Išspręskite tiesioginių lygčių internetinį skaičiuotuvą su sprendimu. Bendroji tiesės plokštumoje lygtis

Tiesės lygtis plokštumoje.

Kaip žinoma, bet kurį plokštumos tašką tam tikroje koordinačių sistemoje nustato dvi koordinatės. Koordinačių sistemos gali skirtis priklausomai nuo pasirinkto pagrindo ir kilmės.

Apibrėžimas. Linijos lygtis vadinamas ryšį y = f(x) tarp taškų, sudarančių šią tiesę, koordinačių.

Atkreipkite dėmesį, kad linijos lygtis gali būti išreikšta parametriškai, tai yra, kiekviena kiekvieno taško koordinatė išreiškiama per tam tikrą nepriklausomą parametrą t.

Tipiškas pavyzdys yra judančio taško trajektorija. Šiuo atveju parametro vaidmenį atlieka laikas.

Tiesės lygtis plokštumoje.

Apibrėžimas. Bet kuri tiesi linija plokštumoje gali būti nurodyta pirmosios eilės lygtimi

Ax + Wu + C = 0,

Be to, konstantos A ir B vienu metu nėra lygios nuliui, t.y. A 2 + B 2  0. Ši pirmosios eilės lygtis vadinama bendroji tiesės lygtis.

Atsižvelgiant į konstantų A, B ir C vertes, galimi šie specialūs atvejai:

    C = 0, A  0, B  0 – tiesė eina per pradžios tašką

    A = 0, B  0, C  0 (by + C = 0) – tiesi linija, lygiagreti Ox ašiai

    B = 0, A  0, C  0 (Ax + C = 0) – tiesi linija, lygiagreti Oy ašiai

    B = C = 0, A  0 – tiesė sutampa su Oy ašimi

    A = C = 0, B  0 – tiesė sutampa su Ox ašimi

Tiesios linijos lygtis gali būti pateikta įvairiomis formomis, priklausomai nuo bet kokių pradinių sąlygų.

Tiesės iš taško ir normalaus vektoriaus lygtis.

Apibrėžimas. Dekarto stačiakampėje koordinačių sistemoje vektorius su komponentais (A, B) yra statmenas tiesei, kurią suteikia lygtis Ax + By + C = 0.

Pavyzdys. Raskite tiesės, einančios per tašką A(1, 2), statmeną vektoriui, lygtį (3, -1).

Kai A = 3 ir B = -1, sudarykime tiesės lygtį: 3x – y + C = 0. Norėdami rasti koeficientą C, gautoje išraiškoje pakeičiame duoto taško A koordinates.

Gauname: 3 – 2 + C = 0, todėl C = -1.

Iš viso: reikalinga lygtis: 3x – y – 1 = 0.

Tiesės, einančios per du taškus, lygtis.

Tegu erdvėje pateikti du taškai M 1 (x 1, y 1, z 1) ir M 2 (x 2, y 2, z 2), tada tiesės, einančios per šiuos taškus, lygtis:

Jei kuris nors iš vardiklių yra lygus nuliui, atitinkamas skaitiklis turi būti lygus nuliui.

Plokštumoje aukščiau parašyta tiesės lygtis yra supaprastinta:

jei x 1  x 2 ir x = x 1, jei x 1 = x 2.

Frakcija
=k vadinamas nuolydis tiesioginis.

Pavyzdys. Raskite tiesės, einančios per taškus A(1, 2) ir B(3, 4), lygtį.

Taikydami aukščiau parašytą formulę, gauname:

Tiesios linijos lygtis naudojant tašką ir nuolydį.

Jei bendroji tiesės Ax + By + C = 0 lygtis sumažinama į formą:

ir paskirti
, tada gauta lygtis vadinama tiesės su nuolydžiu lygtisk.

Tiesės iš taško ir krypties vektoriaus lygtis.

Analogiškai su tašku, kuriame atsižvelgiama į tiesės per normalųjį vektorių lygtį, galite įvesti tiesės apibrėžimą per tašką ir tiesės nukreipimo vektorių.

Apibrėžimas. Kiekvienas nulinis vektorius ( 1,  2), kurio komponentai tenkina sąlygą A 1 + B 2 = 0, vadinamas tiesės nukreipiamuoju vektoriumi.

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės su krypties vektoriumi lygtį (1, -1) ir einantis per tašką A(1, 2).

Ieškosime norimos tiesės lygties formoje: Ax + By + C = 0. Pagal apibrėžimą koeficientai turi atitikti sąlygas:

1A + (-1)B = 0, t.y. A = B.

Tada tiesės lygtis yra tokia: Ax + Ay + C = 0 arba x + y + C/A = 0.

esant x = 1, y = 2 gauname C/A = -3, t.y. reikalinga lygtis:

Tiesios linijos atkarpose lygtis.

Jei bendrojoje tiesės lygtyje Ах + Ву + С = 0 С 0, tai dalijant iš –С gauname:
arba

, Kur

Koeficientų geometrinė reikšmė yra ta, kad koeficientas A yra tiesės susikirtimo su Ox ašimi taško koordinatė ir b– tiesės susikirtimo su Oy ašimi taško koordinatė.

Pavyzdys. Pateikta bendroji tiesės x – y + 1 = 0 lygtis. Raskite šios tiesės lygtį atkarpomis.

C = 1,
, a = -1, b = 1.

Normalioji tiesės lygtis.

Jei abi lygties pusės Ax + By + C = 0 dalijamos iš skaičiaus
kuris vadinamas normalizuojantis veiksnys, tada gauname

xcos + ysin - p = 0 -

normalioji tiesės lygtis.

Normalizuojančio koeficiento ženklas  turi būti parinktas taip, kad С< 0.

p yra statmens, nuleistos nuo pradžios iki tiesės, ilgis, o  yra šio statmens suformuotas kampas su teigiama Ox ašies kryptimi.

Pavyzdys. Pateikiama bendroji eilutės 12x – 5y – 65 = 0 lygtis. Šiai eilutei reikia parašyti įvairių tipų lygtis.

šios linijos lygtis segmentais:

šios tiesės ir nuolydžio lygtis: (padalinkite iš 5)

normalioji linijos lygtis:

;

cos = 12/13; sin = -5/13; p = 5.

Pavyzdys. Tiesi linija nupjauna lygias teigiamas atkarpas koordinačių ašyse. Parašykite tiesės lygtį, jei iš šių atkarpų sudaryto trikampio plotas yra 8 cm 2.

Tiesios linijos lygtis yra tokia:
, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 netinka pagal uždavinio sąlygas.

Iš viso:
arba x + y – 4 = 0.

Pavyzdys. Parašykite tiesės, einančios per tašką A(-2, -3), ir pradžios lygtį.

Tiesios linijos lygtis yra tokia:
, kur x 1 = y 1 = 0; x 2 = -2; y 2 = -3.

Kampas tarp tiesių plokštumoje.

Apibrėžimas. Jei dvi tiesės pateiktos y = k 1 x + b 1, y = k 2 x + b 2, tada smailusis kampas tarp šių linijų bus apibrėžtas kaip

.

Dvi tiesės yra lygiagrečios, jei k 1 = k 2.

Dvi tiesės yra statmenos, jei k 1 = -1/k 2 .

Teorema. Tiesioginės linijos Ax + Wu + C = 0 ir A 1 x + B 1 y + C 1 = 0 yra lygiagrečios, kai koeficientai A yra proporcingi 1 = A, B 1 = B. Jei taip pat C 1 = C, tada linijos sutampa.

Dviejų tiesių susikirtimo taško koordinatės randamos kaip šių tiesių lygčių sistemos sprendimas.

Tiesės, einančios per nurodytą tašką, lygtis

statmenai šiai linijai.

Apibrėžimas. Tiesi linija, einanti per tašką M 1 (x 1, y 1) ir statmena tiesei y = kx + b, pavaizduota lygtimi:

Atstumas nuo taško iki linijos.

Teorema. Jeigu duotas taškas M(x). 0 , y 0 ), tada atstumas iki tiesės Ах + Ву + С =0 apibrėžiamas kaip

.

Įrodymas. Tegul taškas M 1 (x 1, y 1) yra statmeno, nuleisto iš taško M į nurodytą tiesę, pagrindas. Tada atstumas tarp taškų M ir M 1:

Koordinates x 1 ir y 1 galima rasti išsprendus lygčių sistemą:

Antroji sistemos lygtis yra tiesės, einančios per tam tikrą tašką M 0, statmeną duotai tiesei, lygtis.

Jei paversime pirmąją sistemos lygtį į formą:

A(x – x 0) + B(y – y 0) + Ax 0 + Iš 0 + C = 0,

tada išspręsdami gauname:

Pakeitę šias išraiškas į (1) lygtį, randame:

.

Teorema įrodyta.

Pavyzdys. Nustatykite kampą tarp tiesių: y = -3x + 7; y = 2x + 1.

k1 = -3; k 2 = 2 tg =
;

Pavyzdys. = /4.

Parodykite, kad tiesės 3x – 5y + 7 = 0 ir 10x + 6y – 3 = 0 yra statmenos.

Pavyzdys. Randame: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, todėl tiesės yra statmenos.

Duotos trikampio A(0; 1), B(6; 5), C(12; -1) viršūnės. Raskite aukščio lygtį, nubrėžtą iš viršūnės C.
Randame kraštinės AB lygtį:

;

4x = 6y – 6;

2x – 3m + 3 = 0; Reikalinga aukščio lygtis yra tokia: Ax + By + C = 0 arba y = kx + b.
k =
. Tada y =
.

. Nes aukštis eina per tašką C, tada jo koordinatės tenkina šią lygtį:

iš kur b = 17. Iš viso:

Atsakymas: 3x + 2m – 34 = 0.

Analitinė geometrija erdvėje.

krypties vektorius.

Paimkime savavališką liniją ir vektorių (m, n, p), lygiagreti duotai tiesei. Vektorius paskambino kreipiamasis vektorius tiesioginis.

Tiesioje linijoje paimame du savavališkus taškus M 0 (x 0, y 0, z 0) ir M (x, y, z).

z

M 1

Šių taškų spindulio vektorius pažymėkime kaip Ir , akivaizdu, kad - =
.

Nes vektoriai
Ir yra kolinearūs, tada ryšys yra teisingas
= t, kur t yra koks nors parametras.

Iš viso galime parašyti: = + t.

Nes šią lygtį tenkina bet kurio tiesės taško koordinatės, tada gauta lygtis yra linijos parametrinė lygtis.

Ši vektorinė lygtis gali būti pavaizduota koordinačių forma:

Transformavus šią sistemą ir sulyginus parametro t reikšmes, gauname kanonines tiesės erdvėje lygtis:

.

Apibrėžimas. Krypties kosinusai tiesioginiai yra vektoriaus krypties kosinusai , kurį galima apskaičiuoti naudojant formules:

;

.

Iš čia gauname: m: n: p = cos : cos : cos.

Vadinami skaičiai m, n, p kampo koeficientai tiesioginis. Nes yra nulinis vektorius, tada m, n ir p vienu metu negali būti lygūs nuliui, bet vienas ar du iš šių skaičių gali būti lygūs nuliui. Šiuo atveju eilutės lygtyje atitinkami skaitikliai turi būti lygūs nuliui.

Praeinančios erdvės linijos lygtis

per du taškus.

Jei tiesėje erdvėje pažymime du savavališkus taškus M 1 (x 1, y 1, z 1) ir M 2 (x 2, y 2, z 2), tai šių taškų koordinatės turi tenkinti tiesės lygtį. gautas aukščiau:

.

Be to, taške M 1 galime parašyti:

.

Išsprendę šias lygtis kartu, gauname:

.

Tai tiesės, einančios per du erdvės taškus, lygtis.

Bendrosios tiesės erdvėje lygtys.

Tiesės lygtis gali būti laikoma dviejų plokštumų susikirtimo linijos lygtimi.

Kaip aptarta aukščiau, vektorinės formos plokštumą galima nurodyti pagal lygtį:

+ D = 0, kur

- lėktuvas normalus; - spindulys yra savavališko plokštumos taško vektorius.

Pamoka iš serijos „Geometriniai algoritmai“

Sveiki, mielas skaitytojau!

Šiandien pradėsime mokytis su geometrija susijusių algoritmų. Faktas yra tas, kad kompiuterių moksle yra gana daug olimpiadų uždavinių, susijusių su skaičiavimo geometrija, ir tokių problemų sprendimas dažnai sukelia sunkumų.

Per kelias pamokas apsvarstysime keletą elementarių antrinių užduočių, kuriomis grindžiamas daugumos skaičiavimo geometrijos uždavinių sprendimas.

Šioje pamokoje mes sukursime programą, skirtą tiesės lygties radimas, einantis per duotą du taškai. Norint išspręsti geometrines problemas, mums reikia tam tikrų skaičiavimo geometrijos žinių. Dalį pamokos skirsime jų pažinimui.

Įžvalgos iš skaičiavimo geometrijos

Skaičiavimo geometrija – kompiuterių mokslo šaka, tirianti geometrinių uždavinių sprendimo algoritmus.

Pradiniai tokių problemų duomenys gali būti taškų rinkinys plokštumoje, atkarpų rinkinys, daugiakampis (nurodytas, pavyzdžiui, jo viršūnių sąrašu pagal laikrodžio rodyklę) ir kt.

Rezultatas gali būti atsakymas į kokį nors klausimą (pvz., ar taškas priklauso atkarpai, ar du atkarpos susikerta, ...), arba koks nors geometrinis objektas (pavyzdžiui, mažiausias išgaubtas daugiakampis, jungiantis duotus taškus, plotas daugiakampis ir pan.).

Skaičiavimo geometrijos uždavinius nagrinėsime tik plokštumoje ir tik Dekarto koordinačių sistemoje.

Vektoriai ir koordinatės

Norint taikyti skaičiavimo geometrijos metodus, reikia geometrinius vaizdus išversti į skaičių kalbą. Darysime prielaidą, kad plokštumai duota Dekarto koordinačių sistema, kurioje sukimosi kryptis prieš laikrodžio rodyklę vadinama teigiama.

Dabar geometriniai objektai gauna analitinę išraišką. Taigi, norint nurodyti tašką, pakanka nurodyti jo koordinates: skaičių porą (x; y). Atkarpą galima nurodyti nurodant jo galų koordinates. Tiesė gali būti nurodyta nurodant jos taškų poros koordinates.

Tačiau pagrindinis mūsų įrankis problemoms spręsti bus vektoriai. Todėl leiskite man priminti šiek tiek informacijos apie juos.

Segmentas AB, kuris turi prasmę A yra laikoma pradžia (taikymo tašku) ir tašku IN– galas, vadinamas vektoriumi AB ir žymimas, pavyzdžiui, arba paryškinta mažąja raide A .

Norėdami pažymėti vektoriaus ilgį (tai yra atitinkamo segmento ilgį), naudosime modulio simbolį (pavyzdžiui, ).

Savavališkas vektorius turės koordinates, lygias skirtumui tarp atitinkamų jo pabaigos ir pradžios koordinačių:

,

štai taškai A Ir B turėti koordinates atitinkamai.

Skaičiavimams naudosime sąvoką orientuotas kampas, tai yra kampas, kuriame atsižvelgiama į santykinę vektorių padėtį.

Orientuotas kampas tarp vektorių a Ir b teigiamas, jei sukimas vyksta iš vektoriaus a į vektorių b atliekama teigiama kryptimi (prieš laikrodžio rodyklę), o kitu atveju – neigiama. Žr. 1a pav., 1b pav. Taip pat sakoma, kad vektorių pora a Ir b teigiamai (neigiamai) orientuotas.

Taigi, orientuoto kampo reikšmė priklauso nuo vektorių sąrašo eilės ir gali įgauti vertes intervale .

Daugelis skaičiavimo geometrijos problemų naudoja vektorinių (kreipinių arba pseudoskaliarinių) vektorių sandaugų sąvoką.

Vektorių a ir b vektorinė sandauga yra šių vektorių ilgių ir kampo tarp jų sinuso sandauga:

.

Kryžminė vektorių sandauga koordinatėse:

Dešinėje esanti išraiška yra antros eilės determinantas:

Skirtingai nuo apibrėžimo, pateikto analitinėje geometrijoje, tai yra skaliarinis.

Vektoriaus sandaugos ženklas nustato vektorių padėtį vienas kito atžvilgiu:

a Ir b pozityviai orientuotas.

Jei reikšmė yra , tada vektorių pora a Ir b neigiamai orientuotas.

Nulinių vektorių kryžminė sandauga yra lygi nuliui tada ir tik tada, kai jie yra kolineariniai ( ). Tai reiškia, kad jie yra toje pačioje linijoje arba lygiagrečiose linijose.

Pažvelkime į keletą paprastų problemų, kurios būtinos sprendžiant sudėtingesnes.

Iš dviejų taškų koordinačių nustatykime tiesės lygtį.

Tiesės, einančios per du skirtingus taškus, apibrėžtus jų koordinatėmis, lygtis.

Tiesėje pateiksime du nesutampančius taškus: su koordinatėmis (x1; y1) ir su koordinatėmis (x2; y2). Atitinkamai vektorius, kurio pradžia taške ir pabaiga taške, turi koordinates (x2-x1, y2-y1). Jei P(x, y) yra savavališkas taškas mūsų tiesėje, tai vektoriaus koordinatės yra lygios (x-x1, y – y1).

Naudojant vektorių sandaugą, vektorių kolineariškumo sąlygą galima parašyti taip:

Tie. (x-x1)(y2-y1)-(y-y1)(x2-x1) = 0

(y2-y1)x + (x1-x2)y + x1 (y1-y2) + y1 (x2-x1) = 0

Paskutinę lygtį perrašome taip:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Taigi, tiesią liniją galima nurodyti (1) formos lygtimi.

1 uždavinys. Pateikiamos dviejų taškų koordinatės. Raskite jo atvaizdavimą forma ax + by + c = 0.

Šioje pamokoje sužinojome šiek tiek informacijos apie skaičiavimo geometriją. Išsprendėme tiesės lygties iš dviejų taškų koordinačių radimo uždavinį.

Kitoje pamokoje sukursime programą dviejų tiesių, pateiktų mūsų lygtimis, susikirtimo taškui rasti.

Tegul tiesė eina per taškus M 1 (x 1; y 1) ir M 2 (x 2; y 2). Tiesės, einančios per tašką M 1, lygtis yra y-y 1 = k (x - x 1), (10,6)

Kur k – dar nežinomas koeficientas.

Kadangi tiesė eina per tašką M 2 (x 2 y 2), šio taško koordinatės turi atitikti (10.6) lygtį: y 2 -y 1 = k (x 2 - x 1).

Iš čia randame Rastos vertės pakeitimą k į (10.6) lygtį gauname tiesės, einančios per taškus M 1 ir M 2, lygtį:

Daroma prielaida, kad šioje lygtyje x 1 ≠ x 2, y 1 ≠ y 2

Jei x 1 = x 2, tai tiesė, einanti per taškus M 1 (x 1,y I) ir M 2 (x 2,y 2), yra lygiagreti ordinačių ašiai. Jo lygtis yra x = x 1 .

Jei y 2 = y I, tai tiesės lygtį galima parašyti kaip y = y 1, tiesė M 1 M 2 lygiagreti abscisių ašiai.

Atkarpų tiesės lygtis

Tegul tiesė kerta Ox ašį taške M 1 (a;0), o Oy ašį taške M 2 (0;b). Lygtis bus tokia:
tie.
. Ši lygtis vadinama tiesės lygtis atkarpose, nes skaičiai a ir b nurodo, kuriuos atkarpas linija nukerta koordinačių ašyse.

Tiesės, einančios per tam tikrą tašką, statmeną tam tikram vektoriui, lygtis

Raskime tiesės, einančios per duotą tašką Mo (x O; y o), statmeną duotam nuliniam vektoriui n = (A; B), lygtį.

Paimkime savavališką tiesės tašką M(x; y) ir apsvarstykime vektorių M 0 M (x - x 0; y - y o) (žr. 1 pav.). Kadangi vektoriai n ir M o M yra statmeni, jų skaliarinė sandauga lygi nuliui: tai yra

A(x – xo) + B(y – yo) = 0. (10.8)

Lygtis (10.8) vadinama tiesės, einančios per tam tikrą tašką, statmeną tam tikram vektoriui, lygtis .

Vektorius n= (A; B), statmenas tiesei, vadinamas normaliuoju šios linijos normalusis vektorius .

Lygtį (10.8) galima perrašyti kaip Ah + Wu + C = 0 , (10.9)

kur A ir B yra normaliojo vektoriaus koordinatės, C = -Ax o - Vu o yra laisvasis narys. Lygtis (10.9) yra bendroji linijos lygtis(žr. 2 pav.).

1 pav.2 pav

Kanoninės tiesės lygtys

,

Kur
- taško, per kurį linija eina, koordinates ir
- krypties vektorius.

Antros eilės kreivės Apskritimas

Apskritimas yra visų plokštumos taškų, nutolusių vienodu atstumu nuo tam tikro taško, vadinamo centru, rinkinys.

Kanoninė spindulio apskritimo lygtis R su centru taške
:

Visų pirma, jei statymo centras sutampa su koordinačių pradžia, lygtis atrodys taip:

Elipsė

Elipsė yra plokštumos taškų rinkinys, atstumų nuo kiekvieno iš jų iki dviejų nurodytų taškų suma Ir , kurie vadinami židiniais, yra pastovus dydis
, didesnis nei atstumas tarp židinių
.

Kanoninė elipsės lygtis, kurios židiniai yra ant Ox ašies, o koordinačių pradžia viduryje tarp židinių turi formą
G de
a pusiau pagrindinės ašies ilgis; b – pusiau mažosios ašies ilgis (2 pav.).

Tiesios linijos savybės Euklido geometrijoje.

Per bet kurį tašką galima nubrėžti begalinį skaičių tiesių.

Per bet kuriuos du nesutampančius taškus galima nubrėžti vieną tiesią liniją.

Dvi besiskiriančios plokštumos tiesės arba susikerta viename taške, arba yra

lygiagretus (seka nuo ankstesnio).

Trimatėje erdvėje yra trys dviejų linijų santykinės padėties parinktys:

  • linijos susikerta;
  • linijos lygiagrečios;
  • susikerta tiesios linijos.

Tiesiai linija— pirmos eilės algebrinė kreivė: tiesė Dekarto koordinačių sistemoje

plokštumoje pateikiama pirmojo laipsnio lygtimi (tiesine lygtimi).

Bendroji tiesės lygtis.

Apibrėžimas. Bet kuri tiesi linija plokštumoje gali būti nurodyta pirmosios eilės lygtimi

Ax + Wu + C = 0,

ir pastovus A, B tuo pačiu metu nėra lygūs nuliui. Ši pirmosios eilės lygtis vadinama bendras

tiesios linijos lygtis. Priklausomai nuo konstantų reikšmių A, B Ir SU Galimi šie ypatingi atvejai:

. C = 0, A ≠0, B ≠ 0- per pradžią eina tiesi linija

. A = 0, B ≠0, C ≠0 (pagal + C = 0)- tiesi linija, lygiagreti ašiai Oi

. B = 0, A ≠0, C ≠ 0 (Ax + C = 0)- tiesi linija, lygiagreti ašiai Oi

. B = C = 0, A ≠0- tiesi linija sutampa su ašimi Oi

. A = C = 0, B ≠0- tiesi linija sutampa su ašimi Oi

Tiesios linijos lygtis gali būti pateikta įvairiomis formomis, atsižvelgiant į bet kurią duotąją

pradines sąlygas.

Tiesės iš taško ir normalaus vektoriaus lygtis.

Apibrėžimas. Dekarto stačiakampėje koordinačių sistemoje vektorius su komponentais (A, B)

statmena lygties nurodytai tiesei

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės, einančios per tašką, lygtį A(1, 2) statmenai vektoriui (3, -1).

Sprendimas. Kai A = 3 ir B = -1, sudarykime tiesės lygtį: 3x - y + C = 0. Norėdami rasti koeficientą C

Į gautą išraišką pakeisime duoto taško A koordinates Gauname: 3 - 2 + C = 0, todėl

C = -1. Iš viso: reikalinga lygtis: 3x - y - 1 = 0.

Tiesės, einančios per du taškus, lygtis.

Tegu erdvėje pateikti du taškai M 1 (x 1, y 1, z 1) Ir M2 (x 2, y 2, z 2), Tada tiesės lygtis,

eina per šiuos taškus:

Jei kuris nors iš vardiklių yra lygus nuliui, atitinkamas skaitiklis turi būti lygus nuliui. Įjungta

plokštumoje, aukščiau parašyta tiesės lygtis yra supaprastinta:

Jeigu x 1 ≠ x 2 Ir x = x 1, Jei x 1 = x 2 .

Frakcija = k paskambino nuolydis tiesioginis.

Pavyzdys. Raskite tiesės, einančios per taškus A(1, 2) ir B(3, 4), lygtį.

Sprendimas. Taikydami aukščiau parašytą formulę, gauname:

Tiesios linijos lygtis naudojant tašką ir nuolydį.

Jei bendroji tiesės lygtis Ax + Wu + C = 0 veda prie:

ir paskirti , tada gauta lygtis vadinama

tiesės su nuolydžiu k lygtis.

Tiesės iš taško ir krypties vektoriaus lygtis.

Pagal analogiją su tašku, kuriame atsižvelgiama į tiesės linijos per normalųjį vektorių lygtį, galite įvesti užduotį

tiesė per tašką ir tiesės krypties vektorius.

Apibrėžimas. Kiekvienas nulinis vektorius (α 1 , α 2), kurio komponentai atitinka sąlygą

Aα 1 + Bα 2 = 0 paskambino nukreipiantis tiesės vektorius.

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės su krypties vektoriumi (1, -1) ir einančios per tašką A(1, 2) lygtį.

Sprendimas. Ieškosime norimos eilutės lygties formoje: Ax + By + C = 0. Pagal apibrėžimą,

koeficientai turi atitikti šias sąlygas:

1 * A + (-1) * B = 0, t.y. A = B.

Tada tiesės lygtis turi tokią formą: Ax + Ay + C = 0, arba x + y + C / A = 0.

adresu x = 1, y = 2 gauname C/A = -3, t.y. reikalinga lygtis:

x + y - 3 = 0

Tiesios linijos atkarpose lygtis.

Jei bendrojoje tiesės lygtyje Ах + Ву + С = 0 С≠0, tada dalijant iš -С gauname:

arba kur

Koeficientų geometrinė reikšmė ta, kad koeficientas a yra susikirtimo taško koordinatė

tiesiai su ašimi O A b- tiesės susikirtimo su ašimi taško koordinatė Oi.

Pavyzdys. Pateikta bendroji tiesės lygtis x - y + 1 = 0. Raskite šios tiesės lygtį atkarpomis.

C = 1, , a = -1, b = 1.

Normalioji tiesės lygtis.

Jei abi lygties pusės Ax + Wu + C = 0 padalinti iš skaičiaus kuris vadinamas

normalizuojantis veiksnys, tada gauname

xcosφ + ysinφ - p = 0 -normalioji tiesės lygtis.

Normalizuojančio koeficiento ženklas ± turi būti parinktas taip μ*C< 0.

r- statmens ilgis, nukritęs nuo pradžios iki tiesės,

A φ - kampas, kurį sudaro šis statmenas su teigiama ašies kryptimi Oi.

Pavyzdys. Pateikiama bendroji linijos lygtis 12x - 5m - 65 = 0. Reikalinga parašyti įvairių tipų lygtis

ši tiesi linija.

Šios tiesės lygtis atkarpomis:

Šios tiesės lygtis su nuolydžiu: (padalinkite iš 5)

Linijos lygtis:

cos φ = 12/13; sin φ= -5/13; p = 5.

Reikėtų pažymėti, kad ne kiekviena tiesė gali būti pavaizduota lygtimi segmentuose, pavyzdžiui, tiesės,

lygiagrečios ašims arba einančios per pradžią.

Kampas tarp tiesių plokštumoje.

Apibrėžimas. Jei pateiktos dvi eilutės y = k 1 x + b 1, y = k 2 x + b 2, tada smailusis kampas tarp šių linijų

bus apibrėžtas kaip

Dvi tiesės lygiagrečios, jei k 1 = k 2. Dvi linijos yra statmenos

Jeigu k 1 = -1/ k 2 .

Teorema.

Tiesioginis Ax + Wu + C = 0 Ir A 1 x + B 1 y + C 1 = 0 lygiagrečiai, kai koeficientai yra proporcingi

A 1 = λA, B 1 = λB. Jei taip pat С 1 = λС, tada linijos sutampa. Dviejų tiesių susikirtimo taško koordinatės

randami kaip šių tiesių lygčių sistemos sprendimas.

Tiesės, einančios per tam tikrą tašką statmenai nurodytai tiesei, lygtis.

Apibrėžimas. Tiesė, einanti per tašką M 1 (x 1, y 1) ir statmenai tiesei y = kx + b

pavaizduota lygtimi:

Atstumas nuo taško iki linijos.

Teorema. Jei skiriamas taškas M(x 0, y 0), tada atstumas iki tiesės Ax + Wu + C = 0 apibrėžiamas kaip:

Įrodymas. Tegul taškas M 1 (x 1, y 1)- iš taško nukritusio statmens pagrindas M už duotą

tiesioginis. Tada atstumas tarp taškų M Ir M 1:

(1)

Koordinatės x 1 Ir 1 val galima rasti kaip lygčių sistemos sprendimą:

Antroji sistemos lygtis yra tiesės, einančios per tam tikrą tašką M 0 statmenai lygtis

duota tiesi linija. Jei transformuosime pirmąją sistemos lygtį į formą:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

tada išspręsdami gauname:

Pakeitę šias išraiškas į (1) lygtį, randame:

Teorema įrodyta.

Šiame straipsnyje tęsiama tiesės lygties plokštumoje tema: tokio tipo lygtį laikysime bendrąja tiesės lygtimi. Apibrėžkime teoremą ir pateiksime jos įrodymą; Išsiaiškinkime, kas yra neišsami bendroji linijos lygtis ir kaip atlikti perėjimus iš bendrosios lygties į kitų tipų linijos lygtis. Visą teoriją sustiprinsime iliustracijomis ir praktinių problemų sprendimais.

Yandex.RTB R-A-339285-1

Plokštumoje nurodykime stačiakampę koordinačių sistemą O x y.

1 teorema

Bet kuri pirmojo laipsnio lygtis, turinti formą A x + B y + C = 0, kur A, B, C yra kai kurie realieji skaičiai (A ir B tuo pačiu metu nėra lygūs nuliui), apibrėžia tiesę stačiakampė koordinačių sistema plokštumoje. Savo ruožtu bet kuri tiesė stačiakampėje koordinačių sistemoje plokštumoje yra nustatoma pagal lygtį, kurios forma yra A x + B y + C = 0 tam tikram reikšmių rinkiniui A, B, C.

Įrodymas

Ši teorema susideda iš dviejų punktų, įrodysime kiekvieną iš jų.

  1. Įrodykime, kad lygtis A x + B y + C = 0 apibrėžia tiesę plokštumoje.

Tebūnie koks nors taškas M 0 (x 0 , y 0), kurio koordinatės atitinka lygtį A x + B y + C = 0. Taigi: A x 0 + B y 0 + C = 0. Iš kairės ir dešinės lygčių A x + B y + C = 0 pusių atimkite lygties A x 0 + B y 0 + C = 0 kairę ir dešinę puses, gausime naują lygtį, kuri atrodo kaip A (x - x 0) + B (y - y 0) = 0 . Jis lygus A x + B y + C = 0.

Gauta lygtis A (x - x 0) + B (y - y 0) = 0 yra būtina ir pakankama vektorių n → = (A, B) ir M 0 M → = (x - x) statmenumo sąlyga. 0, y - y 0) . Taigi taškų aibė M (x, y) apibrėžia tiesę stačiakampėje koordinačių sistemoje, statmenoje vektoriaus n → = (A, B) krypčiai. Galime manyti, kad taip nėra, bet tada vektoriai n → = (A, B) ir M 0 M → = (x - x 0, y - y 0) nebūtų statmeni, o lygybė A (x - x 0 ) + B (y - y 0) = 0 nebūtų teisinga.

Vadinasi, lygtis A (x - x 0) + B (y - y 0) = 0 apibrėžia tam tikrą tiesę stačiakampėje koordinačių sistemoje plokštumoje, todėl lygiavertė lygtis A x + B y + C = 0 apibrėžia ta pati linija. Taip įrodėme pirmąją teoremos dalį.

  1. Pateiksime įrodymą, kad bet kurią tiesę stačiakampėje koordinačių sistemoje plokštumoje galima nurodyti pirmojo laipsnio lygtimi A x + B y + C = 0.

Apibrėžkime tiesę a stačiakampėje koordinačių sistemoje plokštumoje; taškas M 0 (x 0 , y 0), per kurį eina ši tiesė, taip pat šios tiesės normalusis vektorius n → = (A, B) .

Tegul taip pat yra tam tikras taškas M (x, y) – tiesės slankusis taškas. Šiuo atveju vektoriai n → = (A, B) ir M 0 M → = (x - x 0, y - y 0) yra statmeni vienas kitam, o jų skaliarinė sandauga lygi nuliui:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

Perrašykime lygtį A x + B y - A x 0 - B y 0 = 0, apibrėžkime C: C = - A x 0 - B y 0 ir kaip galutinį rezultatą gausime lygtį A x + B y + C = 0.

Taigi, mes įrodėme antrąją teoremos dalį ir įrodėme visą teoremą kaip visumą.

1 apibrėžimas

Formos lygtis A x + B y + C = 0 - Tai bendroji tiesės lygtis plokštumoje stačiakampėje koordinačių sistemojeOxy.

Remdamiesi įrodyta teorema, galime daryti išvadą, kad tiesė ir jos bendroji lygtis, apibrėžta plokštumoje fiksuotoje stačiakampėje koordinačių sistemoje, yra neatsiejamai susijusios. Kitaip tariant, pradinė eilutė atitinka jos bendrąją lygtį; bendroji linijos lygtis atitinka duotąją tiesę.

Iš teoremos įrodymo taip pat išplaukia, kad kintamųjų x ir y koeficientai A ir B yra tiesės normaliojo vektoriaus koordinatės, kurią pateikia bendroji tiesės lygtis A x + B y + C = 0.

Panagrinėkime konkretų bendrosios tiesės lygties pavyzdį.

Tegu yra lygtis 2 x + 3 y - 2 = 0, kuri atitinka tiesę duotoje stačiakampėje koordinačių sistemoje. Normalus šios linijos vektorius yra vektorius n → = (2, 3) . Nubrėžkime brėžinyje nurodytą tiesią liniją.

Taip pat galime teigti: tiesė, kurią matome brėžinyje, yra nustatoma pagal bendrąją lygtį 2 x + 3 y - 2 = 0, nes visų duotoje tiesėje esančių taškų koordinatės atitinka šią lygtį.

Lygtį λ · A x + λ · B y + λ · C = 0 galime gauti padauginę abi bendrosios tiesės lygties puses iš skaičiaus λ, nelygaus nuliui. Gauta lygtis yra lygiavertė pradinei bendrajai lygčiai, todėl ji apibūdins tą pačią tiesę plokštumoje.

2 apibrėžimas

Užbaikite bendrąją linijos lygtį– tokia bendroji tiesės A x + B y + C = 0 lygtis, kurioje skaičiai A, B, C skiriasi nuo nulio. Priešingu atveju lygtis yra nepilnas.

Išanalizuokime visus nepilnos bendrosios tiesės lygties variantus.

  1. Kai A = 0, B ≠ 0, C ≠ 0, bendroji lygtis įgauna formą B y + C = 0. Tokia nepilna bendroji lygtis stačiakampėje koordinačių sistemoje O x y apibrėžia tiesę, lygiagrečią O x ašiai, nes bet kuriai realiajai x reikšmei kintamasis y įgaus reikšmę - C B. Kitaip tariant, bendroji tiesės A x + B y + C = 0 lygtis, kai A = 0, B ≠ 0, nurodo taškų (x, y), kurių koordinatės lygios tam pačiam skaičiui, vietą. - C B.
  2. Jei A = 0, B ≠ 0, C = 0, bendroji lygtis yra y = 0. Ši nepilna lygtis apibrėžia x ašies O x .
  3. Kai A ≠ 0, B = 0, C ≠ 0, gauname nepilną bendrąją lygtį A x + C = 0, apibrėžiančią tiesę, lygiagrečią ordinatėms.
  4. Tegu A ≠ 0, B = 0, C = 0, tada nepilna bendroji lygtis bus x = 0, ir tai yra koordinačių tiesės O y lygtis.
  5. Galiausiai, kai A ≠ 0, B ≠ 0, C = 0, nepilna bendroji lygtis įgauna formą A x + B y = 0. Ir ši lygtis apibūdina tiesią liniją, kuri eina per pradžią. Tiesą sakant, skaičių pora (0, 0) atitinka lygybę A x + B y = 0, nes A · 0 + B · 0 = 0.

Grafiškai pavaizduokime visus aukščiau išvardintus nepilnos bendrosios tiesės lygties tipus.

1 pavyzdys

Yra žinoma, kad duota tiesė yra lygiagreti ordinačių ašiai ir eina per tašką 2 7, - 11. Būtina užrašyti bendrąją duotosios tiesės lygtį.

Sprendimas

Ordinačių ašiai lygiagreti tiesė pateikiama A x + C = 0 formos lygtimi, kurioje A ≠ 0. Sąlyga taip pat nurodo taško, per kurį eina tiesė, koordinates, o šio taško koordinatės atitinka nepilnos bendrosios lygties A x + C = 0 sąlygas, t.y. lygybė yra tiesa:

A 2 7 + C = 0

Iš jo galima nustatyti C, jei A suteikiame kokią nors ne nulį reikšmę, pavyzdžiui, A = 7. Šiuo atveju gauname: 7 · 2 7 + C = 0 ⇔ C = - 2. Žinome abu koeficientus A ir C, juos pakeisime lygtimi A x + C = 0 ir gauname reikiamą tiesės lygtį: 7 x - 2 = 0

Atsakymas: 7 x - 2 = 0

2 pavyzdys

Brėžinyje pavaizduota tiesė, reikia užrašyti jos lygtį.

Sprendimas

Pateiktas brėžinys leidžia lengvai paimti pradinius duomenis, kad išspręstume problemą. Brėžinyje matome, kad duotoji tiesė yra lygiagreti O x ašiai ir eina per tašką (0, 3).

Tiesi linija, lygiagreti abscisei, nustatoma nepilna bendroji lygtis B y + C = 0. Raskime B ir C reikšmes. Taško (0, 3) koordinatės, kadangi per jį eina duotoji tiesė, tenkins tiesės B y + C = 0 lygtį, tuomet galioja lygybė: B · 3 + C = 0. Nustatykime B vertę, kuri skiriasi nuo nulio. Tarkime B = 1, tokiu atveju iš lygybės B · 3 + C = 0 galime rasti C: C = - 3. Naudodami žinomas B ir C reikšmes, gauname reikiamą tiesės lygtį: y - 3 = 0.

Atsakymas: y-3 = 0.

Bendroji tiesės, einančios per tam tikrą plokštumos tašką, lygtis

Tegul duotoji tiesė eina per tašką M 0 (x 0 , y 0), tada jos koordinatės atitinka bendrąją tiesės lygtį, t.y. lygybė yra teisinga: A x 0 + B y 0 + C = 0. Atimkime kairę ir dešinę šios lygties puses iš kairės ir dešinės bendrosios pilnosios lygties pusės. Gauname: A (x - x 0) + B (y - y 0) + C = 0, ši lygtis yra lygiavertė pradinei bendrajai, eina per tašką M 0 (x 0, y 0) ir turi normalią vektorius n → = (A, B) .

Gautas rezultatas leidžia užrašyti bendrąją tiesės lygtį su žinomomis normalaus linijos vektoriaus koordinatėmis ir tam tikro šios linijos taško koordinatėmis.

3 pavyzdys

Duotas taškas M 0 (- 3, 4), per kurį eina tiesė, ir šios tiesės normalusis vektorius n → = (1 , - 2) . Būtina užrašyti duotosios tiesės lygtį.

Sprendimas

Pradinės sąlygos leidžia gauti reikiamus duomenis lygčiai sudaryti: A = 1, B = - 2, x 0 = - 3, y 0 = 4. Tada:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 (x - (- 3)) - 2 y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

Problema galėjo būti išspręsta kitaip. Bendroji tiesės lygtis yra A x + B y + C = 0. Pateiktas normalus vektorius leidžia gauti koeficientų A ir B reikšmes, tada:

A x + B y + C = 0 ⇔ 1 x - 2 y + C = 0 ⇔ x - 2 y + C = 0

Dabar suraskime C reikšmę naudodami uždavinio sąlygą nurodytą tašką M 0 (- 3, 4), per kurį eina tiesė. Šio taško koordinatės atitinka lygtį x - 2 · y + C = 0, t.y. - 3 - 2 4 + C = 0. Taigi C = 11. Reikiama tiesės lygtis yra tokia: x - 2 · y + 11 = 0.

Atsakymas: x - 2 y + 11 = 0 .

4 pavyzdys

Duota tiesė 2 3 x - y - 1 2 = 0 ir taškas M 0, esantis šioje tiesėje. Žinoma tik šio taško abscisė ir ji lygi – 3. Būtina nustatyti duoto taško ordinates.

Sprendimas

Taško M 0 koordinates pažymėkime x 0 ir y 0 . Šaltiniai duomenys rodo, kad x 0 = - 3. Kadangi taškas priklauso duotai tiesei, tai jo koordinatės atitinka bendrąją šios tiesės lygtį. Tada lygybė bus tiesa:

2 3 x 0 – y 0 – 1 2 = 0

Apibrėžkite y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

Atsakymas: - 5 2

Perėjimas nuo bendrosios tiesės lygties prie kito tipo tiesės lygčių ir atvirkščiai

Kaip žinome, yra keletas lygčių tipų, skirtų tai pačiai tiesei plokštumoje. Lygties tipo pasirinkimas priklauso nuo uždavinio sąlygų; galima pasirinkti patogiau sprendžiant. Čia labai praverčia įgūdžiai konvertuoti vieno tipo lygtį į kito tipo lygtį.

Pirmiausia panagrinėkime perėjimą nuo bendrosios A x + B y + C = 0 lygties į kanoninę lygtį x - x 1 a x = y - y 1 a y.

Jei A ≠ 0, tai terminą B y perkeliame į dešinę bendrosios lygties pusę. Kairėje pusėje mes išimame A iš skliaustų. Dėl to gauname: A x + C A = - B y.

Šią lygybę galima parašyti kaip proporciją: x + C A - B = y A.

Jei B ≠ 0, kairėje bendrosios lygties pusėje paliekame tik terminą A x, kitus perkeliame į dešinę, gauname: A x = - B y - C. Iš skliaustų paimame – B, tada: A x = - B y + C B .

Perrašykime lygybę proporcijos forma: x - B = y + C B A.

Žinoma, nereikia įsiminti gautų formulių. Pereinant nuo bendrosios lygties prie kanoninės, pakanka žinoti veiksmų algoritmą.

5 pavyzdys

Pateikiama bendroji tiesės 3 lygtis y - 4 = 0. Būtina jį paversti kanonine lygtimi.

Sprendimas

Parašykime pradinę lygtį 3 y – 4 = 0. Toliau dirbame pagal algoritmą: terminas 0 x lieka kairėje pusėje; o dešinėje pusėje dedame - 3 iš skliaustų; gauname: 0 x = - 3 y - 4 3 .

Gautą lygybę parašykime proporcija: x - 3 = y - 4 3 0 . Taigi, mes gavome kanoninės formos lygtį.

Atsakymas: x - 3 = y - 4 3 0.

Norint paversti bendrąją tiesės lygtį į parametrines, pirmiausia pereinama prie kanoninės formos, o po to pereinama nuo kanoninės tiesės lygties prie parametrinių lygčių.

6 pavyzdys

Tiesi linija pateikiama lygtimi 2 x - 5 y - 1 = 0. Užrašykite šios eilutės parametrines lygtis.

Sprendimas

Pereikime nuo bendrosios lygties prie kanoninės:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Dabar paimame abi gautos kanoninės lygties puses, lygias λ, tada:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Atsakymas:x = 5 λ y = -1 5 + 2 λ , λ ∈ R

Bendrąją lygtį galima konvertuoti į tiesės, kurios nuolydis y = k · x + b, lygtį, bet tik tada, kai B ≠ 0. Perėjimui terminą B y paliekame kairėje pusėje, likusieji perkeliami į dešinę. Gauname: B y = - A x - C . Padalinkime abi gautos lygybės puses iš B, kurios skiriasi nuo nulio: y = - A B x - C B.

7 pavyzdys

Pateikiama bendroji tiesės lygtis: 2 x + 7 y = 0. Turite konvertuoti šią lygtį į nuolydžio lygtį.

Sprendimas

Atlikime reikiamus veiksmus pagal algoritmą:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

Atsakymas: y = - 2 7 x .

Iš bendrosios tiesės lygties pakanka tiesiog gauti lygtį x a + y b = 1 formos atkarpose. Norėdami atlikti tokį perėjimą, skaičių C perkeliame į dešinę lygybės pusę, gautos lygybės abi puses padaliname iš – C ir galiausiai perkeliame kintamųjų x ir y koeficientus į vardiklius:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

8 pavyzdys

Reikia paversti bendrąją tiesės x - 7 y + 1 2 = 0 lygtį į tiesės lygtį atkarpomis.

Sprendimas

Perkelkime 1 2 į dešinę pusę: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Abi lygybės puses padalinkime iš -1/2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Atsakymas: x - 1 2 + y 1 14 = 1 .

Apskritai atvirkštinis perėjimas taip pat yra lengvas: nuo kitų tipų lygčių prie bendrosios.

Linijos lygtis atkarpose ir lygtis su kampiniu koeficientu gali būti lengvai konvertuojama į bendrą, tiesiog surinkus visus terminus kairėje lygybės pusėje:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

Kanoninė lygtis konvertuojama į bendrąją pagal šią schemą:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Norėdami pereiti nuo parametrinių, pirmiausia pereikite prie kanoninio, o tada prie bendro:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0

9 pavyzdys

Pateikiamos tiesės x = - 1 + 2 · λ y = 4 parametrinės lygtys. Būtina užrašyti bendrąją šios tiesės lygtį.

Sprendimas

Pereikime nuo parametrinių lygčių prie kanoninių:

x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0

Pereikime nuo kanoninio prie bendro:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

Atsakymas: y – 4 = 0

10 pavyzdys

Pateikta tiesės lygtis atkarpose x 3 + y 1 2 = 1. Būtina pereiti prie bendrosios lygties formos.

Sprendimas:

Tiesiog perrašome lygtį reikiama forma:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

Atsakymas: 1 3 x + 2 y - 1 = 0 .

Bendrosios tiesės lygties sudarymas

Aukščiau sakėme, kad bendrąją lygtį galima parašyti žinomomis normaliojo vektoriaus koordinatėmis ir taško, per kurį eina linija, koordinatėmis. Tokia tiesė apibrėžiama lygtimi A (x - x 0) + B (y - y 0) = 0. Ten taip pat išanalizavome atitinkamą pavyzdį.

Dabar pažvelkime į sudėtingesnius pavyzdžius, kuriuose pirmiausia turime nustatyti normalaus vektoriaus koordinates.

11 pavyzdys

Duota tiesė, lygiagreti tiesei 2 x - 3 y + 3 3 = 0. Taip pat žinomas taškas M 0 (4, 1), per kurį eina duotoji tiesė. Būtina užrašyti duotosios tiesės lygtį.

Sprendimas

Pradinės sąlygos mums sako, kad tiesės yra lygiagrečios, tada kaip normalųjį tiesės vektorių, kurios lygtį reikia parašyti, imame tiesės n → = (2, - 3) krypties vektorių: 2 x – 3 m. + 3 3 = 0. Dabar mes žinome visus reikalingus duomenis, kad sukurtume bendrą linijos lygtį:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

Atsakymas: 2 x - 3 y - 5 = 0 .

12 pavyzdys

Duota tiesė eina per pradžią statmenai tiesei x - 2 3 = y + 4 5. Būtina sukurti bendrąją lygtį duotai linijai.

Sprendimas

Normalusis tam tikros linijos vektorius bus tiesės x - 2 3 = y + 4 5 krypties vektorius.

Tada n → = (3, 5) . Tiesi linija eina per pradžią, t.y. per tašką O (0, 0). Sukurkime bendrąją duotosios linijos lygtį:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

Atsakymas: 3 x + 5 y = 0 .

Jei tekste pastebėjote klaidą, pažymėkite ją ir paspauskite Ctrl+Enter



Ar jums patiko straipsnis? Pasidalinkite su draugais!