Чему равен показатель адиабаты. Указания по охране труда

ОПРЕДЕЛЕНИЕ

Описывает адиабатный процесс, протекающий в . Адиабатным называют такой процесс, при котором отсутствует теплообмен между рассматриваемой системой и окружающей средой: .

Уравнение Пуассона имеет вид:

Здесь – объем, занимаемый газом, – его , а величина называется показателем адиабаты.

Показатель адиабаты в уравнении Пуассона

В практических расчётах удобно помнить, что для идеального газа показатель адиабаты равен , для двухатомного – , а для трёхатомного – .

Как же быть с реальными газами, когда важную роль начинают играть силы взаимодействия между молекулами? В этом случае показатель адиабаты для каждого исследуемого газа можно получить экспериментально. Один из таких методов был предложен в 1819 году Клеманом и Дезормом. Мы наполняем баллон холодным газом, пока давление в нём не достигнет . Затем открываем кран, газ начинает адиабатически расширяться, а давление в баллоне падает до атмосферного . После того, как газ изохорно прогреется до температуры окружающей среды, давление в баллоне повысится до . Тогда показатель адиабаты можно рассчитать за формулой:

Показатель адиабаты всегда больше 1, поэтому при адиабатическом сжатии газа – как идеального, так и реального – до меньшего объема температура газа всегда возрастает, а при расширении газ охлаждается. Это свойство адиабатического процесса, называемое пневматическим огнивом, применяется в дизельных двигателях, где горючая смесь сжимается в цилиндре и воспламеняется от высокой температуры. Вспомним первый закон термодинамики: , где — , а А – выполняемая над ней работа. Поскольку то работа, осуществляемая газом, идёт только на изменение его внутренней энергии – а значит, температуры. Из уравнения Пуассона можно получить формулу для расчёта работы газа в адиабатном процессе:

Здесь n – количество газа в молях, R – универсальная газовая постоянная, Т – абсолютная температура газа.

Уравнение Пуассона для адиабатического процесса применяется не только при расчётах двигателей внутреннего сгорания, но и в проектировании холодильных машин.

Стоит помнить, что уравнение Пуассона точно описывает только равновесный адиабатный процесс, состоящий из непрерывно сменяющих друг друга состояний равновесия. Если же мы в реальности откроем кран в баллоне, чтобы газ адиабатически расширился, возникнет нестационарный переходной процесс с завихрениями газа, которые затухнут из-за макроскопического трения.

Примеры решения задач

ПРИМЕР 1

Задание Одноатомный идеальный газ адиабатически сжали так, что его объем увеличился в 2 раза. Как изменится давление газа?
Решение Показатель адиабаты для одноатомного газа равен . Однако его можно рассчитать и по формуле:

где R – универсальная газовая постоянная, а і – степень свободы молекулы газа. Для одноатомного газа степень свободы равен 3: это значит, что центр молекулы может совершать поступательные движения по трём координатным осям.

Поэтому показатель адиабаты:

Представим состояния газа в начале и конце адиабатного процесса через уравнение Пуассона:

Ответ Давление уменьшится в 3,175 раза.

ПРИМЕР 2

Задание 100 молей двухатомного идеального газа адиабатически сжали при температуре 300 К. При этом давление газа увеличилось в 3 раза. Как изменилась работа газа?
Решение Степень свободы двухатомной молекулы , так как молекула может двигаться поступательно по трём координатным осям, и вращаться вокруг двух осей.

Цель работы : познакомиться с адиабатическим процессом, определить показатель адиабаты для воздуха.

Оборудование : баллон с клапаном, компрессор, манометр.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Адиабатический процесс – это процесс, протекающий в термодинамической системе без теплообмена с окружающей средой. Термодинамической системой является система, содержащая огромное количество частиц. Например, газ, число молекул которого сравнимо с числом Авагадро 6,02∙10 23 1/моль. Хотя движение каждой частицы подчиняется законам Ньютона, но их так много, что решить систему уравнения динамики для определения параметров системы невозможно. Поэтому состояние системы характеризуют термодинамическими параметрами, такими как давление P , объем V , температура T .

Согласно первому началу термодинамики , являющемуся законом сохранения энергии в термодинамических процессах, теплота Q , подводимая к системе, расходуется на совершение работы А и на изменение внутренней энергии Δ U

Q = A + D U. (1)

Теплота – это количество энергии хаотического движения, передаваемое термодинамической системе. Подвод теплоты приводит к повышению температуры: , где n – количество газа, С − молярная теплоемкость, зависящая от вида процесса. Внутренняя энергия идеального газа − это кинетическая энергия молекул. Она пропорциональна температуре: , где C v – молярная теплоемкость при изохорическом нагревании. Работа элементарного изменения объема силами давления равна произведению давления на изменение объема: dA = PdV.

Для адиабатического процесса, происходящего без теплообмена (Q = 0), работа совершается за счет изменения внутренней энергии, A = − D U . При адиабатическом расширении работа газа положительна, поэтому внутренняя энергия и температура понижаются. При сжатии – наоборот. Все быстро протекающие процессы можно достаточно точно считать адиабатическими.

Выведем уравнениеадиабатического процесса идеального газа. Для этого применим уравнение первого начала термодинамики для элементарного адиабатического процесса dA= − dU, котороепринимает вид РdV =−n С v dT . Добавим к этому дифференциальному уравнению еще одно, полученное дифференцированием уравнения Менделеева–Клапейрона (PV=νRT ): PdV +VdP =nR dT. Исключая в двух уравнениях один из параметров, например, температуру, получим соотношение для двух других параметров . Интегрируя и потенцируя, получим уравнение адиабаты через давление и объем:

P V g = const.

Аналогично:

T V g -1 = const, P g -1 T -- g = const . (2)

Здесь показатель адиабаты , равный отношению теплоемкостей газа при изобарическом и изохорическом нагревании.

Получим формулу для показателя адиабаты в молекулярно-кинетической теории. Молярная теплоемкость по определению это количество теплоты, необходимое для нагревания одного моля вещества на один Кельвин . При изохорическом нагревании теплота расходуется только на повышение внутренней энергии . Подставив теплоту, получим .

Приизобарическом нагревании газа в условиях постоянного давления дополнительно часть теплоты расходуется на работу изменения объема . Поэтому количество теплоты, (dQ = dU + dA ) полученное при изобарическом нагревании на один Кельвин будет равно . Подставив в формулу теплоемкости, получим .

Тогда показатель адиабаты может быть определен теоретически по формуле

Здесь i число степеней свободы молекул газа. Это число координат, достаточное для определения положения молекулы в пространстве или число составляющих компонентов энергии молекулы. Например, для одноатомной молекулы кинетическая энергия может быть представлена как сумма трех компонентов энергии, соответствующих движению вдоль трех осей координат, i = 3. Для жесткой двухатомной молекулы следует добавить еще два компонента энергии вращательного движения, так как энергия вращения относительно третьей оси, проходящей через атомы, отсутствует. Итак, для двухатомных молекул i = 5. Для воздуха как для двухатомного газа теоретическое значение показателя адиабаты будет равно g = 1,4.

Показатель адиабаты можно определить экспериментально методом Клемана – Дезорма. В баллон нагнетают воздух, сжимая до некоторого давления Р 1 , немного больше атмосферного. При сжатии воздух несколько нагревается. После установления теплового равновесия баллон на короткое время открывают. В этом процессе расширения 1–2 давление падает до атмосферного Р 2 =Р атм , а исследуемая масса газа, которая до этого занимала часть объема баллона V 1 , расширяется, занимая весь баллон V 2 (рис.1). Процесс расширения воздуха (1−2) происходит быстро, его можно считать адиабатическим, происходящим по уравнению (2)

. (4)

В адиабатическом процессе расширения воздух охлаждается. После закрытия клапана охлажденный воздух в баллоне через стенки баллона нагревается до температуры лаборатории Т 3 = Т 1 . Это изохорический процесс 2–3

. (5)

Решая совместно уравнения (4) и (5), исключая температуры, получим уравнение, , из которого следует определить показатель адиабаты γ . Датчик давления измеряет не абсолютное давление, которое записано в уравнениях процессов, а избыточное над атмосферным давлением. То есть Р 1 = ΔР 1 + Р 2 , и Р 3 =ΔР 3 +Р 2 . Переходя к избыточным давлениям, получим . Избыточные давления невелики по сравнению с атмосферным давлением Р 2 . Разложим члены уравнения в ряд по соотношению . После сокращения на Р 2 получим для показателя адиабаты расчетную формулу

. (6)

Лабораторнаяустановка (рис. 2) состоит из стеклянного баллона, который сообщается с атмосферой через клапан Атмосфера . Воздух накачивается в баллон компрессором при открытом кране К . После накачивания, во избежание утечки воздуха, кран закрывают.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Включить установку в сеть 220 В.

Открыть кран баллона. Включить компрессор, накачать воздух до избыточного давления в диапазоне 4 –11 кПа. Закрыть кран баллона. Выждать 1,5 –2 мин, записать величину давления ΔР 1 в таблицу.

2. Повернуть клапан Атмосфера до щелчка, клапан откроется и захлопнется. Произойдет адиабатический сброс воздуха с понижением температуры. Следить за повышением давления в баллоне по мере нагрева. Измерить наивысшее давление ΔР 3 после установления теплового равновесия. Результат записать в таблицу.

Повторить опыт не менее пяти раз, изменяя исходное давление в диапазоне 4–11 кПа.

ΔР 1 , кПа
ΔР 3 , кПа
γ

Выключить установку.

3. Произвести расчеты. Определить показатель адиабаты в каждом опыте по формуле (6). Записать в таблицу. Определить среднее значение показателя адиабаты <γ >

4. Оценить случайную погрешность измерения по формуле для прямых измерений

. (7)

5. Записать результат в виде g = <g > ± dg . Р = 0,9. Сравнить результат с теоретическим значением показателя адиабаты двухатомного газа g теор = 1,4.

Сделать выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение адиабатического процесса. Запишите первое начало термодинамики для адиабатического процесса. Объясните изменение температуры газа при адиабатических процессах сжатия и расширения.

2. Выведите уравнение адиабатического процесса для параметров давление – объем.

3. Выведите уравнение адиабатического процесса для параметров давление – температура.

4. Дайте определение числа степеней свободы молекул. Как зависит внутренняя энергия идеального газа от вида молекул?

5. Как осуществляются процессы с воздухом в цикле Клемана – Дезорма, как изменяются давления и температуры в процессах?

6. Выведите расчетную формулу для экспериментального определения показателя адиабаты.


Похожая информация.


Расчет давления во фронте воздушной ударной волны при разрушении емкости проводится по формулам (3.12), (3.45), в последней из которых величина aMQ v н заменяется на Е, значение коэффициента b 1 = 0,3.

Серьезную опасность представляет разлет осколков, образующихся при разрушении емкости. Движение осколка с известной начальной скоростью можно описать системой уравнений вида

\s\up15(x" = -\f((0C1S1 \b (x" -\f((0C2S2 \b (x"2 + y"2 (3.45)

где m - масса осколка, кг;C 1 ,C 2 - коэффициенты лобового сопротивления и подъемной силы осколка соответственно;S 1 ,S 2 - площадь лобовой и боковой поверхности осколка, м 2 ;r 0 - плотность воздуха, кг/м 3 ;a - угол вылета осколка;x, y - координатные оси.

Решение этой системы уравнений приведено на рис. 3.7.

В приближенных расчетах для оценки дальности разлета осколков допускается использовать соотношение

где L m - максимальная дальность разлета осколков, м;V 0 - начальная скорость полета осколков,м/с;g = 9,81 м/с 2 - ускорение свободного падения.

Соотношение (3.46) получено для случая полета осколков в безвоздушном пространстве. При больших величинах V 0 оно дает завышение значения L m . Дальность L m , определенную таким образом, следует ограничить сверху величиной L *

L m £ L * = 238 3.47,

где Е - энергия рассматриваемого взрыва, Дж;Q v тр - теплота взрыва тротила (табл.2), Дж/кг.Значения L * получены при взрывах тротиловых зарядов в металлической оболочке (бомб, снарядов).

При взрыве емкости со сжатым горючим газом энергия взрыва Е, Дж, находится по соотношению

E = + MQ v п 3.48,

где M = awM 0 - масса газа, участвующего во взрыве, кг;Q v п - теплота взрыва горючего газа, Дж/кг;a, w - коэффициенты, определяемые согласно (3.32), (3.45);

Масса газа в емкости до взрыва M 0 = Vr 0 , где величины P 0 , P г, V имеют то же значение, что и в формуле (3.46), а величина r 0 - плотность газа при атмосферном давлении.



Как отмечалось в разделе 3.4, показатель адиабаты продуктов взрыва ГВС g » 1,25. Более точные значения показателя адиабаты некоторых газов, используемые для расчета последствий взрыва, приведены в табл.3.8.

Таблица 3.8

В рассматриваемом случае также имеет место соотношение Е »E ув + Е оск + Е т, где Е - энергия взрыва, Е ув = b 1 Е - энергия, расходуемая на формирование воздушной ударной волны, Е оск = b 2 Е - кинетическая энергия осколков, Е т = b 0 Е - энергия, идущая на тепловое излучение. Согласно данным здесь коэффициенты b 1 = 0,2, b 2 = 0,5, b 3 = 0,3.

Расчет давления во фронте воздушной ударной волны и дальности разлета осколков при известных значениях энергии взрыва Е и коэффициентов b 1 , b 2 , b 3 приводится по аналогии с рассмотренным случаем взрыва емкости с инертным газом.

Необходимо отметить различие событий, происходящих при разгерметизации сосудов, содержащих газ под давлением, и сосудов, содержащих сжиженные газы. Если в первом случае основным поражающим фактором являются осколки оболочки, то во втором - осколки могут не образоваться, так как при нарушении герметичности баллонов с сжиженными газами их внутреннее давление практически одновременно с разгерметизацией становится равным внешнему и далее вступают в действие процессы истечения сжиженного газа из разрушенного баллона в окружающую среду и его испарения. При этом в случае взрыва основными поражающими факторами являются ударная волна и тепловое излучение.

Федеральное агентство по образованию

Саратовский государственный технический университет

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ

ДЛЯ ВОЗДУХА

Методические указания к выполнению лабораторной работы

по курсам «Теплотехника», « Техническая термодинамика

И теплотехникадля студентов

специальностей 280201

дневной и заочной форм обучения

Одобрено

редакционно-издательским советом

Саратовс кого государственного

технического университета

Саратов 2006

Цель работы : ознакомление с методикой и экспериментальное определение показателя адиабаты для воздуха, изучение основных закономерностей для адиабатного, изохорного и изотермического процессов изменения состояния рабочих тел.

ОСНОВНЫЕ ПОНЯТИЯ

Адиабатными называются процессы изменения состояния рабочего тела (газа или пара), происходящие без подвода и отвода теплоты от него.

Необходимым и достаточным условием адиабатного процесса является аналитическое выражение dq =0, означающее, что в процессе совершенно отсутствует теплообмен, т. е. q =0. При dq =0 для обратимых процессов Tds =0, т. е. ds =0; это значит, что для обратимых адиабатных процессов s = const . Иными словами, обратимый адиабатный процесс является в то же время и з о э н т р о п н ы м.

Уравнение, связывающее между собой изменение основных термодинамических параметров в адиабатном процессе, т. е. уравнение адиабаты имеет вид:

font-size:14.0pt">где k - показатель адиабаты (изоэнтропы):

Font-size:14.0pt">Уравнение адиабаты можно получить в другом виде, используя связь между основными термодинамическими параметрами:

font-size:14.0pt">Аналогично получается зависимость:

font-size:14.0pt">Работа в адиабатном процессе может быть определена из уравнения первого закона термодинамики:

font-size:14.0pt">При

font-size:14.0pt">или

font-size:14.0pt">Заменяя

font-size:14.0pt">получим:

font-size:14.0pt">Заменяя в этом уравнении на и на , получим, Дж/кг:

font-size:14.0pt">Используя связь между термодинамическими параметрами, можно получить другое выражение для работы адиабатного процесса. Вынося в уравнении (4) за скобки, будем иметь:

font-size:14.0pt">но

font-size:14.0pt">тогда

font-size:14.0pt">Графическое отображение адиабатного процесса в p - v - и T - s -координатах показано на рис.1.

В p - v - координатах кривая адиабаты представляет собой показательную функцию , откуда , где а – постоянная величина.

В p - v - координатах адиабата всегда идет круче изотермы, поскольку EN-US style="font-size:16.0pt"">cp > cv . Процесс 1-2 соответствует расширению, процесс 1-2 ¢ - сжатию. Площадь площадки под кривой адиабаты в p , v - координатах численно равна работе адиабатного процесса (« L » на рис.1).

В T - s -координатах кривая адиабаты представляет собой вертикальную линию с . Площадка под кривой процесса вырождена, что соответствует нулевой теплоте адиабатного процесса.


Рис.1. Адиабатный процесс изменения состояния газа

в p -v - и T -s - диаграммах

К адиабатному процессу близки реальные процессы, происходящие с рабочими телами в тепловых машинах. Например, расширение газов и паров в турбинах и цилиндрах тепловых двигателей, сжатие газов и паров в компрессорах тепловых двигателей и холодильных машин.

Приближенно величину k можно оценить по атомности газа (или основных газов в смеси), пренебрегая зависимостью от температуры:

для одноатомных газов: font-size:14.0pt">для двухатомных газов: font-size:14.0pt">для трех - и многоатомных газов: .

При известном составе газа показатель адиабаты может быть вычислен точно по табличным значениям теплоемкостей в зависимости от температуры.

Показатель адиабаты также может быть определен из дифференциальных соотношений термодинамики. В отличие от теории идеального газа дифференциальные уравнения термодинамики дают возможность получить общие закономерности изменения параметров для реальных газов. Дифференциальные уравнения термодинамики получают путем частного дифференцирования объединенного уравнения первого и второго законов термодинамики:

font-size:14.0pt">сразу по нескольким параметрам состояния.

Аппарат дифференциальных уравнений термодинамики позволяет, в частности, установить ряд важнейших соотношений для теплоемкостей реальных газов.

Одним из них является соотношение вида:

font-size:14.0pt">Соотношение (7) устанавливает связь между теплоемкостями cp , cv и элементарным изменением параметров p и v в адиабатном процессе font-size:14.0pt">и изотермическом процессе

.

Учитывая, что показатель адиабаты , уравнение (7) можно переписать в виде:

font-size:14.0pt">Последнее выражение можно использовать для экспериментального определения показателя адиабаты.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для определения истинного показателя адиабаты достаточно разреженных реальных газов с использованием уравнения (8) необходимы точные измерения термодинамических параметров р, v , T и их частных производных. Но если в уравнение (8) подставить малые конечные приращения, то при среднее значение показателя адиабаты будет равно:

https://pandia.ru/text/79/436/images/image034_1.gif" width="12" height="23 src=">font-size:14.0pt">При р2=рбар, то есть равном барометрическому давлению,

Font-size:14.0pt">где р u 1 , р u 3 – избыточное давление в состояниях 1, 3.

Очевидно, что с уменьшением избыточного давления р u 1 значение km будет приближаться к истинному для атмосферного воздуха.

Лабораторная установка (рис.2) имеет сосуд постоянного объема 1, краны 2, 3. Воздух нагнетается в сосуд компрессором 4. Давление воздуха в сосуде измеряется U -образным манометром 5. Сосуд не изотермический, поэтому воздух, который находится в нем, принимает равновесное температурное состояние с окружающей средой в результате теплообмена. Контроль температуры воздуха в сосуде осуществляется с помощью ртутного термометра 6 с ценой деления 0,01 ° С.

6

position:absolute;z-index: 3;left:0px;margin-left:179px;margin-top:126px;width:50px;height:50px">

Рис.2. Схема лабораторной установки для определения показателя

адиабаты воздуха: 1 – сосуд; 2, 3 – краны; 4 – компрессор;

5 - U -образный манометр; 6 – термометр

На рис.3 показаны термодинамические процессы, происходящие в воздухе при проведении эксперимента: процесс 1-2 – адиабатное расширение воздуха при частичном его выпуске из сосуда; 2-3 – изохорный нагрев воздуха до температуры окружающей среды; 1-3 - эффективный (результирующий) процесс изотермического расширения воздуха.

(D v)S

T=const

position:absolute;z-index: 20;left:0px;margin-left:70px;margin-top:173px;width:124px;height:10px">

(D v)T

position:absolute;z-index: 14;left:0px;margin-left:187px;margin-top:104px;width:10px;height:40px">

s=const

font-size:14.0pt">ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

При выполнении настоящей работы отсутствуют и не могут возникнуть опасные и вредные факторы. Однако подъем давления в сосуде компрессором с ручным приводом следует производить постепенно, вращая маховик компрессора. Это предотвратит возможность выбивания воды из манометра.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Ознакомиться со схемой установки и произвести ее осмотр для определения готовности ее к работе.

Определить по барометру и записать в протокол измерений атмосферное давление рбар, температуру t и относительную влажность воздуха в лаборатории. Открыть кран 2 (рис.2) и при закрытом кране 3, вращая маховик компрессора 4, накачать воздух в сосуд 1. Как отмечалось выше, р u 1 должно быть возможно меньше. Поэтому, создав небольшое избыточное давление в сосуде, прекратить подачу воздуха, закрыть кран 2.

Давление выдерживается в течение некоторого времени, необходимого для установления термического равновесия с окружающей средой, о чем должна свидетельствовать неизменность показаний манометра 5. Записать значение р u 1. Затем открыть и при достижении атмосферного давления немедленно закрыть кран 3. Воздух, оставшийся в сосуде в результате адиабатного расширения и охлаждения при истечении, начнет нагреваться за счет изохорного подвода теплоты из окружающей среды. Этот процесс наблюдается по заметному увеличению давления в сосуде до р u 3. Опыт повторить 5 раз.

Полученные результаты заносятся в протокол измерений по форме табл.1.

Таблица 1

t ,° С

рu 1, Па

рu 3, Па

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Задание :

1. Определить значения показателя адиабаты в каждом эксперименте по (8) и вероятное (среднее) значение показателя адиабаты воздуха:

font-size:14.0pt">где n – число экспериментов,

и сравнить полученное значение с табличным (табл.2):

Font-size:14.0pt">2. Выполнить исследование процессов адиабатного расширения, последующего изохорного нагрева воздуха и эффективного изотермического процесса, являющегося результатом первых двух реальных процессов.

Таблица 2

Физические свойства сухого воздуха при нормальных условиях

Температура t , ° C

теплоемкость, кДж/(кмоль× К)

Массовая

теплоемкость, кДж/(кг× К)

Объемная

теплоемкость, кДж/(м3× К)

Показатель адиабаты k

m с pm

m с vm

с pm

с vm

с ¢ pm

с ¢ vm

Для этого необходимо усреднить по числу экспериментов термодинамические параметры р, Т в характерных точках 1, 2, 3 (рис.3) и по ним вычислить калорические характеристики: теплоту, работу, изменение внутренней энергии, изменение энтальпии и энтропии в каждом из указанных термодинамических процессов. Сравнить калорические характеристики реального изотермического процесса (характеристики, вычисленные по расчетным соотношениям) и эффективного изотермического процесса (характеристики, являющиеся суммой соответствующих характеристик адиабатного и изохорного процессов).

Сделать выводы.

Указания :

Уравнение изохорного процесса имеет вид:

font-size:14.0pt">РАСЧЕТ ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ

ВЕЛИЧИНЫ ПОКАЗАТЕЛЯ АДИАБАТЫ

1. Абсолютная и относительная погрешности опытного определения показателя адиабаты k по (9), (10) и табличным данным определяются по формулам:

font-size:14.0pt">где k табл – табличное значение показателя адиабаты.

2. Абсолютная погрешность определения показателя адиабаты по результатам измерения избыточных давлений р u 1 и р u 3 (9) вычисляется по формуле:

font-size:14.0pt">где D р u = D р u 1 = D р u 3 - абсолютная погрешность измерений избыточного давления по U -образному манометру, которая может быть принята равной 1 мм вод. ст.

Относительная погрешность, %, определения показателя адиабаты по результатам измерений:

font-size:14.0pt">ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Укажите отличие в понятиях адиабатного и изоэнтропного процессов.

2. Какую термодинамическую величину называют показателем адиабаты? Объясните физический смысл показателя адиабаты.

3. Расскажите об устройстве экспериментальной установки и методике проведения эксперимента.

4. Почему на адиабатный процесс кроме условия q =0, накладывается дополнительное условие dq =0?

5. Напишите уравнения адиабаты.

6. Получите выражение для работы адиабатного процесса.

7. Напишите и поясните выражение для изменения внутренней энергии во всех термодинамических процессах.

8. Напишите и поясните выражение для изменения энтальпии в общем виде.

9. Напишите выражение для изменения энтропии в общем виде. Получите упрощенные выражения для частных термодинамических процессов.

10. Чем характеризуется изохорный процесс, и каковы его уравнение, работа, теплота?

11. Чем характеризуется изотермический процесс, и каковы его уравнение, работа, теплота?

12. Что называется частным термодинамическим процессом изменения состояния газа? Перечислите их.

13. В чем заключается сущность теории дифференциальных уравнений термодинамики? Напишите объединенное уравнение первого и второго законов термодинамики.

14. Изобразите кривую адиабаты в p - v - и T - s -координатах. Почему в p - v - координатах адиабата всегда идет круче изотермы?

15. Что показывают площадки под кривыми термодинамических процессов в p - v - и T - s -координатах?

16. Изобразите кривую изохоры в

17. Изобразите кривую изотермы в p - v - и T - s -координатах.

ЛИТЕРАТУРА

1. Кириллин термодинамика. , . 3-е изд., перераб. и доп. М. Наука, 19с.

2. Нащокин термодинамика и теплопередача: учебное пособие для вузов. . 3-е изд., исправл. и доп. М. Высшая школа, 19с.

3. Гортышов и техника теплофизического эксперимента. , ; под ред. . М: Энергоатомиздат, 1985. С.35-51.

4. Теплотехника: учебник для вузов. под ред. . 2-е изд., перераб. М. Энергоатомиздат, 19с.

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ДЛЯ ВОЗДУХА

Методические указания к выполнению лабораторной работы

по курсам «Теплотехника», « Техническая термодинамика

И теплотехника», «Гидравлика и теплотехника»

Составили: СЕДЕЛКИН Валентин Михайлович

КУЛЕШОВ Олег Юрьевич

КАЗАНЦЕВА Ирина Леонидовна

Рецензент

Лицензия ИД № 000 от 14.11.01

Подписано в печать Формат 60´ 84 1/16

Бум. тип. Усл. печ. л. Уч.-изд. л.

Тираж экз. Заказ Бесплатно

Саратовский государственный технический университет

Саратов, Политехническая ул., 77

Отпечатано в РИЦ СГТУ. Саратов, Политехническая ул., 77

См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) - отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква .

Уравнение:

, - теплоёмкость газа, - удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы и обозначают условие постоянства давления или постоянства объёма, соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. Пока поршень не может двигаться, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает двигаться наружу без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа - воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру с закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1.4.

Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если - а это выражение обозначает совершённую газом работу - равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

Показатели адиабаты для различных газов
Темп. Газ γ Темп. Газ γ Темп. Газ γ
−181 °C H 2 1.597 200 °C Сухой воздух 1.398 20 °C NO 1.400
−76 °C 1.453 400 °C 1.393 20 °C N 2 O 1.310
20 °C 1.410 1000 °C 1.365 −181 °C N 2 1.470
100 °C 1.404 2000 °C 1.088 15 °C 1.404
400 °C 1.387 0°C CO 2 1.310 20 °C Cl 2 1.340
1000 °C 1.358 20 °C 1.300 −115 °C CH 4 1.410
2000 °C 1.318 100 °C 1.281 −74 °C 1.350
20 °C He 1.660 400 °C 1.235 20 °C 1.320
20 °C H 2 O 1.330 1000 °C 1.195 15 °C NH 3 1.310
100 °C 1.324 20 °C CO 1.400 19 °C Ne 1.640
200 °C 1.310 −181 °C O 2 1.450 19 °C Xe 1.660
−180 °C Ar 1.760 −76 °C 1.415 19 °C Kr 1.680
20 °C 1.670 20 °C 1.400 15 °C SO 2 1.290
0°C Сухой воздух 1.403 100 °C 1.399 360 °C Hg 1.670
20 °C 1.400 200 °C 1.397 15 °C C 2 H 6 1.220
100 °C 1.401 400 °C 1.394 16 °C C 3 H 8 1.130

Соотношения для идеального газа

Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты - это отношение энтальпии к внутренней энергии:

С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты () и универсальную газовую постоянную ():

Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :

где - количество вещества в молях.

Соотношения с использованием количества степеней свободы

Показатель адиабаты () для идеального газа может быть выражен через количество степеней свободы () молекул газа:

или

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:

Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. См. здесь (англ. ) для получения более подробной информации о соотношениях между теплоёмкостями.

Адиабатический процесс

где - это давление и - объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

где - показатель адиабаты; - постоянная Больцмана ; - универсальная газовая постоянная ; - абсолютная температура в кельвинах ; - молекулярная масса ; - молярная масса .

Другим способом экспериментального определения величины показателя адиабаты является метод Клемана - Дезорма, который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.

Лабораторная установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатный процесс. Со временем давление в баллоне начнет уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счет теплообмена через стенки баллона. При этом давление будет уменьшаться при построянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра .

2-ой этап:
Теперь откроем кран 3 на 1-2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнет увеличиваться вследствие того, что газ в баллоне начнет нагреваться за счет теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра . Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчетной формуле для искомой величины.



Понравилась статья? Поделитесь с друзьями!