 sinwt , (22.14)

и между шарами протекает переменный ток

. (22.15)

Этот переменный ток представляет собой ускоренное движение зарядов вдоль оси ОY , поэтому в пространстве вокруг оси OY излучается электромагнитная волна.

Если расстояние r от диполя много больше длины l , то волновые поверхности приобретают форму сферы, сечение которой вдоль оси диполя показано на рис.173. Замкнутые кривые здесь представляют собой силовые линии вихревого электрического поля Е . Расстояние между соответственными точками таких замкнутых фигур вдоль по радиусу равно l /2.

Важнейшим примером элементарных диполей являются электроны внутри атомов. Круговое движение электронов можно разложить на два взаимно перпендикулярные линейные гармонические колебания, каждый из которых представляет элементарный диполь.

Глава 5. Электрические явления в атмосфере

Мы уже говорили, что стоячую упругую волну можно представить как результат суперпозиции двух одинаковых волн, бегущих навстречу друг другу. Это относится и к элект­ромагнитным волнам. Однако надо учесть, что электромагнит­ная волна характеризуется не одним вектором, а двумя взаим­но ортогональными векторами и .

Пусть волна распространяется в положительном направле­нии оси х и описывается уравнениями

(3.3.28)

Для волны, распространяющейся в обратном направлении, как мы знаем, в скобках мину­сы заменяются на плюсы. Кроме того, будем помнить, что векторы , , должны составлять правую тройку.

Это поясняет рис.3.3.2, где в части (а ) показаны возможные ориентации векторов и в волне, распространяющейся в прямом, а в части (б ) – в обратном направлении. Рис.3.3.2.

Таким образом, при сложении волн

либо векторы , либо будут иметь противоположные направления, а, значит, при векторном сложении их модули будут вычитаться. Итак, уравнения встречной вол­ны будут иметь вид:

(3.3.29)

или , . (3.3.30)

В результате суперпозиции двух встречных волн, (3.3.28) и (3.3.29), получим:

Это и есть уравнения стоячей электромагнитной волны . Видно, что в этой волне колебания векторов и сдвинуты по фазе на π/2 как в пространстве, так и во времени. Если в некоторый момент E y во всех точках имело максимальное зна­чение и при этом H z = 0, то через четверть периода картина будет обратной: H z достигнет всюду максимальных значений со сдвигом в пространстве на λ/4, а E y обратится в нуль. Таким образом, в процессе колебаний электрическое поле посте­пенно переходит в магнитное, магнитное - в электрическое Рис.3.3.3.

и т. д. (см. рис.3.3.3). Поскольку колебания векторов и происхо­дят не в фазе, соотношение (3.3.13) оказывается справедливым только для амплитудных значений Ε m и Η m стоячей волны:



(3.3.32)

В стоячей электромагнитной волне энергия переходит из чис­то электрической, имеющей максимумы в пучностях , в маг­нитную с максимумами в пучностях вектора , т. е. смещенным в пространстве на λ/4. Таким образом, происходит преобразование энергии электрического поля в энергию мгнитного и наоборот на расстоянии четверти длины волны. Это аналогично поведению гармоническо­го осциллятора, например математического маятника, где энер­гия переходит из чисто потенциальной (в крайнем положении) в кинетическую (в положении равновесия), и наоборот. Макроскопического переноса энергии не происходит. Отсюда и название волны – стоячая.

Электромагнитная волна на границе раздела диэлектриков

Выясним, что происходит при падении плоской электромагнитной волны на границу раздела двух однородных изотропных прозрачных диэлектриков, магнитная проницаемость которых равна единице (µ = 1). Известно, что при этом возникают отраженная и преломленная волны. Ограничимся рассмотрением частного, но практически важного случая, когда волна падает нормально на границу раздела диэлектриков с показателями преломления n 1 и n 2 .

Обозначим электрическую составляющую в падающей, отраженной и преломленной волнах соответственно через и , а магнитную составляющую - через и . Из соображений симметрии ясно, что колебания векторов и происходят в одной плоскости. Это же относится и к векторам и . На рисунке показаны относительное расположение этих векторов в непосредственной близости от границы раздела и направления распространения всех трех волн, обозначенные векторами , и . Дальнейший расчет покажет, насколько эта картина соответствует действительности.

Воспользуемся граничными условиями для

тангенциальных составляющих векторов и : Рис.3.3.4.

Перепишем эти условия для нашего случая:

(3.3.35)

Согласно (3.3.14),

Тогда но поскольку проекции E’ y и Н’ z , в отраженной волне имеют противоположные знаки (см. рис.3.3.4). Поэтому равенство (3.3.35) можно переписать так: или

(3.3.36)

Решив совместно уравнения (3.3.34) и (3.3.36), получим выражения для Е’ y и Е” y через Е y , которые в векторной форме имеют вид:

(3.3.37)

Отсюда следует, что:

1. Вектор всегда сонаправлен с вектором , т. е. оба вектора колеблются синфазно - при прохождении волны через границу раздела фаза не претерпевает скачка.

2. Это же относится и к векторам и , но при условии, что n 1 > n 2 , т. е. если волна переходит в оптически менее плотную среду. В случае же, когда n 1 < n 2 , дробь в выражении (3.3.37) для оказывается отрицательной, а это означает, что направление вектора противоположно направлению вектора , т. е. колебания этих векторов происходят в противофазе (этому соответствует рис.3.3.4). Другими словами, при отражении волны от оптически более плотной среды фаза колебаний вектора изменяется скачком на π .

Эти результаты мы будем использовать в дальнейшем при изучении интерференции волн, отраженных от поверхностей тонких пластинок.

Коэффициенты отражения и пропускания.

Вопрос об этих коэффициентах мы рассмотрим для случая нормального падения световой волны на границу раздела двух прозрачных диэлектриков. Ранее мы выяснили, что интенсивность I гармонической волны, пропорциональна . Коэффициент отражения, по определению, есть . После подстановки отношения Е’ m /Е m из первой формулы (3.3.37), найдем:

(3.3.38)

Обратим внимание на то, что r не зависит от направления падающей волны на границу раздела: из среды 1 в среду 2, или наоборот. При небольшой разнице показателей преломления граничащих сред этот коэффициент оказывается очень небольшим (на границе стекло – воздух он составляет 0,04)

Аналогично находим и коэффициент пропускания t как отношение I’’ /I . Согласно (3.3.27), I” /I = . Остается учесть вторую формулу из (3.3.37), и мы получим, что коэффициент пропускания

(3.3.39)

Нетрудно убедиться в том, что сумма обоих коэффициентов r + t = 1, как и должно быть.

Лекция 3.4

Поляризация волн. Поляризация света. Способы поляризации.

Как уже указывалось, электромагнитная волна является поперечной. Это значит, что векторы и всегда лежат в плоскости перпендикулярной направлению распространения волны (лучу). Однако, как именно в этой плоскости расположены эти векторы, зависит от источника волны. (В дальнейшем будем вести речь о световом векторе )

В зависимости от длины волны (или частоты) различают несколько видов электромагнитных волн: радиоволны, оптический диапазон, рентгеновское и гамма-излучения. В дальнейшем нас будет интересовать главным образом оптический диапазон длин волн. Его подразделяют на

инфракрасное излучение ………..l ~ 1 мм ÷ 0,76 мкм,

видимое излучение (свет) ……….l ~ 0,76 ÷ 0,40 мкм,

ультрафиолетовое излучение...... .l ~ 0,40 ÷ 0,01 мкм.

Соответствующие длины волн указаны в вакууме.

По классическим представлениям излучение светящегося тела (газа) слагается из волн, испускаемых его атомами. Излучение отдельного атома продолжается порядка 10 -8 c и представляет собой, как говорят, цуг волн . Излучив, атом через некоторое время, придя в возбужденное состояние, излучает опять и т. д. Одновременно излучает множество атомов. Порожденные ими цуги волн, налагаясь друг на друга, образуют испускаемую телом световую волну. Направления колебаний для каждого цуга ориентированы случайным образом. Поэтому в результирующей световой волне колебания светового вектора происходят в разных направлениях с равной вероятностью, оставаясь в плоскости перпендикулярной лучу. Это надо понимать так, что при прохождении световой волны через некоторую точку колебания светового вектора быстро и беспорядочно сменяют друг друга. Такой свет называют неполяризованным или естественным.

Существуют способы упорядочивания колебаний световой волны. Свет, в котором направление колебаний светового вектора упорядочено каким-либо образом, называют поляризованным . Если колебания светового вектора происходят только в одной плоскости, содержащей луч и вектор свет называют плоско- (или линейно -) поляризованным (конец вектора описывает прямую линию в плоскости перпендикулярной лучу. В этом случае вектор меняется только по величине, не меняя направления. Плоскость, в которой происходят колебания светового вектора, называют плоскостью поляризации волны.

Если конец светового вектора описывает в этой плоскости эллипс, то такой свет называют эллиптически-поляризованным . Частным случаем такой поляризации является круговая или циркулярная , когда световой вектор меняется только по направлению, не меняясь по модулю. В зависимости от направления вращения вектора различают правую и левую эллиптические (или круговые) поляризации. Если смотреть навстречу распространения волны, и вектор при этом поворачивается по часовой стрелке, то поляризацию называют правой , в противном случае (если против часовой стрелки) - левой .

Создание принципиально нового источника света - лазера позволило получить плоско-поляризованный свет с высокой степенью монохроматичности. Использование такого источника света сильно упростило экспериментальное решение многих вопросов, связанных с интерференцией, дифракцией и др.

Способы поляризации света.

1. Поляризация при отражении света на границе раздела диэлектриков.

Естественный свет можно представить как наложение (сумму) двух некогерентных (несогласованных) плоскополяризованных волн с взаимно ортогональными плоскостями поляризации.

Рассматривая отражение и преломление волны, падающей под произвольным углом на границу раздела диэлектриков, можно найти соотношения между амплитудами и фазами падающей, отраженной и преломленной волн – так называемые формулы Френеля . При необходимости с ними можно познакомиться во многих учебниках и справочниках.

Мы не будем выписывать эти формулы, поскольку для решения наших вопросов они нам не понадобятся. Важно отметить только, что с помощью этих формул можно показать, что при произвольном угле падения (и соответствующем ему угле преломления ) коэффициенты отражения линейно-поляризованного света, плоскость поляризации которого перпендикулярна плоскости падения () и параллельна ей (), определяются следующими выражениями:

Поскольку эти коэффициенты различны то отраженный и преломленный пучки оказываются частично-поляризованными. В отраженном свете преобладают колебания вектора , перпендикулярные к плоскости падения, а в преломленном свете, параллельные плоскости падения. Степень поляризации обеих волн (отраженной и преломленной) зависит от угла падения. Рис.3.4.1.

При некотором значении угла падения отраженный

свет становится полностью поляризованным, и его плоскость поляризации (плоскость колебаний вектора ) оказывается перпендикулярной к плоскости падения. Такое явление наблюдается, когда = p/2, т.е. отраженный и преломленный лучи ортогональны, и значит, tg(p/2)=∞ .Тогда коэффициент отражения = 0, т. е. отраженный свет будет полностью линейно-поляризованным в плоскости, перпендикулярной плоскости падения. Угол падения, при котором наблюдается такой эффект называется углом Брюстера или углом полной поляризации. Этот угол удовлетворяет следующему условию:

(3.4.2)

На рис.3.4.1. представлена именно такая ситуация. Точками и черточками на отраженном и преломленном лучах этого рисунка показаны направления колебаний вектора .

2. Поляризация при двойном лучепреломлении.

Почти все прозрачные кристаллические диэлектрики оптически анизотропны, т. е. оптические свойства света при прохождении через них зависят от направления. Вследствие этого возникает явление, называемое двойным лучепреломлением . Оно заключается в том, что падающий на кристалл пучок света разделяется внутри кристалла на два пучка, распространяющиеся, вообще говоря, с разными скоростями.

Существуют кристаллы одноосные и двуосные . У одноосных кристаллов один из преломленных пучков подчиняется обычному закону преломления (). Его называют обыкновенным и обозначают буквой или индексом о . Другой пучок необыкновенный (e ), он не подчиняется обычному закону преломления, и даже при нормальном падении светового Рис3.4.2.

пучка на поверхность кристалла необыкновенный пучок может

отклоняться от нормали (рис.3.4.2). И, как правило, необыкновенный луч не лежит в плоскости падения.

Наиболее сильно двойное лучепреломление выражено у таких одноосных кристаллов как кварц (кристаллический), исландский шпат и турмалин.

Далее мы ограничимся рассмотрением только одноосных кристаллов. У одноосных кристаллов имеется направление – оптическая ось 00’ - , вдоль которого обыкновенная и необыкновенная волны распространяются, не разделяясь пространственно и с одинаковой скоростью (у двуосных кристаллов, например слюды, имеются два таких направления).

Оптическая ось 00’ кристалла не является какой-то особой прямой линией. Она характеризует лишь избранное направление в кристалле и может быть проведена через произвольную точку кристалла.

Любую плоскость, проходящую через оптическую ось, называют главным сечением или главной плоскостью кристалла. Обычно пользуются главным сечением (плоскостью), проходящим через световой луч в кристалле.

Обыкновенная и необыкновенная волны (и лучи) линейно поляризованы. Колебания вектора в обыкновенной волне совершаются в направлении, перпендикулярном главному сечению кристалла для обыкновенного луча. Колебания же вектора в необыкновенной волне – в главном сечении кристалла обыкновенного луча. Направления колебаний вектора (т.е. их плоскости поляризации) в обоих пучках показаны на рис.3.4.2, где предполагается, что оба пучка и пересекающая их оптическая ось 00’ лежат в плоскости рисунка. Видно, что в данном случае плоскости поляризации обеих волн (о и е ) взаимно ортогональны . Заметим, что это наблюдается практически при любой ориентации оптической оси, поскольку угол между обыкновенным и необыкновенным лучами достаточно мал.

Оба луча, вышедшие из кристалла, отличаются друг от друга только направлением поляризации, так что названия «обыкновенный» (о ) и «необыкновенный» (е ) имеют смысл только внутри кристалла.

Раздвоение световых лучей обусловлено зависимостью показателя преломления среды от направления светового вектора волны. Световую волну, падающую на кристалл, можно представить как совокупность двух линейно поляризованных волн, у одной из которых плоскость поляризации перпендикулярна главному сечению кристалла (обыкновенный луч ), а у другой – параллельна ему (необыкновенный луч ). Скорость распространения обыкновенной волны и, следовательно, показатель преломления для нее не зависят от направления распространения (т.е. эта волна ведет себя в кристалле как в изотропной среде). Скорость же распространения и показатель преломления необыкновенной волны зависят от направления распространения. Таким образом, законы преломления для необыкновенного луча изменяются, в частности, он может не лежать в плоскости падения. При распространении вдоль оптической оси оба показателя преломления совпадают, поэтому раздвоения луча не происходит. Наибольшее отличие от наблюдается при распространении в направлении перпендикулярном оптической оси.

Поляризаторы. Закон Малюса.

Устройства, с помощью которых можно получить из естественного поляризованный свет (обычно линейно-поляризованный) называются поляризаторами . Действие таких приборов может быть основано на двух вышеназванных явлениях. В любом случае вышедший из поляризатора свет линейно поляризован, а плоскость, проведенная через вектор и вышедший луч, называется плоскостью поляризатора . Поляризатор пропускает лишь волну, колебания вектора в которой параллельны этой плоскости.

Пусть на поляризатор падает плоско-поляризованная волна. Плоскость, проведенная через вектор и луч, называется плоскостью поляризации . Пусть плоскость поляризации падающей волны составляет с плоскостью поляризатора угол . Такую волну можно представить как суперпозицию двух других, у одной из которых плоскость поляризации параллельна плоскости поляризатора, а у другой – перпендикулярна (рис.3.4.3). Поляризатор пропустит лишь первую из них. Из рисунка видно, что . А поскольку интенсивность волны пропорциональна квадрату амплитуды, то интенсивность вышедшей из поляризатора волны I связана с интенсивностью падающей I

Соотношение (3.4.3) называется законом Малюса . Если падающий свет естественный, то угол хаотически меняется в пределах от 0 до и при усреднении соотношения (3.4.3)получим интенсивность вышедшего луча

Лекция 3.5

Фазовая и групповая скорости волны. Дисперсия.

В вакууме все электромагнитные волны распространяются с одинаковой скоростью, называемой скоростью света - с. Скорость же распространения волн разных частот в веществе будет различной. Дело в том, что электрические диполи диэлектрика под влиянием электромагнитного поля волны совершают вынужденные колебания. Электромагнитное излучение, вызванное колебаниями этих диполей, создает вторичную волну, которая, накладывается на исходную (первичную) и дает результирующую волну в веществе. Это наложение оказывается достаточно сложным и в результате скорость волны оказывается зависящей от ее частоты.

Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность «горбов» и «впадин», перемещающихся вдоль оси х с фазовой скоростью

С помощью такой волны нельзя передать никакого сигнала, так как каждый последующий «горб» или «впадина» ничем не отличаются от предыдущего.

Однако, как уже отмечалось, монохроматическая волна это идеализация. Реально любая волна представляет собой некую совокупность (суперпозицию) волн с частотами, заключенными в некотором интервале . Если этот интервал невелик, то такая совокупность называется волновым пакетом или группой волн . С помощью такой системы можно передавать сигнал (рис.3.5.1)

Рассмотрим простейший случай. Пусть волновой пакет состоит из двух волн с одинаковыми амплитудами и небольшим отличием по частотам (а следовательно и по волновым числам)

, (3.5.2)

где « и «k . Тогда, сложив эти две волны, получим

Выражение, стоящее в квадратных скобках, можно считать амплитудой волнового пакета (огибающая на рис.3.5.1). Эта амплитуда меняется в пространстве и во времени, но фиксировав некоторое ее значение, например максимум (точка В на рисунке) можно передавать информацию.

Найдем скорость этой точки. Для этого фиксируем некоторое значение амплитуды. За время dt это значение переместится на dx . Тогда можно записать

Откуда получим

Эта величина есть не что иное, как скорость перемещения амплитуды волнового пакета, называемая групповой скоростью . Это также скорость перемещения энергии. Мы получили это выражение для группы, состоящей из двух волн. В общем случае для групповой скорости, которую обозначим u , имеет место выражение

Напомним, что фазовая скорость волны . (3.5.6)

Найдем связь между групповой и фазовой скоростью. Учтем связь между длиной волны и волновым числом . Тогда получим

. (3.5.7)

Из полученного соотношения следует, что, если фазовая скорость не зависит от частоты (или длины волны), то групповая и фазовая скорости одинаковы и форма волнового пакета не меняется. Если же фазовые скорости для разных составляющих пакета различны, то V ≠ u и форма волнового пакета меняется (пакет расплывается).

Явление зависимости фазовой скорости (а, следовательно, и показателя преломления вещества) от длины волны (или частоты) называется дисперсией.

Дисперсия света.

Дисперсия света объясняется зависимостью диэлектрической проницаемости , а, следовательно, и показателя преломления от частоты (или длины волны ). Эта зависимость связана с взаимодействием электромагнитного поля световой волны с атомами и молекулами, показатель преломления при этом становится комплексной величиной, содержащей действительную часть – истинный показатель преломления п и мнимую часть – коэффициент поглощения אּ. В видимой и ультрафиолетовой областях спектра основное значение имеют колебания электронов, а в инфракрасной - колебания ионов.
Согласно классическим представлениям, под действием электрического поля световой волны электроны атомов или молекул совершают вынужденные колебания с частотой, равной частоте приходящей волны . При приближении частоты световой волны к частоте собственных колебаний электронов возникает явление резонанса, обусловливающее поглощение света. Эта теория хорошо объясняет связь дисперсии света с полосами поглощения

На рис 3.5.2. показана зависимость показателя преломления и коэффициента поглощения от отношения частоты волны к собственной частоте электронов. Видно, что в области, где , характер зависимости показателя преломления от частоты волны резко меняется и резко увеличивается коэффициент затухания. Область, где п растет с увеличением частоты, называется нормальной дисперсией, а, если п убывает с ростом частоты – аномальной дисперсией. Из графика видно, что аномальная дисперсия наблюдается при частотах, которые соответствуют сильному поглощению.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис.3.5.3) под углом .

Рис.3.5.4. Рис.3.5.3

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Очевидно, что угол отклонения лучей призмой зависит от показателя преломления n , а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы (рис.3.5.4). Пучок белого света за призмой разлагается в спектр, что и наблюдал Ньютон. Таким образом, с помощью призмы, разлагая свет на монохроматические составляющие, можно определить его спектральный состав.

Лекция 3.6

Интерференция. Условия максимума и минимума интерференции.

Интерференция - это явление наложения двух или нескольких волн, при котором результирующая интенсивность не равна сумме интенсивностей складываемых волн. Интерферировать могут волны любой физической природы. Мы рассмотрим это явление на примере электромагнитных волн.

Пусть в некоторую точку пространства приходят две плоские электромагнитные волны

Cos(t─ + ),

Cos (t─ + ). (3.6.1) Они возбуждают в этой точке колебания напряженности электрического поля

Cos(t + ),

Cos(t + ), (3.6.2) где и - соответствующие начальные фазы. Результирующая напряженность, в соответствии с принципом суперпозиции,

Интенсивность волны пропорциональна среднему по времени квадрату напряженности электрического поля:

I ~ < > = < ( + ) > = < > + < > + 2 < ( · )> (3.6.3)

Здесь усреднение проводится за время наблюдения. Фактически всякий прибор, с помощью которого наблюдают интерференционную картину, обладает некоторой инерционностью, т.е. регистрирует не мгновенную картину, а усредненную за промежуток времени t , необходимый для «срабатывания» прибора. Это и есть время усреднения в (3.6.3).

Первые два слагаемых в правой части (3.6.3) определяют (с учетом коэффициента пропорциональности) интенсивности волн I и I . Интерференция будет наблюдаться, если третье слагаемое будет отличаться от нуля. Для этого вектора и не должны быть взаимно перпендикулярны . В дальнейшем будем полагать, что и параллельны. Рассмотрим идеализированный случай монохроматических плоских волн, т.е. амплитуды, частоты и волновые векторы () будем полагать константами, причем

= = , | | = | | = k .

Однако параллельность векторов и еще не гарантирует отличие от нуля последнего слагаемого в (3.6.3). Для выполнения этого условия необходимо, чтобы модуль амплитуды результирующего колебания в данной точке не ме нялся за время наблюдения. Это возможно лишь в случае, если разность фаз складываемых в этой точке колебаний ( = - ) не зависит от времени. Рис.3.6.1.

Условия максимума и минимума интерференции.

Модуль амплитуды результирующего колебания Е в случае параллельности складываемых колебаний можно определить с помощью векторной диаграммы (рис. 3.6.1)

Е = Е + Е + 2 Е Е cos ( - ) . (3.6.4)

Тогда результирующая интенсивность

I = I + I + 2 . (3.6.5)

В реальных источниках излучателями являются отдельные атомы, не связанные друг с другом ( и меняются независимо). Поэтому разность фаз ( - ) непрерывно изменяется, принимая с равной вероятностью любые значения, так что среднее по времени значение равно нулю.

Тогда суммарная интенсивность равна сумме интенсивностей складываемых волн – интерференция отсутствует .

Если же добиться, чтобы разность фаз в каждой точке пространства оставалась неизменной с течением времени, то значение интенсивности в разных точках пространства будет отличным от суммы интенсивностей складываемых волн и различным в разных точках в зависимости от величины cos ( - ). В частности, при cos ( - ) = 1 интенсивность будет принимать максимальное значение:

I =I +I +2 = . (3.6.6) Как нетрудно видеть, такая интенсивность будет осуществляться при

2m , (3.6.7) где целое число m = 0, 1, 2, …называется порядком максимума интерференции . Если cos ( - ) = -1, интенсивность будет минимальна .

Стоячей называется волна, возникающая при наложении (суперпозиции) двух встречных плоских волн одинаковой амплитуды и поляризации. Стоячие волны возникают, например, при наложении двух бегущих волн, одна из которых отразилась от границы раздела двух сред.

Найдем уравнение стоячей волны. Для этого предположим, что плоская бегущая волна = сДх, t) с амплитудой А и частотой со, распространяющаяся в положительном направлении оси х, складывается со встречной волной?, 2 = О той же амплитуды и частоты. Уравнения этих волн запишем в тригонометрической форме следующим образом:

где Cj и %2 смещения точек среды, вызванные волнами, распространяющимися в положительном и отрицательном направлениях оси Ох соответственно. Согласно принципу суперпозиции волн в произвольной точке среды с координатой х в момент времени 1 смещение с, составит % + или % = A cos(co/ - кх) + + A cos(co t + кх).

Используя известное из тригонометрии соотношение , получим:

В этом выражении имеются два тригонометрических члена. Первый (cos(Atjc)) - это функция только координаты и может рассматриваться как амплитуда стоячей волны, изменяющаяся от точки к точке, т.е.

Так как амплитуда колебаний - величина существенно положительная, в последнем выражении поставлен знак модуля. Второй множитель в (2.183) - (cos(k>0) зависит только от времени и описывает гармоническое колебательное движение точки с фиксированной координатой х. Таким образом, все точки среды совершают гармонические колебания с различными (зависящими от координаты) амплитудами. Как видно из формулы (2.184), амплитуда стоячей волны в зависимости от координаты х изменяется от нуля до 2А. Точки, в которых амплитуды колебаний максимальны (24), называются пучностями стоячей волны. Точки, в которых амплитуды колебаний равны нулю, называются узлами стоячей волны (рис 2.25).

Найдем координаты узлов стоячей волны. Для этого запишем очевидное равенство |24cos(&x)| = 0, отсюда cos кх = 0. Для того чтобы последнее равенство имело место, необходимо выполнение условия

, где п = 0, 1, 2,.... Заменив к его выражением через длину волны, получим Отсюда находим координаты

Рис. 2.25. Стоячие волны «мгновенные фотографии» в разные моменты времени I, отстоящие на четверть периода Т колебаний:

Светлые кружки

изображают частицы среды, колеблющиеся в поперечной стоячей волне. Разной длины стрелки - направление и величину (длина стрелки) их скорости

Соответственно можно определить и координаты пучностей стоячей волны. Для этого следует принять 12A cos (foe) I = 24. Откуда следует, что координаты точек, колеблющихся с максимальной амплитудой, должны удовлетворить условию Заменив к

на , получим выражение для координат пучностей:

Расстояния между соседними узлами или соседними пучностями (они одинаковы) называют длиной стоячей волны. Как видно из выражений (2.185) и (2.186), это расстояние равно , т.е.

Пучности и узлы сдвинуты по оси х друг относительно друга на четверть длины волны.

На рисунке 2.25, а за х = 0 выбрана точка пучности при п = 0 (2.186). За t = 0 принят момент, когда колебания всех точек среды проходят через точку равновесия, где смещения всех точек % в стоячей волне равны нулю, график волны - прямая линия. Однако в этот момент каждая точка (кроме точек, расположенных в узлах, где смещение и скорость всегда равны нулю) обладает определенной скоростью, показанной на рисунке стрелками разной длины и пунктирной огибающей. При t - Т/4 (рис. 2.25, б) смещения достигнут максимума, волна изображается непрерывной синусоидой, но скорость каждой точки среды станет равной нулю. Момент времени t= Т/ 2 (рис. 2.25, в) снова соответствует прохождению равновесия, но скорости всех точек направлены в противоположную сторону. И так далее (рис. 2.25, гид, где повторяется случай, показанный на рис. 2.25, а).

Рис. 2.26. Отражение волны от границы раздела разных сред: а - более плотной;

6 - менее плотной

Сравним бегущую и стоячую волны. В плоской бегущей волне колебания всех точек среды, имеющих разные координаты х, происходят с одинаковой амплитудой, но фазы колебаний различны и повторяются через Ах = X или At - Т. В стоячей волне все точки (от узла до узла) совершают колебания в одной фазе, но амплитуды их колебаний различны. Точки среды, разделенные узлом, совершают колебания в противофазе. Таким образом, стоячие волны энергию вдоль направления х не переносят.

В качестве модели стоячей волны можно рассмотреть поперечные колебания мягкого жгута, закрепленного с одного конца. Моделью плотной границы на этом конце жгута (рис. 2.26, а справа) является фиксация узла стоячей волны. Моделью подвижной (менее плотной) границы является тонкий невесомый шнурок, соединяющий конец жгута с закреплением (рис. 2.26, б также справа). Анализ условий отражения волны в этих двух случаях показывает, что при отражении от более плотной среды (см. рис. 2.26, а) волна «теряет» половину длины волны, т.е. при таком отражении происходит изменение фазы колебаний на л. Отражение от менее плотной среды не сопровождается изменением фазы, поэтому у границ раздела двух сред (на рис. 2.26, б в месте соединения жгута со шнурком) всегда будет пучность.

Если две одинаковые бегущие волны распространяются вдоль оси “у” навстречу друг другу, то при наложении этих волн возникают колебания среды, называемые стоячей волной. Для получения уравнения стоячей волны сложим уравнения (1.27):

Произведя тригонометрические преобразования, найдем:

это и есть уравнение стоячей волны.

Величина

есть амплитуда волны. Она зависит от координаты “у” колеблющейся точки и не зависит от времени t, т.е. не наблюдается волнового движения и переноса энергии (отсюда и название -стоячая волна).

В точках, в которых выполняется условие

(m=0, 1, 2, 3,…)

амплитуда стоячей волны максимальна и равна 2А (пучности волны ).

В точках, где , амплитуда стоячей волны обращается в нуль. Эти точки называются узлами стоячей волны . Из Рис. 1.11 видно, что

наименьшее расстояние между соседними пучностями или узлами равно λ/2. Стоячие волны образуются при колебаниях в телах ограниченных размеров вследствие отражения их от границ тел, (например, при колебаниях струны).

Упругие волны, имеющие частоту примерно от 16 до 20000 Гц, воспринимаются ухом человека и называются звуковыми . При частоте ν<16 Гц упругие волны называются инфразвуками , а при ν>20000 Гц – ультразвуковыми . В жидкостях и газах звуковые волны могут быть только продольными. Распространение звука сопровождается попеременным сжатием и растяжением участков среды и соответствующим изменением давления в сравнении с давлением в невозмущенной среде. Переменная составляющая давления ±Dр(акустическое давление ) обусловливает восприятие звука, взывая вынужденные колебания барабанной перепонки уха или мембраны микрофона.

Звуки различают по высоте, тембру и громкости. Звуки, соответствующие синусоидальным волнам (например, от камертонов), называются тонами . Высота тона определяется частотой колебаний. Музыкальные звуки являются наложением ряда гармонических колебаний, образующих акустический спектр звука . Наименьшая частота ν этого спектра (основной тон ) определяет высоту звука, а высшие частоты (обертоны ) – его тембр .

Громкость звука связана с его интенсивностью I, которая характеризует среднее значение плотности потока энергии, переносимой звуковой волной. Ухо человека способно воспринимать звук в широком диапазоне интенсивности. При частоте 1000 Гц границами этого диапазона являются I 0 »10 -12 Вт/м 2 (порог слышимости ) и I max »10 Вт/м 2 (болевой порог ). Значения I 0 и I max зависят от частоты. Громкость звука L как характеристика субъективного восприятия звуковой волны приблизительно пропорциональна логарифму ее интенсивности:

где I 0 – некая стандартная для всех частот начальная интенсивность, принимаемая равной 10 -12 Вт/м 2 (она соответствует порогу слышимости при частоте 1000 Гц). Громкость звука измеряется в белах (Б) . Чаще используют дольную единицудецибел (дБ) . В этом лучае:

Изменению интенсивности звуковой волны от I 0 до I max соответствует изменение громкости звука от 0 до 130 дБ. Примерные значения L и I для некоторых звуков:

При нормальных атмосферных условиях (t=0 0 С и р=0,1013 МПа) скорость звука в воздухе составляет 344 м/с, а при изменении температуры определяется по формуле:

,

где t с – температура воздуха, 0 С.

1.9. Электромагнитные волны, свет , поляризация света и закон Малюса

Электромагнитные волны возникают при любом ускоренном движении электрических зарядов и в том числе при их колебательном движении.

Электромагнитные волны – это распространение в пространстве взаимосвязанных изменяющихся электрического и магнитного полей. Совокупность этих полей, называется электромагнитным полем . Несмотря на то, что длины электромагнитных волн и их свойства различны, все они, начиная от радиоволн и заканчивая гамма-излучением, – одной физической природы. Исследованный в настоящее время диапазон электромагнитных волн состоит из волн с длинами, соответствующими частотам от 10 3 до 10 24 Гц. По мере убывания длины волны в диапазон включаются радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучения.

Электромагнитное излучение распространяется практически во всех средах. В вакууме электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя свое поведение).

Свободное электромагнитное поле не может оставаться постоянным во времени. Чтобы существовало электрическое поле, необходимо изменение магнитного, а для существования магнитного - изменение электрического. Можно показать, что поле не может занимать неизменную область пространства и будет распространяться со скоростью света. Из уравнений Максвелла вытекает, что векторы и в этом поле взаимноперпендикулярны.

Если повернуть буравчик с правой нарезкой от вектора к вектору , то его поступательное движение укажет направление распространения свободного электромагнитного поля.

Значения векторов и вдоль линии распространения свободного электромагнитного поля образуют две синусоиды, расположенные в перпендикулярных плоскостях (Рис. 1.12) и процесс распространения электромагнитного поля имеет характер волны (электрическое и магнитное поля распространяются в пространстве, не изменяя взаимного расположения).

Электромагнитная волна, распространяющаяся вдоль направления , описывается уравнениями типа (1.26):

,

где Е 0 и Н 0 – амплитуды векторов электрической и магнитной напряженно -


Рис. 1.12

стей волны; с – скорость света в вакууме.

При этом в каждой точке пространства, через которую проходит свободное электромагнитное поле (электромагнитная волна), происходят синусоидальные колебания векторов Е и В . В любом проводнике, расположенном вдоль силовых линий или образующем контур, сцепленный с магнитным полем, свободное электромагнитное поле вызовет колебания тока и напряжения (принцип радиоприема).

Важнейшими характеристиками электромагнитного излучения являются:

1. Объемная плотность энергии (энергия содержащаяся в единице объема) электромагнитного поля при отсутствии среды:

ω = ω э + ω м = , (1.31)

Здесь ω э – плотность энергии электрической составляющей поля, ω м – магнитной. Можно показать, что ω э = ω м.

2. Плотность потока энергии (интенсивность) - энергия, переносимая волной за 1 с через единицу перпендикулярной потоку площадки.

, (1.32)

Как следует из (3), интенсивность волны пропорциональна квадрату напряженностей Е и Н, которые, в свою очередь, пропорциональны частоте n волны, т.е. S ~ n 2 . Поэтому источниками наиболее интенсивного электромагнитного излучения являются разнообразные СВЧ излучатели: радары, микроволновые печи, сотовые телефоны и т.п.

Электромагнитное излучение принято делить по частотным диапазонам (см.таблицу 1.1). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения в вакууме постоянна, то его частота жестко связана с длиной волны.

Таблица 1.1

название диапазона длины волн, λ частоты, ν источники
Радиоволны сверхдлинные более 10 км менее 30 кГц Атмосферные и магнитосферные явления. Радиосвязь.
длинные 10 км - 1 км 30 кГц - 300 кГц
средние 1 км - 100 м 300 кГц - 3 МГц
короткие 100 м - 10 м 3 МГц - 30 МГц
ультракороткие 10 м - 1 мм 30 МГц - 300 ГГц 4
Инфракрасное излучение 1 мм - 780 нм 300 ГГц - 429 ТГц Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое (оптическое излучение) 780 - 380 нм 429 ТГц - 750 ТГц
Ультрафиолетовое 380 - 10 нм 7,5∙10 14 Гц - 3∙10 16 Гц Излучение атомов под воздействием ускоренных электронов.
Рентгеновские 10 нм - 5 пм 3∙10 16 Гц - 6∙10 19 Гц Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма менее 5 пм более 6∙10 19 Гц Ядерные и космические процессы, радиоактивный распад.

Свет – это электромагнитное излучение, воспринимаемое человеческим глазом. Световые волны по своей физической природе ничем не отличаются от других электромагнитных волн, например, радиоволн, рентгеновских или гамма – лучей.

Как показывает опыт, зрительные ощущения, фотоэлектрическое и фотохимическое действие света вызываются колебаниями электрического вектора . Поэтому, далее свет мы будем характеризовать световым вектором .

Свет, излучаемый любым нагретым телом, представляет собой наложение огромного количества волн (цугов волн), испущенных его отдельными атомами. Атомы излучают свет независимо друг от друга, т.е. частоты, начальные фазы и пространственная ориентация векторов цугов, создаваемых разными атомами, никак не связаны друг с другом. Время излучения отдельного атома с. За это время излученная им волна успевает распространиться на расстояние . Это и есть длина одного цуга.

Схематически луч естественного света, где присутствуют цуги с любой пространственной ориентацией светового вектора показан, на Рис. 1.13.а, 1.13.в.



поляризованном (б) и частично поляризованном (в) свете.

Свет, в котором колебания вектора происходят только в одном направлении (имеют полярность), называется поляризованным (рис. Рис. 1.13. б).

Свет, в котором вектор имеет преимущественную ориентацию колебаний в каком - либо направлении, называется частично поляризованным (Рис. 1.13. в).

Плоскость, в которой совершает колебания вектор , называется плоскостью колебаний . По историческим причинам плоскость, в которой колеблется вектор , назвали плоскостью поляризации .

Представим каждый вектор в луче естественного света, как сумму двух взаимно перпендикулярных составляющих: = х + y . Тогда формально, луч естественного света можно представить как результат наложения двух поляризованных лучей, в одном из которых, все векторы колеблются вдоль оси х, а в другом – вдоль оси y. Схематически это изображено на Рис. 1.14.



Рис. 1.14. Схематическое изображение луча естественного света.

Естественный свет можно превратить в поляризованный с помощью приборов, которые называются поляризаторами .

Любой поляризатор удобно представить как совокупность параллельных плоскостей, называемых плоскостями пропускания . Если вектор волны, падающей на поляризатор параллелен плоскостям пропускания, то волна проходит через поляризатор. Если перпендикулярен – то не проходит. В промежуточном случае, когда составляет угол с плоскостями пропускания через поляризатор, как видно из Рис.1.15 проходит составляющая .


Рис. 1.15. Прохождение естественного света через поляризатор

Так как интенсивность излучения I пропорциональна Е 2 (см.1.32), то интенсивность света прошедшего через поляризатор:

Соотношение (1.33) носит название закона Малюса (1810): интенсивность света I, прошедшего через поляризатор, прямо пропорциональна интенсивности I 0 падающего света и квадрату косинуса угла между плоскостью пропускания поляризатора и плоскостью колебания светового вектора в падающем луче. Если на поляризатор падает естественный свет, то, т.к. в естественном луче равновероятны все направления колебаний вектора (рис.1.13 а), то и , т.е. поляризатор всегда пропускает половину интенсивности естественного света.



Рис.1.16. Скрещенные поляризатор а) и анализатор б)

Элементом большинства поляризационных приборов является схема (Рис.1.16) состоящая из двух последовательно расположенных на одной оси поляризаторов (второй из них называют анализатором ).

Если их плоскости пропускания взаимно перпендикулярны (скрещенные поляризаторы ), то схема не пропускает естественный свет. Изменение угла между плоскостями пропускания приводит к изменению интенсивности прошедшего через систему света по закону Малюса.

Рассмотрим некоторые способы поляризации.

Пусть луч света падает на плоскопараллельную стеклянную пластинку (Рис.1.17).


Колебания вектора в волне могут быть разложены на колебания в плоскости чертежа, обозначенные стрелками, и на колебания, перпендикулярные плоскости чертежа, обозначенные точками. Если угол падения i 1 луча на пластинку удовлетворяет условию:

Или tgi 1 = n 21 (1.34)

то луч, отраженный от пластинки, оказывается линейно поляризованным . Здесь n 21 – показатель преломления второй среды относительно первой вблизи границы их раздела. Уравнение (1.34) носит название закона Брюстера . Преломленный луч при выполнении условия (1.34) будет частично поляризованным. Можно также показать, что лучи преломленный и отраженный в этом случае будут взаимно перпендикулярными. При других углах падения оба луча будут частично поляризованными.

Все прозрачные кристаллы (кроме кристаллов кубической симметрии) обладают способностью двойного лучепреломления . Явление двойного лучепреломления наблюдается, например, в кристаллах кварца, исландского шпата (СаСО 3), турмалина и др. Этот эффект заключается в том, что направленный на такой кристалл луч даже при нормальном падении делится на два луча, один из которого является продолжением первичного и называется обыкновенным , а другой, в нарушение закона преломления, отклоняется и потому называется необыкновенным (Рис.1.18).



Понравилась статья? Поделитесь с друзьями!