Что такое нечеткое множество. Основные понятия теории нечетких множеств

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:
, гдеявляется элементом некоторого универсального множества, или универсума
, а
– функция принадлежности, которая ставит в соответствие каждому из элементов
некоторое действительное число из интервала
, т.е. данная функция определяется в форме отображения:

При этом значение
для некоторого
означает, что элементопределенно принадлежит нечеткому множеству, а значение
означает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум
- это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:
.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервала
Задать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала
При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент
обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элемент
обладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элемент
определенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элемент
определенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах)
, называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где
- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Через
обозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличные
значения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений
, что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервала
позволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала
, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве
, равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве
через функцию принадлежности
(то же обозначение, что и для характеристической функции) определяется следующим образом

(3.1)

Функция принадлежности чаще всего интерпретируется следующим образом: величина
означает субъективную оценку степени принадлежности элемента нечеткому множеству , например,
означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество
состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает
. Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества
со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества
определяется как множество упорядоченных пар

. (3.2)

Лекция 4. Моделирование и принятие решений в ГИС.

1. Нечеткие множества

2. Методы оптимизации

Нечеткие множества

Наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах представляет сегодня одну из важных задач развития ГИС, особенно по применению их в различных сферах управления.

Значительное продвижение в этом направлении сделано 30 лет тому назад про- ром Калифорнийского университета (Беркли) Лотфи А. Заде. Его работа «Fuzzy Sets», появившаяся в 1965 г. в журнале Information and Control, №8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятиемножества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0,1)), а не как в классической теории только значения 0 либо 1. Такие множества были названынечеткими(fuzzy).

Им были также определены операции над нечеткими множествами и предложены обобщения известных методов логического вывода.

Рассмотрим некоторые основные положения теории нечетких множеств.

Пусть Е - универсальное множество, х - элементЕ, аК - некоторое свойство. Обычное (четкое) подмножествоА универсального множестваЕ, элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар , где - характеристическая функция , принимающая значение 1 , если х удов­летворяет свойству R , и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да - нет» относительно свойства R . В связи с этим не­четкое подмножество А универсального множестваЕ определяется как множество упорядоченных пар , где - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве М (например, М = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А . Множество М назы­вают множеством принадлежностей . Если М = {0,1} , то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Пусть М = и А - нечеткое множество с элементами из универсального множества Е и множеством принадлежностей М .

Величина называется высотой нечеткого множества А . Нечеткое множество А нормально , если его высота равна 1 , т. е. верхняя граница его функ­ции принадлежности равна 1 ( =1 ). При < 1 нечеткое множест­во называется субнормальным.


Нечеткое множество пусто , если Непустое субнормальное множество можно нормализовать по формуле

В приведенных выше примерах использованы прямые методы, когда эксперт либо просто задает для каждого значение , либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, дав­ление, температура и т. д., или когда выделяются полярные значения.

Косвенные методы определения значений функции принадлежности использу­ются в случаях, когда нет элементарных измеримых свойств, через которые опре­деляется интересующее нас нечеткое множество. Как правило, это методы попар­ных сравнений. Если бы значения функций принадлежности были нам известны, например то попарные сравнения можно представить мат­рицей отношений , где (операция деления).

На практике эксперт сам формирует матрицу А , при этом предполагается, что диагональные элементы равны 1, а для элементов, симметричных относительно диагонали, =1/ , т. е. если один элемент оценивается в а раз выше чем другой, то этот последний должен быть в 1/ раз сильнее. В общем случае задача сводится к поиску вектора , удовлетворяющего уравнению вида , где - наибольшее собственное значение матрицы А .

Введение понятия лингвистической переменной, и допущение, что в качестве ее значений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Поскольку матрица А положительно-определенная по построению, решение данной задачи существует при принятом значении () и является положительным. С(Т), где С(Т) - множество сгенерированных термов, называется расширен­ным терм-множеством лингвистической переменной;

М - семантическая процедура, позволяющая превратить каждое новое значе­ние лингвистической переменной, образуемое процедурой С, в нечеткую перемен­ную, т. е. сформировать соответствующее нечеткое множество.

Введя понятие лингвистической переменной и допуская, что в качестве ее зна­чений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Нечеткое множество - это множество пар , где x принимает некоторое информативное значение, а m(x) отображает x в единичный отрезок, принимая значения от 0 до 1. При этом m(x) представляет собой степень принадлежности x к чему-либо (0 - не принадлежит, 1 - принадлежит на все 100%).

Так, на пример, можно задать для числа 7 множество:

<0/1>,<0.4/3>,<1/7> Это множество говорит о том, что 7 - это на 0% единица, на 40% тройка и на 100% семерка.

Нечеткая переменная определяется как .

A - наименование переменной,

X={x} - область определения переменной, набор возможных значений x,

Ca={} - нечеткое множество, описывающее ограничения на возможные значения переменной A (семантику).

Пример: <"Семь",{1,3,7},{<0/1>,<0.4/3>,<1/7>}>. Этой записью мы определили соответствия между словом и некоторыми цифрами. Причем, как в названии переменной, так и в значениях x можно было использовать любые записи, несущие какую-либо информацию.

Лингвистическая переменная определяется как .

B - наименование переменной.

T - множество её значений (базовое терм-множество), состоит из наименований нечетких переменных, областью определения каждой из которых является множество X.

G - синтаксическая процедура (грамматика), позволяющая оперировать элементами терм-множества T, в частности - генерировать новые осмысленные термы. T`=T U G(T) задает расширенное терм-множество (U - знак объединения).

M - семантическая процедура, позволяющая приписать каждому новому значению лингвистической переменной нечеткую семантику, путем формирования нового нечеткого множества.

Нечеткое множество (или нечеткое число), описывает некотоpые понятия в фyнкциональном виде, т. е. такие понятия как "пpимеpно pавно 5", "скоpость чyть больше 300 км/ч" и т. д., как видно эти понятия невозможно пpедставить одним числом, хотя в pеальности люди очень часто пользyются ими.

Hечеткая пеpеменная это тоже самое, что и нечеткое число, только с добавлением имени, котоpым фоpмализyется понятие описуемое этим числом.

Лингвистическая пеpеменная это множество нечетких пеpеменных, она использyется для того чтобы дать словесное описание некотоpомy нечеткомy числy, полyченномy в pезyльтате некотоpых опеpаций. Т. е. пyтем некотоpых опеpаций подбиpается ближайшее по значению из лингвистической пеpеменной.

Хочy дать несколько советов для твоей пpоги. Hечеткие числа лyчше хpанить как отсоpтиpованное множество паp (соpтиpyется по носителям), за счет этого можно yскоpить выполнения всех логических и математических опеpаций. Когда pеализyешь аpифметические опеpации, то нyжно yчитывать погpешность вычислений, т. е. 2/4 <> 1/2 для компьютеpа, когда я с этим столкнyлся, мне пpишлось несколько yсложнить сpавнение паp, а сpавнений пpиходится делать много. Hосители в нечетких числах должны быть кpатными какому-нибуть числy, иначе pезyльтаты аpиф. опеpаций бyдyт "некpасивыми", т. е. pезyльтат бyдет неточным, особенно это видно пpи yмножении.

За счет хpанения нечетких чисел в отсоpтиpованном виде, я добился того что аpифметические опеpации y меня выполняются по почти линейной зависимости (во вpемени), т. е. пpи yвеличении количества паpа, скоpость вычислений падала линейно. Я пpидyмал и pеализовал точные аpиф. опеpации пpи котоpых не имеет значение кол-во и кpатность носителей, pезyльтат всегда бyдет точным и "кpасивым", т. е. если пеpвоначальные числа были похожи на пеpевеpнyтyю параболу, то и pезyльтат бyдет похожим, а пpи обычных опеpациях он полyчается стyпенчатым. Я так же ввел понятие "обpатные нечеткие числа" (хотя не до конца pеализовал), для чего они нyжны? Как ты знаешь пpи вычитании или делении число из котоpого вычитается дpyгое должно быть шиpе, а это большая пpоблема пpи pешении сложных ypавнений, вот "обpатные нечеткие числа" позволяют это делать.

Базовые операции над нечеткими множествами.

ОБЪЕДИНЕНИЕ: создается новое множество из элементов исходных множеств, причем для одинаковых элементов принадлежность берется максимальной.

A U B = {} Maub(x) = max {Ma(x), Mb(x)} ПЕРЕСЕЧЕНИЕ: создается новое множество из одинаковых элементов исходных множеств, принадлежность которых берется минимальной. A П B = {} Maпb(x) = min {Ma(x), Mb(x)} ДОПОЛНЕНИЕ: инвертируется принадлежность каждого элемента. C = ~A = {} Mc(x) = 1-Ma(x) СТЕПЕНЬ: принадлежность каждого элемента возводится в степень. CON - концентрация, степень=2 (уменьшает степень нечеткости) DIN - растяжение, степень=1/2 (увеличивает степень нечеткости) РАЗНОСТЬ: новое множество состоит из одинаковых элементов исходных множеств. A - B = {} Ma-b(x) = Ma(x)-Mb(a), если Ma(x)>Mb(x) иначе 0 НОСИТЕЛЬ: состоит из элементов исходного множества, принадлежности которых больше нуля. Supp(A) = {x|x?X /\ Ma(x)>0} УМНОЖЕНИЕ НА ЧИСЛО: принадлежности элементов домножаются на число. q*A = {} СУПРЕМУМ: Sup - точная верхняя грань (максимальное значение принадлежности, присутствующее в множестве).

НОРМАЛИЗАЦИЯ: нечеткое множество нормально если супремум множества равен единице. Для нормализации перечитывают принадлежности элементов:

M"a(x) = Ma(x)/(Sup Ma(x)) АЛЬФА-СРЕЗ: множество альфа уровня - те элементы исходного множества, принадлежность которых выше или равна заданного порога. Порог, равный 1/2, называют точкой перехода. Aq = {x|x?X /\ Ma(x)>q} НЕЧЕТКОЕ ВКЛЮЧЕНИЕ: степень включения нечеткого множества V(A1,A2) = (Ma1(x0)->Ma2(x0))&(Ma1(x1)->Ma2(x1))&.. По Лукасевичу: Ma1(x)->Ma2(x) = 1&(1-Ma1(x)+Ma2(x)) По Заде: Ma1(x)->Ma2(x) = (1-Ma1(x)) \/ Ma2(x) НЕЧЕТКОЕ РАВЕНСТВО: степень нечеткого равенства R(A1,A2) = V(A1,A2) & V(A2,A1)

Словарь

АДАПТАЦИЯ - Любое изменение в структуре или функции организма, которое позволяет ему выживать во внешней среде.

АЛЛЕЛИ - Возможные значения генов.

ГА - Генетический алгоритм. Интеллектуальное исследование произвольного поиска. . Представлен Holland 1975.

ГА МОДЕЛЬ ОСТРОВА (IMGA) - Популяция ГА разделена в несколько подсовокупностей, каждая из которых беспорядочно инициализирована и выполняет независимый последовательный ГА на собственной подпопуляции. Иногда, пригодные ветви решений мигрируют между подсовокупностями. [Например. Levine 1994].

ГЕНЫ - Переменные в хромосоме.

ГЕНЕТИЧЕСКИЙ ДРЕЙФ - Члены популяции сходятся к некоторой отметке пространства решения вне оптимума из-за накопления стохастических ошибок.

ГЕНОТИП - Фактическая структура. Кодированная хромосома.

ГП - Генетическое программирование. Прикладные программы использующие принципы эволюционной адаптации к конструкции процедурного кода.

ДИПЛОИД - В каждом участке хромосомы имеется пара генов. Это позволяет сохраняться долгосрочной памяти.

КГА - Компактный ГА (CGA). В CGA, две или больше совокупности ген постоянно взаимодействуют и взаимно развиваются.

КРОССИНГОВЕР - Обмен отрезками хромосом родителей. В диапазоне от 75 до 95% появляются самые лучшие особи.

ЛОКУС - Позиция гена в хромосоме.

МУТАЦИЯ - Произвольная модификация хромосомы.

СИНАПС - Вход нейрона.

СХЕМА (шемма) - Подмножество подобных хромосом, содержащих модель значений гена.

СХОДИМОСТЬ - Прогрессия к увеличивающейся однородности. Ген, как считают, сходится когда 95% популяции имеет то же самое значение .

УНС - Унифицированная нейронная сеть.

ФИТНЕС-ФУНКЦИЯ - Значение являющееся целевым функциональным значением решения. Оно также называется функцией оценки или функцией цели в проблемах оптимизации.

ФЕНОТИП - Физическое выражение структуры. Декодированный набор ген.

ХРОМОСОМА - Составляющий вектор, строка, или решение.

  • Д. -Э. Бэстенс, В. .М. Ван Ден Берг, Д. Вуд. .Hейронные сети и финансовые рынки.., Москва, научное издательство.ТВП., 1997.
  • Галушкин А. И. .Hейрокомпьютеры и их применение. Книга 1. Теория нейронных сетей.. Москва, Издательское предприятие редакции журнала.Радиотехника.,2000.
  • Тейво Кохонен, Гвидо Дебок.Анализ финансовых данных с помощью самоорганизующихся карт., Москва, издательский дом.Альпина., 2001.
  • Ф. Уоссерман. .Hейрокомпьютерная техника., Москва, издательство.Мир., 1992.
  • Шумский C. A. .Hейрокомпьютинг и его применение в экономике и бизнесе., Москва, издательство МИФИ, 1998.
  • А. И. Змитрович Интеллектуальные информационные системы. - Минск.: HТООО "Тетра Системс", 1997. - 368с.
  • В. В. Корнеев, А. Ф. Гарев, С. В. Васютин, В. В. Райх Базы данных. Интеллектуальная обработка информации. - М.: "Hолидж", 2000. - 352с.


Понравилась статья? Поделитесь с друзьями!