Максимальное число всех множеств являющихся векторными пространствами. Векторное линейное пространство

Головизин В.В. Лекции по алгебре и геометрии. 4

Лекции по алгебре и геометрии. Семестр 2.

Лекция 22. Векторные пространства.

Краткое содержание: определение векторного пространства, его простейшие свойства, системы векторов, линейная комбинация системы векторов, тривиальная и нетривиальная линейная комбинация, линейно зависимые и независимые системы векторов, условия линейной зависимости или независимости системы векторов, подсистемы системы векторов, системы столбцов арифметического векторного пространства.

п.1. Определение векторного пространства и его простейшие свойства.

Здесь, для удобства читателя, мы повторяем содержание п.13 лекции 1.

Определение. Пусть - произвольное непустое множество, элементы которого мы будем называть векторами,K– поле, элементы которого мы будем называть скалярами. Пусть на множествеопределена внутренняя бинарная алгебраическая операция, которую мы будем обозначать знаком + и называть сложением векторов. Пусть также на множествеопределена внешняя бинарная алгебраическая операция, которую мы будем называть умножением вектора на скаляр и обозначать знаком умножения. Другими словами определены два отображения:

Множество вместе с этими двумя алгебраическими операциями называется векторным пространством над полем К, если выполняются следующие аксиомы:

1. Сложение ассоциативно, т.е.

2. Существует нулевой вектор, т.е.

3. Для любого вектора существует противоположный ему:

Вектор у, противоположный вектору х, обычно обозначается –х, так что

4. Сложение коммутативно, т.е. .

5. Умножение вектора на скаляр подчиняется закону ассоциативности, т.е.

где произведение есть произведение скаляров, определенное в поле К.

6. , где 1 - это единица поля К.

7. Умножение вектора на скаляр дистрибутивно относительно сложения векторов:

8. Умножение вектора на скаляр дистрибутивно относительно сложения скаляров: .

Определение. Векторное пространство над полем вещественных чиселназывается вещественным векторным пространством.

Теорема. (Простейшие свойства векторных пространств.)

1. В векторном пространстве существует единственный нулевой вектор.

2. В векторном пространстве любой вектор имеет единственный противоположный ему.

3. или
.

4. .

Доказательство. 1) Единственность нулевого вектора доказывается также, как единственность единичной матриц и, вообще, как единственность нейтрального элемента любой внутренней бинарной алгебраической операции.

Пусть 0 – нулевой вектор векторного пространства V. Тогда. Пусть
– еще один нулевой вектор. Тогда. Возьмем в первом случае
, а во втором –
. Тогда
и
, откуда следует, что
, ч.т.д.

2а) Сначала мы докажем, что произведение нулевого скаляра на любой вектор равен нулевому вектору.

Пусть
. Тогда, применяя аксиомы векторного пространства, получаем:

Относительно сложения векторное пространство является абелевой группой, а в любой группе справедлив закон сокращения. Применяя закон сокращения, из последнего равенства следует

.

2б) Теперь докажем утверждение 4). Пусть
– произвольный вектор. Тогда

Отсюда сразу же следует, что вектор
является противоположным вектору х.

2в) Пусть теперь
. Тогда, применяя аксиомы векторного пространства,
и
получаем:

2г) Пусть
и допустим, что
. Так как
, где К – поле, то существует
. Умножим равенство
слева на
:
, откуда следует
или
или
.

Теорема доказана.

п.2. Примеры векторных пространств.

1) Множество числовых вещественных функций одной переменной, непрерывных на интервале (0; 1) относительно обычных операций сложения функций и умножения функции на число.

2) Множество многочленов от одной буквы с коэффициентами из поля Kотносительно сложения многочленов и умножения многочленов на скаляр.

3) Множество комплексных чисел относительно сложения комплексных чисел и умножения на действительное число.

4) Множество матриц одного и того же размера с элементами из поля К относительно сложения матриц и умножения матриц на скаляр.

Следующий пример является важным частным случаем примера 4.

5) Пусть - произвольное натуральное число. Обозначим черезмножество всех столбцов высотыn, т.е. множество матриц над полемKразмера
.

Множество является векторным пространством над полем К и называется арифметическим векторным пространством столбцов высотыnнад полемK.

В частности, если вместо произвольного поля К взять поле действительных чисел , то векторное пространство
называется вещественным арифметическим векторным пространством столбцов высотыn.

Аналогично, векторным пространством является и множество матриц над полем Kразмера
или, иначе, строк длиныn. Оно обозначается также черези также называется арифметическим векторным пространством строк длиныnнад полемK.

п.3. Системы векторов векторного пространства.

Определение. Системой векторов векторного пространства называют любое конечное непустое множество векторов этого пространства.

Обозначение:
.

Определение. Выражение

, (1)

где - скаляры поля К,– векторы векторного пространстваV, называется линейной комбинацией системы векторов
. Скалярыназываются коэффициентами этой линейной комбинации.

Определение. Если все коэффициенты линейной комбинации (1) равны нулю, то такую линейную комбинацию называют тривиальной, в противном случае – нетривиальной.

Пример. Пусть
система из трех векторов векторного пространстваV. Тогда

– тривиальная линейная комбинация данной системы векторов;

– нетривиальная линейная комбинация данной системы векторов, т.к. первый коэффициент этой комбинации
.

Определение. Если какой-либо вектор х векторного пространства Vможет быть представлен в виде:

то говорят, что вектор х линейно выражается через векторы системы
. В этом случае говорят также, что система
линейно представляет вектор х.

Замечание. В этом и предыдущем определении слово "линейно" часто пропускают и говорят, что система представляет вектор или вектор выражается через векторы системы и т.п.

Пример. Пусть
– система из двух столбцов арифметического вещественного векторного пространства столбцов высоты 2. Тогда столбец
линейно выражается через столбцы системы или данная система столбцов линейно представляет столбец х. Действительно,

п.4. Линейно зависимые и линейно независимые системы векторов векторного пространства.

Так как произведение нулевого скаляра на любой вектор есть нулевой вектор и сумма нулевых векторов равна нулевому вектору, то для любой системы векторов выполняется равенство

Отсюда следует, что нулевой вектор линейно выражается через векторы любой системы векторов или, говоря иначе, любая система векторов линейно представляет нулевой вектор.

Пример. Пусть
. В этом случае нулевой столбецможно линейно выразить через столбцы системы не одним способом:

или

Чтобы различать эти способы линейного представления нулевого вектора введем следующее определение.

Определение. Если выполняется равенство

и при этом все коэффициенты , то говорят, что система
представляет нулевой вектор тривиально. Если же в равенстве (3) хотя бы один из коэффициентов
не равен нулю, тогда говорят, что система векторов
представляет нулевой вектор нетривиально.

Из последнего примера мы видим, что существуют системы векторов, которые могут представлять нулевой вектор нетривиально. Из следующего примера мы увидим, что существуют системы векторов, которые не могут представлять нулевой вектор нетривиально.

Пример. Пусть
– система двух столбцов из векторного пространства. Рассмотрим равенство:

,

где
неизвестные пока коэффициенты. Используя правила умножения столбца на скаляр (число) и сложения столбцов, получаем равенство:

.

Из определения равенства матриц следует, что
и
.

Таким образом, данная система не может представлять нулевой столбец нетривиально.

Из приведенных примеров следует, что существует два вида систем векторов. Одни системы представляют нулевой вектор нетривиально, а другие нет. Отметим еще раз, что любая система векторов представляет нулевой вектор тривиально.

Определение. Система векторов векторного пространства, которая представляет нулевой вектор ТОЛЬКО тривиально называется линейно независимой.

Определение. Система векторов векторного пространства, которая может представить нулевой вектор нетривиально называется линейно зависимой.

Последнее определение можно дать в более развернутом виде.

Определение. Система векторов
векторного пространстваVназывается линейно зависимой, если найдется такой ненулевой набор скаляров поляK

Замечание. Любая система векторов
может представлять нулевой вектор тривиально:

Но этого недостаточно, чтобы выяснить линейно зависимая или же линейно независимая данная система векторов. Из определения следует, что линейно независимая система векторов не может представлять нулевой вектор нетривиально, а только тривиально. Поэтому для того, чтобы убедиться в линейной независимости данной системы векторов, нужно рассмотреть представление нуля произвольной линейной комбинацией этой системы векторов:

Если это равенство невозможно при условии, чтобы хотя бы один коэффициент этой линейной комбинации был ненулевой, тогда эта система является по определению линейно независимой.

Так в примерах предыдущего параграфа система столбцов
является линейно независимой, а система столбцов
является линейно зависимой.

Аналогично доказывается линейная независимость системы столбцов ,, ... ,

из пространства , где К - произвольное поле,n– произвольное натуральное число.

Следующие теоремы дают несколько критериев линейной зависимости и соответственно линейной независимости систем векторов.

Теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Доказательство. Необходимость. Пусть система
линейно зависимая. Тогда, по определению, она представляет нулевой вектор нетривиально, т.е. существует нетривиальная линейная комбинация данной системы векторов равная нулевому вектору:

где хотя бы один из коэффициентов этой линейной комбинации не равен нулю. Пусть
,
.

Разделим обе части предыдущего равенства на этот ненулевой коэффициент (т.е. умножим на :

Обозначим:
, где.

т.е. один из векторов системы линейно выражается через другие векторы этой системы, ч.т.д.

Достаточность. Пусть один из векторов системы линейно выражается через другие вектора этой системы:

Перенесем вектор в правую часть этого равенства:

Так как коэффициент при векторе равен
, то мы имеем нетривиальное представление нуля системой векторов
, что означает, что эта система векторов является линейно зависимой, ч.т.д.

Теорема доказана.

Следствие.

1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.

2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Доказательство.

1) Необходимость. Пусть система линейно независимая. Допустим противное и существует вектор системы линейно выражающийся через другие вектора этой системы. Тогда по теореме система является линейно зависимой и мы приходим к противоречию.

Достаточность. Пусть ни один из векторов системы не выражается через другие. Допустим противное. Пусть система линейно зависимая, но тогда из теоремы следует, что существует вектор системы линейно выражающийся через другие векторы этой системы и мы опять приходим к противоречию.

2а) Пусть система содержит нулевой вектор. Допустим для определенности, что вектор
:. Тогда очевидно равенство

т.е. один из векторов системы линейно выражается через другие вектора этой системы. Из теоремы следует, что такая система векторов является линейно зависимой, ч.т.д.

Заметим, что этот факт можно доказать непосредственно из определения линейно зависимой системы векторов.

Так как
, то следующее равенство очевидно

Это нетривиальное представление нулевого вектора, а значит система
является линейно зависимой.

2б) Пусть система имеет два равных вектора. Пусть для определенности
. Тогда очевидно равенство

Т.е. первый вектор линейно выражается через остальные векторы этой же системы. Из теоремы следует, что данная система линейно зависимая, ч.т.д.

Аналогично предыдущему это утверждение можно доказать и непосредственно определения линейно зависимой системы.

Действительно, так как
, то верно равенство

т.е. мы имеем нетривиальное представление нулевого вектора.

Следствие доказано.

Теорема (О линейной зависимости системы из одного вектора.

Система, состоящая из одного вектора является линейно зависимой тогда и только тогда, когда этот вектор нулевой.

Доказательство.

Необходимость. Пусть система
линейно зависимая, т.е. существует нетривиальное представление нулевого вектора

,

где
и
. Из простейших свойств векторного пространства следует, что тогда
.

Достаточность. Пусть система состоит из одного нулевого вектора
. Тогда эта система представляет нулевой вектор нетривиально

,

откуда следует линейная зависимость системы
.

Теорема доказана.

Следствие. Система, состоящая из одного вектора является линейно независимой тогда и только тогда, когда этот вектор ненулевой.

Доказательство оставляется читателю как упражнение.

Материал из Википедии - свободной энциклопедии

Ве́кторное (или лине́йное ) простра́нство - математическая структура , которая представляет собой набор элементов, называемых векторами , для которых определены операции сложения друг с другом и умножения на число - скаляр . Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного , комплексного или любого другого поля чисел . Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил . При этом следует отметить, что вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка . Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы .

Векторные пространства являются предметом изучения линейной алгебры . Одна из главных характеристик векторного пространства - его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубому геометрическому описанию, число направлений, невыразимых друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением . Подобные пространства естественным образом появляются в математическом анализе , преимущественно в виде бесконечномерных функциональных пространств (англ. ), где в качестве векторов выступают функции . Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев - подходящей топологией , что позволяет определить понятия близости и непрерывности . Такие топологические векторные пространства , в частности, банаховы и гильбертовы , допускают более глубокое изучение.

Кроме векторов, линейная алгебра изучает также тензоры более высокого ранга (скаляр считается тензором ранга 0, вектор - тензором ранга 1).

Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку . Именно тогда своё развитие получили аналитическая геометрия , учения о матрицах , системах линейных уравнений , евклидовых векторах .

Определение

Линейное , или векторное пространство V \left(F \right) над полем F - это упорядоченная четвёрка (V,F,+,\cdot), где

  • V - непустое множество элементов произвольной природы, которые называются векторами ;
  • F - (алгебраическое) поле, элементы которого называются скалярами ;
  • Определена операция сложения векторов V\times V\to V , сопоставляющая каждой паре элементов \mathbf{x}, \mathbf{y} множества V V, называемый их суммой и обозначаемый \mathbf{x} + \mathbf{y};
  • Определена операция умножения векторов на скаляры F\times V\to V , сопоставляющая каждому элементу \lambda поля F и каждому элементу \mathbf{x} множества V единственный элемент множества V, обозначаемый \lambda\cdot \mathbf{x} или \lambda\mathbf{x};

Векторные пространства, заданные на одном и том же множестве элементов, но над различными полями, будут различными векторными пространствами (например, множество пар действительных чисел \mathbb{R}^2 может быть двумерным векторным пространством над полем действительных чисел либо одномерным - над полем комплексных чисел).

Простейшие свойства

  1. Векторное пространство является абелевой группой по сложению.
  2. Нейтральный элемент \mathbf{0} \in V
  3. 0\cdot\mathbf{x} = \mathbf{0} для любого \mathbf{x} \in V.
  4. Для любого \mathbf{x} \in V противоположный элемент -\mathbf{x} \in V является единственным, что вытекает из групповых свойств.
  5. 1\cdot\mathbf{x} = \mathbf{x} для любого \mathbf{x} \in V.
  6. (-\alpha)\cdot\mathbf{x} = \alpha\cdot(-\mathbf{x}) = -(\alpha\mathbf{x}) для любых \alpha \in F и \mathbf{x} \in V.
  7. \alpha\cdot \mathbf{0} = \mathbf{0} для любого \alpha \in F.

Связанные определения и свойства

Подпространство

Алгебраическое определение: Линейное подпространство или векторное подпространство ― непустое подмножество K линейного пространства V такое, что K само является линейным пространством по отношению к определенным в V действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как \mathrm{Lat}(V). Чтобы подмножество было подпространством, необходимо и достаточно, чтобы

  1. для всякого вектора \mathbf{x}\in K, вектор \alpha\mathbf{x} также принадлежал K, при любом \alpha\in F;
  2. для всяких векторов \mathbf{x}, \mathbf{y} \in K, вектор \mathbf{x}+\mathbf{y} также принадлежал K.

Последние два утверждения эквивалентны следующему:

Для всяких векторов \mathbf{x}, \mathbf{y} \in K, вектор \alpha\mathbf{x}+\beta\mathbf{y} также принадлежал K для любых \alpha, \beta \in F.

В частности, векторное пространство, состоящее из одного лишь нулевого вектора, является подпространством любого пространства; любое пространство является подпространством самого себя. Подпространства, не совпадающие с этими двумя, называют собственными или нетривиальными .

Свойства подпространств

  • Пересечение любого семейства подпространств - снова подпространство;
  • Сумма подпространств \{K_i\quad|\quad i \in 1\ldots N\} определяется как множество, содержащее всевозможные суммы элементов K_i: \sum_{i=1}^N {K_i}:= \{\mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_N\quad|\quad \mathbf{x}_i \in K_i\quad (i\in 1\ldots N)\}.
    • Сумма конечного семейства подпространств - снова подпространство.

Линейные комбинации

Конечная сумма вида

\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n

Линейная комбинация называется:

Базис. Размерность

Векторы \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n называются линейно зависимыми , если существует их нетривиальная линейная комбинация, равная нулю:

\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n = \mathbf{0}, \quad \ |\alpha_1| + |\alpha_2| + \ldots + |\alpha_n| \neq 0.

В противном случае эти векторы называются линейно независимыми .

Данное определение допускает следующее обобщение: бесконечное множество векторов из V называется линейно зависимым , если линейно зависимо некоторое конечное его подмножество, и линейно независимым , если любое его конечное подмножество линейно независимо.

Свойства базиса:

  • Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.
  • Любой вектор \mathbf{x} \in V можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:
\mathbf{x} = \alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n.

Линейная оболочка

Линейная оболочка \mathcal V(X) подмножества X линейного пространства V - пересечение всех подпространств V, содержащих X.

Линейная оболочка является подпространством V.

Линейная оболочка также называется подпространством, порожденным X. Говорят также, что линейная оболочка \mathcal V(X) - пространство, натянутое на множество X.

Линейная оболочка \mathcal V(X) состоит из всевозможных линейных комбинаций различных конечных подсистем элементов из X. В частности, если X - конечное множество, то \mathcal V(X) состоит из всех линейных комбинаций элементов X. Таким образом, нулевой вектор всегда принадлежит линейной оболочке.

Если X - линейно независимое множество, то оно является базисом \mathcal V(X) и тем самым определяет его размерность.

Примеры

  • Нулевое пространство, единственным элементом которого является ноль.
  • Пространство всех функций X\to F с конечным носителем образует векторное пространство размерности равной мощности X.
  • Поле действительных чисел может быть рассмотрено как континуально -мерное векторное пространство над полем рациональных чисел .
  • Любое поле является одномерным пространством над собой.

Дополнительные структуры

См. также

Напишите отзыв о статье "Векторное пространство"

Примечания

Литература

  • Гельфанд И. М. Лекции по линейной алгебре. - 5-е. - М .: Добросвет, МЦНМО , 1998. - 319 с. - ISBN 5-7913-0015-8 .
  • Гельфанд И. М. Лекции по линейной алгебре. 5-е изд. - М .: Добросвет, МЦНМО, 1998. - 320 с. - ISBN 5-7913-0016-6 .
  • Кострикин А. И. , Манин Ю. И. Линейная алгебра и геометрия. 2-е изд. - М .: Наука , 1986. - 304 с.
  • Кострикин А. И. Введение в алгебру. Ч. 2: Линейная алгебра. - 3-е. - М .: Наука ., 2004. - 368 с. - (Университетский учебник).
  • Мальцев А. И. Основы линейной алгебры. - 3-е. - М .: Наука , 1970. - 400 с.
  • Постников М. М. Линейная алгебра (Лекции по геометрии. Семестр II). - 2-е. - М .: Наука , 1986. - 400 с.
  • Стренг Г. Линейная алгебра и её применения = Linear Algebra and Its Applications. - М .: Мир , 1980. - 454 с.
  • Ильин В. А., Позняк Э. Г. Линейная алгебра. 6-е изд. - М .: Физматлит, 2010. - 280 с. - ISBN 978-5-9221-0481-4 .
  • Халмош П. Конечномерные векторные пространства = Finite-Dimensional Vector Spaces. - М .: Физматгиз , 1963. - 263 с.
  • Фаддеев Д. К. Лекции по алгебре. - 5-е. - СПб. : Лань , 2007. - 416 с.
  • Шафаревич И. Р. , Ремизов А. О. Линейная алгебра и геометрия. - 1-е. - М .: Физматлит , 2009. - 511 с.
  • Шрейер О., Шпернер Г. Введение в линейную алгебру в геометрическом изложении = Einfuhrung in die analytische Geometrie und Algebra / Ольшанский Г. (перевод с немецкого). - М.–Л.: ОНТИ , 1934. - 210 с.

Отрывок, характеризующий Векторное пространство

Кутузов прошел по рядам, изредка останавливаясь и говоря по нескольку ласковых слов офицерам, которых он знал по турецкой войне, а иногда и солдатам. Поглядывая на обувь, он несколько раз грустно покачивал головой и указывал на нее австрийскому генералу с таким выражением, что как бы не упрекал в этом никого, но не мог не видеть, как это плохо. Полковой командир каждый раз при этом забегал вперед, боясь упустить слово главнокомандующего касательно полка. Сзади Кутузова, в таком расстоянии, что всякое слабо произнесенное слово могло быть услышано, шло человек 20 свиты. Господа свиты разговаривали между собой и иногда смеялись. Ближе всех за главнокомандующим шел красивый адъютант. Это был князь Болконский. Рядом с ним шел его товарищ Несвицкий, высокий штаб офицер, чрезвычайно толстый, с добрым, и улыбающимся красивым лицом и влажными глазами; Несвицкий едва удерживался от смеха, возбуждаемого черноватым гусарским офицером, шедшим подле него. Гусарский офицер, не улыбаясь, не изменяя выражения остановившихся глаз, с серьезным лицом смотрел на спину полкового командира и передразнивал каждое его движение. Каждый раз, как полковой командир вздрагивал и нагибался вперед, точно так же, точь в точь так же, вздрагивал и нагибался вперед гусарский офицер. Несвицкий смеялся и толкал других, чтобы они смотрели на забавника.
Кутузов шел медленно и вяло мимо тысячей глаз, которые выкатывались из своих орбит, следя за начальником. Поровнявшись с 3 й ротой, он вдруг остановился. Свита, не предвидя этой остановки, невольно надвинулась на него.
– А, Тимохин! – сказал главнокомандующий, узнавая капитана с красным носом, пострадавшего за синюю шинель.
Казалось, нельзя было вытягиваться больше того, как вытягивался Тимохин, в то время как полковой командир делал ему замечание. Но в эту минуту обращения к нему главнокомандующего капитан вытянулся так, что, казалось, посмотри на него главнокомандующий еще несколько времени, капитан не выдержал бы; и потому Кутузов, видимо поняв его положение и желая, напротив, всякого добра капитану, поспешно отвернулся. По пухлому, изуродованному раной лицу Кутузова пробежала чуть заметная улыбка.
– Еще измайловский товарищ, – сказал он. – Храбрый офицер! Ты доволен им? – спросил Кутузов у полкового командира.
И полковой командир, отражаясь, как в зеркале, невидимо для себя, в гусарском офицере, вздрогнул, подошел вперед и отвечал:
– Очень доволен, ваше высокопревосходительство.
– Мы все не без слабостей, – сказал Кутузов, улыбаясь и отходя от него. – У него была приверженность к Бахусу.
Полковой командир испугался, не виноват ли он в этом, и ничего не ответил. Офицер в эту минуту заметил лицо капитана с красным носом и подтянутым животом и так похоже передразнил его лицо и позу, что Несвицкий не мог удержать смеха.
Кутузов обернулся. Видно было, что офицер мог управлять своим лицом, как хотел: в ту минуту, как Кутузов обернулся, офицер успел сделать гримасу, а вслед за тем принять самое серьезное, почтительное и невинное выражение.
Третья рота была последняя, и Кутузов задумался, видимо припоминая что то. Князь Андрей выступил из свиты и по французски тихо сказал:
– Вы приказали напомнить о разжалованном Долохове в этом полку.
– Где тут Долохов? – спросил Кутузов.
Долохов, уже переодетый в солдатскую серую шинель, не дожидался, чтоб его вызвали. Стройная фигура белокурого с ясными голубыми глазами солдата выступила из фронта. Он подошел к главнокомандующему и сделал на караул.
– Претензия? – нахмурившись слегка, спросил Кутузов.
– Это Долохов, – сказал князь Андрей.
– A! – сказал Кутузов. – Надеюсь, что этот урок тебя исправит, служи хорошенько. Государь милостив. И я не забуду тебя, ежели ты заслужишь.
Голубые ясные глаза смотрели на главнокомандующего так же дерзко, как и на полкового командира, как будто своим выражением разрывая завесу условности, отделявшую так далеко главнокомандующего от солдата.
– Об одном прошу, ваше высокопревосходительство, – сказал он своим звучным, твердым, неспешащим голосом. – Прошу дать мне случай загладить мою вину и доказать мою преданность государю императору и России.
Кутузов отвернулся. На лице его промелькнула та же улыбка глаз, как и в то время, когда он отвернулся от капитана Тимохина. Он отвернулся и поморщился, как будто хотел выразить этим, что всё, что ему сказал Долохов, и всё, что он мог сказать ему, он давно, давно знает, что всё это уже прискучило ему и что всё это совсем не то, что нужно. Он отвернулся и направился к коляске.
Полк разобрался ротами и направился к назначенным квартирам невдалеке от Браунау, где надеялся обуться, одеться и отдохнуть после трудных переходов.
– Вы на меня не претендуете, Прохор Игнатьич? – сказал полковой командир, объезжая двигавшуюся к месту 3 ю роту и подъезжая к шедшему впереди ее капитану Тимохину. Лицо полкового командира выражало после счастливо отбытого смотра неудержимую радость. – Служба царская… нельзя… другой раз во фронте оборвешь… Сам извинюсь первый, вы меня знаете… Очень благодарил! – И он протянул руку ротному.
– Помилуйте, генерал, да смею ли я! – отвечал капитан, краснея носом, улыбаясь и раскрывая улыбкой недостаток двух передних зубов, выбитых прикладом под Измаилом.
– Да господину Долохову передайте, что я его не забуду, чтоб он был спокоен. Да скажите, пожалуйста, я всё хотел спросить, что он, как себя ведет? И всё…
– По службе очень исправен, ваше превосходительство… но карахтер… – сказал Тимохин.
– А что, что характер? – спросил полковой командир.
– Находит, ваше превосходительство, днями, – говорил капитан, – то и умен, и учен, и добр. А то зверь. В Польше убил было жида, изволите знать…
– Ну да, ну да, – сказал полковой командир, – всё надо пожалеть молодого человека в несчастии. Ведь большие связи… Так вы того…
– Слушаю, ваше превосходительство, – сказал Тимохин, улыбкой давая чувствовать, что он понимает желания начальника.
– Ну да, ну да.
Полковой командир отыскал в рядах Долохова и придержал лошадь.
– До первого дела – эполеты, – сказал он ему.
Долохов оглянулся, ничего не сказал и не изменил выражения своего насмешливо улыбающегося рта.
– Ну, вот и хорошо, – продолжал полковой командир. – Людям по чарке водки от меня, – прибавил он, чтобы солдаты слышали. – Благодарю всех! Слава Богу! – И он, обогнав роту, подъехал к другой.
– Что ж, он, право, хороший человек; с ним служить можно, – сказал Тимохин субалтерн офицеру, шедшему подле него.
– Одно слово, червонный!… (полкового командира прозвали червонным королем) – смеясь, сказал субалтерн офицер.
Счастливое расположение духа начальства после смотра перешло и к солдатам. Рота шла весело. Со всех сторон переговаривались солдатские голоса.
– Как же сказывали, Кутузов кривой, об одном глазу?
– А то нет! Вовсе кривой.
– Не… брат, глазастее тебя. Сапоги и подвертки – всё оглядел…
– Как он, братец ты мой, глянет на ноги мне… ну! думаю…
– А другой то австрияк, с ним был, словно мелом вымазан. Как мука, белый. Я чай, как амуницию чистят!
– Что, Федешоу!… сказывал он, что ли, когда стражения начнутся, ты ближе стоял? Говорили всё, в Брунове сам Бунапарте стоит.
– Бунапарте стоит! ишь врет, дура! Чего не знает! Теперь пруссак бунтует. Австрияк его, значит, усмиряет. Как он замирится, тогда и с Бунапартом война откроется. А то, говорит, в Брунове Бунапарте стоит! То то и видно, что дурак. Ты слушай больше.
– Вишь черти квартирьеры! Пятая рота, гляди, уже в деревню заворачивает, они кашу сварят, а мы еще до места не дойдем.
– Дай сухарика то, чорт.
– А табаку то вчера дал? То то, брат. Ну, на, Бог с тобой.
– Хоть бы привал сделали, а то еще верст пять пропрем не емши.
– То то любо было, как немцы нам коляски подавали. Едешь, знай: важно!
– А здесь, братец, народ вовсе оголтелый пошел. Там всё как будто поляк был, всё русской короны; а нынче, брат, сплошной немец пошел.
– Песенники вперед! – послышался крик капитана.
И перед роту с разных рядов выбежало человек двадцать. Барабанщик запевало обернулся лицом к песенникам, и, махнув рукой, затянул протяжную солдатскую песню, начинавшуюся: «Не заря ли, солнышко занималося…» и кончавшуюся словами: «То то, братцы, будет слава нам с Каменскиим отцом…» Песня эта была сложена в Турции и пелась теперь в Австрии, только с тем изменением, что на место «Каменскиим отцом» вставляли слова: «Кутузовым отцом».
Оторвав по солдатски эти последние слова и махнув руками, как будто он бросал что то на землю, барабанщик, сухой и красивый солдат лет сорока, строго оглянул солдат песенников и зажмурился. Потом, убедившись, что все глаза устремлены на него, он как будто осторожно приподнял обеими руками какую то невидимую, драгоценную вещь над головой, подержал ее так несколько секунд и вдруг отчаянно бросил ее:
Ах, вы, сени мои, сени!
«Сени новые мои…», подхватили двадцать голосов, и ложечник, несмотря на тяжесть амуниции, резво выскочил вперед и пошел задом перед ротой, пошевеливая плечами и угрожая кому то ложками. Солдаты, в такт песни размахивая руками, шли просторным шагом, невольно попадая в ногу. Сзади роты послышались звуки колес, похрускиванье рессор и топот лошадей.
Кутузов со свитой возвращался в город. Главнокомандующий дал знак, чтобы люди продолжали итти вольно, и на его лице и на всех лицах его свиты выразилось удовольствие при звуках песни, при виде пляшущего солдата и весело и бойко идущих солдат роты. Во втором ряду, с правого фланга, с которого коляска обгоняла роты, невольно бросался в глаза голубоглазый солдат, Долохов, который особенно бойко и грациозно шел в такт песни и глядел на лица проезжающих с таким выражением, как будто он жалел всех, кто не шел в это время с ротой. Гусарский корнет из свиты Кутузова, передразнивавший полкового командира, отстал от коляски и подъехал к Долохову.
Гусарский корнет Жерков одно время в Петербурге принадлежал к тому буйному обществу, которым руководил Долохов. За границей Жерков встретил Долохова солдатом, но не счел нужным узнать его. Теперь, после разговора Кутузова с разжалованным, он с радостью старого друга обратился к нему:
– Друг сердечный, ты как? – сказал он при звуках песни, ровняя шаг своей лошади с шагом роты.
– Я как? – отвечал холодно Долохов, – как видишь.
Бойкая песня придавала особенное значение тону развязной веселости, с которой говорил Жерков, и умышленной холодности ответов Долохова.
– Ну, как ладишь с начальством? – спросил Жерков.
– Ничего, хорошие люди. Ты как в штаб затесался?
– Прикомандирован, дежурю.
Они помолчали.
«Выпускала сокола да из правого рукава», говорила песня, невольно возбуждая бодрое, веселое чувство. Разговор их, вероятно, был бы другой, ежели бы они говорили не при звуках песни.
– Что правда, австрийцев побили? – спросил Долохов.
– А чорт их знает, говорят.
– Я рад, – отвечал Долохов коротко и ясно, как того требовала песня.
– Что ж, приходи к нам когда вечерком, фараон заложишь, – сказал Жерков.
– Или у вас денег много завелось?
– Приходи.
– Нельзя. Зарок дал. Не пью и не играю, пока не произведут.
– Да что ж, до первого дела…
– Там видно будет.
Опять они помолчали.
– Ты заходи, коли что нужно, все в штабе помогут… – сказал Жерков.
Долохов усмехнулся.
– Ты лучше не беспокойся. Мне что нужно, я просить не стану, сам возьму.
– Да что ж, я так…
– Ну, и я так.
– Прощай.
– Будь здоров…
… и высоко, и далеко,
На родиму сторону…
Жерков тронул шпорами лошадь, которая раза три, горячась, перебила ногами, не зная, с какой начать, справилась и поскакала, обгоняя роту и догоняя коляску, тоже в такт песни.

Возвратившись со смотра, Кутузов, сопутствуемый австрийским генералом, прошел в свой кабинет и, кликнув адъютанта, приказал подать себе некоторые бумаги, относившиеся до состояния приходивших войск, и письма, полученные от эрцгерцога Фердинанда, начальствовавшего передовою армией. Князь Андрей Болконский с требуемыми бумагами вошел в кабинет главнокомандующего. Перед разложенным на столе планом сидели Кутузов и австрийский член гофкригсрата.
– А… – сказал Кутузов, оглядываясь на Болконского, как будто этим словом приглашая адъютанта подождать, и продолжал по французски начатый разговор.
– Я только говорю одно, генерал, – говорил Кутузов с приятным изяществом выражений и интонации, заставлявшим вслушиваться в каждое неторопливо сказанное слово. Видно было, что Кутузов и сам с удовольствием слушал себя. – Я только одно говорю, генерал, что ежели бы дело зависело от моего личного желания, то воля его величества императора Франца давно была бы исполнена. Я давно уже присоединился бы к эрцгерцогу. И верьте моей чести, что для меня лично передать высшее начальство армией более меня сведущему и искусному генералу, какими так обильна Австрия, и сложить с себя всю эту тяжкую ответственность для меня лично было бы отрадой. Но обстоятельства бывают сильнее нас, генерал.
И Кутузов улыбнулся с таким выражением, как будто он говорил: «Вы имеете полное право не верить мне, и даже мне совершенно всё равно, верите ли вы мне или нет, но вы не имеете повода сказать мне это. И в этом то всё дело».
Австрийский генерал имел недовольный вид, но не мог не в том же тоне отвечать Кутузову.
– Напротив, – сказал он ворчливым и сердитым тоном, так противоречившим лестному значению произносимых слов, – напротив, участие вашего превосходительства в общем деле высоко ценится его величеством; но мы полагаем, что настоящее замедление лишает славные русские войска и их главнокомандующих тех лавров, которые они привыкли пожинать в битвах, – закончил он видимо приготовленную фразу.
Кутузов поклонился, не изменяя улыбки.
– А я так убежден и, основываясь на последнем письме, которым почтил меня его высочество эрцгерцог Фердинанд, предполагаю, что австрийские войска, под начальством столь искусного помощника, каков генерал Мак, теперь уже одержали решительную победу и не нуждаются более в нашей помощи, – сказал Кутузов.
Генерал нахмурился. Хотя и не было положительных известий о поражении австрийцев, но было слишком много обстоятельств, подтверждавших общие невыгодные слухи; и потому предположение Кутузова о победе австрийцев было весьма похоже на насмешку. Но Кутузов кротко улыбался, всё с тем же выражением, которое говорило, что он имеет право предполагать это. Действительно, последнее письмо, полученное им из армии Мака, извещало его о победе и о самом выгодном стратегическом положении армии.
– Дай ка сюда это письмо, – сказал Кутузов, обращаясь к князю Андрею. – Вот изволите видеть. – И Кутузов, с насмешливою улыбкой на концах губ, прочел по немецки австрийскому генералу следующее место из письма эрцгерцога Фердинанда: «Wir haben vollkommen zusammengehaltene Krafte, nahe an 70 000 Mann, um den Feind, wenn er den Lech passirte, angreifen und schlagen zu konnen. Wir konnen, da wir Meister von Ulm sind, den Vortheil, auch von beiden Uferien der Donau Meister zu bleiben, nicht verlieren; mithin auch jeden Augenblick, wenn der Feind den Lech nicht passirte, die Donau ubersetzen, uns auf seine Communikations Linie werfen, die Donau unterhalb repassiren und dem Feinde, wenn er sich gegen unsere treue Allirte mit ganzer Macht wenden wollte, seine Absicht alabald vereitelien. Wir werden auf solche Weise den Zeitpunkt, wo die Kaiserlich Ruseische Armee ausgerustet sein wird, muthig entgegenharren, und sodann leicht gemeinschaftlich die Moglichkeit finden, dem Feinde das Schicksal zuzubereiten, so er verdient». [Мы имеем вполне сосредоточенные силы, около 70 000 человек, так что мы можем атаковать и разбить неприятеля в случае переправы его через Лех. Так как мы уже владеем Ульмом, то мы можем удерживать за собою выгоду командования обоими берегами Дуная, стало быть, ежеминутно, в случае если неприятель не перейдет через Лех, переправиться через Дунай, броситься на его коммуникационную линию, ниже перейти обратно Дунай и неприятелю, если он вздумает обратить всю свою силу на наших верных союзников, не дать исполнить его намерение. Таким образом мы будем бодро ожидать времени, когда императорская российская армия совсем изготовится, и затем вместе легко найдем возможность уготовить неприятелю участь, коей он заслуживает».]

4.3.1 Определение линейного пространства

Пусть ā , , - элементы некоторого множества ā , , L и λ , μ - действительные числа, λ , μ R ..

Множество L называется линейным или векторным пространством, если определены две операции:

1 0 . Сложение. Каждой паре элементов этого множества поставлен в соответствие элемент того же множества, называемый их суммой

ā + =

2°. Умножение на число. Любому действительному числу λ и элементу ā L ставится в соответствие элемент того же множества λ ā L и выполняются следующие свойства:

1. ā+ = + ā;

2. ā+(+ )=(ā+ )+ ;

3. существуетнулевой элемент
, такой, что ā +=ā ;

4. существуетпротивоположный элемент -
такой, что ā +(-ā )=.

Если λ , μ - действительные числа, то:

5. λ(μ , ā)= λ μ ā ;

6. 1ā= ā;

7. λ(ā +)= λ ā+λ ;

8. (λ+ μ ) ā=λ ā + μ ā

Элементы линейного пространства ā, , ... называют векторами.

Упражнение. Покажите самостоятельно, что данные множества образуют линейные пространства:

1) Множество геометрических векторов на плоскости;

2) Множество геометрических векторов в трехмерном пространстве;

3) Множество многочленов некоторой степени;

4) Множество матриц одинаковой размерности.

4.3.2 Линейно зависимые и независимые векторы. Размерность и базис пространства

Линейной комбинацией векторов ā 1 , ā 2 , …, ā n L называется вектор того же пространства вида:

,

где λ i - действительные числа.

Векторы ā 1 , .. , ā n называются линейно независимыми, если их линейная комбинация будет нулевым вектором в том и только в том случае, когда все λ i равны нулю, то есть

λ i =0

Если же линейная комбинация будет нулевым вектором и хотя бы один из λ i отличен от нуля, то эти векторы называются линейно-зависимыми. Последнее означает, что хотя бы один из векторов может быть представлен как линейная комбинация других векторов. Действительно, пусть и, например,
. тогда,
, где

.

Максимально линейно-независимая упорядоченная система векторов называется базисом пространства L . Число векторов базиса называется размерностью пространства.

Допустим, что существует n линейно-независимых векторов, тогда пространство называют n -мерным. Другие векторы пространства могут быть представлены как линейная комбинация n векторов базиса. За базис n - мерного пространства можно взять любые n линейно-независимых векторов этого пространства.

Пример 17. Найти базис и размерность данных линейных пространств:

а) множества векторов, лежащих на прямой (коллинеарных некоторой прямой)

б) множество векторов, принадлежащих плоскости

в) множество векторов трёхмерного пространства

г) множество многочленов степени не выше второй.

Решение.

а) Любые два вектора, лежащие на прямой будут линейно-зависимыми, так как вектора коллинеарные
, то
, λ - скаляр. Следовательно, базисом данного пространства является только один (любой) вектор, отличный от нулевого.

Обычно это пространство обозначают R , размерность его равна 1.

б) любые два неколлинеарные векторы
будут линейно-независимы, а любые три вектора на плоскости - линейно-зависимы. Для любого вектора , существуют числа и такие, что
. Пространство называют двумерным, обозначают R 2 .

Базис двумерного пространства образуют любые два неколлинеарных вектора.

в) Любые три некомпланарные векторы будут линейно независимые, они образуют базис трехмерного пространства R 3 .

г) В качестве базиса пространства многочленов степени не выше второй можно выбрать такие три вектора: ē 1 = x 2 ; ē 2 = x ; ē 3 =1 .

(1 - это многочлен, тождественно равный единице). Данное пространство будет трехмерным.

Ве́кторное (или лине́йное ) простра́нство - математическая структура , которая представляет собой набор элементов, называемых векторами , для которых определены операции сложения друг с другом и умножения на число - скаляр . Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного , комплексного или любого другого поля чисел . Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил . При этом следует отметить, что вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы .

Векторные пространства являются предметом изучения линейной алгебры . Одна из главных характеристик векторного пространства - его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубому геометрическому описанию, число направлений, невыразимых друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением . Подобные пространства естественным образом появляются в математическом анализе , преимущественно в виде бесконечномерных функциональных пространств (англ. ) , где в качестве векторов выступают функции . Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев - подходящей топологией , что позволяет определить понятия близости и непрерывности . Такие топологические векторные пространства , в частности, банаховы и гильбертовы , допускают более глубокое изучение.

Кроме векторов, линейная алгебра изучает также тензоры более высокого ранга (скаляр считается тензором ранга 0, вектор - тензором ранга 1).

Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку . Именно тогда своё развитие получили аналитическая геометрия , учения о матрицах , системах линейных уравнений , евклидовых векторах .

Энциклопедичный YouTube

  • 1 / 5

    Линейное , или векторное пространство V (F) {\displaystyle V\left(F\right)} над полем F {\displaystyle F} - это упорядоченная четвёрка (V , F , + , ⋅) {\displaystyle (V,F,+,\cdot)} , где

    • V {\displaystyle V} - непустое множество элементов произвольной природы, которые называются векторами ;
    • F {\displaystyle F} - поле , элементы которого называются скалярами ;
    • Определена операция сложения векторов V × V → V {\displaystyle V\times V\to V} , сопоставляющая каждой паре элементов x , y {\displaystyle \mathbf {x} ,\mathbf {y} } множества V {\displaystyle V} V {\displaystyle V} , называемый их суммой и обозначаемый x + y {\displaystyle \mathbf {x} +\mathbf {y} } ;
    • Определена операция умножения векторов на скаляры F × V → V {\displaystyle F\times V\to V} , сопоставляющая каждому элементу λ {\displaystyle \lambda } поля F {\displaystyle F} и каждому элементу x {\displaystyle \mathbf {x} } множества V {\displaystyle V} единственный элемент множества V {\displaystyle V} , обозначаемый λ ⋅ x {\displaystyle \lambda \cdot \mathbf {x} } или λ x {\displaystyle \lambda \mathbf {x} } ;

    Векторные пространства, заданные на одном и том же множестве элементов, но над различными полями, будут различными векторными пространствами (например, множество пар действительных чисел R 2 {\displaystyle \mathbb {R} ^{2}} может быть двумерным векторным пространством над полем действительных чисел либо одномерным - над полем комплексных чисел).

    Простейшие свойства

    1. Векторное пространство является абелевой группой по сложению.
    2. Нейтральный элемент 0 ∈ V {\displaystyle \mathbf {0} \in V}
    3. 0 ⋅ x = 0 {\displaystyle 0\cdot \mathbf {x} =\mathbf {0} } для любого .
    4. Для любого x ∈ V {\displaystyle \mathbf {x} \in V} противоположный элемент − x ∈ V {\displaystyle -\mathbf {x} \in V} является единственным, что вытекает из групповых свойств.
    5. 1 ⋅ x = x {\displaystyle 1\cdot \mathbf {x} =\mathbf {x} } для любого x ∈ V {\displaystyle \mathbf {x} \in V} .
    6. (− α) ⋅ x = α ⋅ (− x) = − (α x) {\displaystyle (-\alpha)\cdot \mathbf {x} =\alpha \cdot (-\mathbf {x})=-(\alpha \mathbf {x})} для любых и x ∈ V {\displaystyle \mathbf {x} \in V} .
    7. α ⋅ 0 = 0 {\displaystyle \alpha \cdot \mathbf {0} =\mathbf {0} } для любого α ∈ F {\displaystyle \alpha \in F} .

    Связанные определения и свойства

    Подпространство

    Алгебраическое определение: Линейное подпространство или векторное подпространство ― непустое подмножество K {\displaystyle K} линейного пространства V {\displaystyle V} такое, что K {\displaystyle K} само является линейным пространством по отношению к определенным в V {\displaystyle V} действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как L a t (V) {\displaystyle \mathrm {Lat} (V)} . Чтобы подмножество было подпространством, необходимо и достаточно, чтобы

    Последние два утверждения эквивалентны следующему:

    Для всяких векторов x , y ∈ K {\displaystyle \mathbf {x} ,\mathbf {y} \in K} , вектор α x + β y {\displaystyle \alpha \mathbf {x} +\beta \mathbf {y} } также принадлежал K {\displaystyle K} для любых α , β ∈ F {\displaystyle \alpha ,\beta \in F} .

    В частности, векторное пространство, состоящее из одного лишь нулевого вектора, является подпространством любого пространства; любое пространство является подпространством самого себя. Подпространства, не совпадающие с этими двумя, называют собственными или нетривиальными .

    Свойства подпространств

    Линейные комбинации

    Конечная сумма вида

    α 1 x 1 + α 2 x 2 + … + α n x n {\displaystyle \alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}}

    Линейная комбинация называется:

    Базис. Размерность

    Векторы x 1 , x 2 , … , x n {\displaystyle \mathbf {x} _{1},\mathbf {x} _{2},\ldots ,\mathbf {x} _{n}} называются линейно зависимыми , если существует их нетривиальная линейная комбинация, равная нулю:

    α 1 x 1 + α 2 x 2 + … + α n x n = 0 , | α 1 | + | α 2 | + … + | α n | ≠ 0. {\displaystyle \alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}=\mathbf {0} ,\quad \ |\alpha _{1}|+|\alpha _{2}|+\ldots +|\alpha _{n}|\neq 0.}

    В противном случае эти векторы называются линейно независимыми .

    Данное определение допускает следующее обобщение: бесконечное множество векторов из V {\displaystyle V} называется линейно зависимым , если линейно зависимо некоторое конечное его подмножество, и линейно независимым , если любое его конечное подмножество линейно независимо.

    Свойства базиса:

    x = α 1 x 1 + α 2 x 2 + … + α n x n {\displaystyle \mathbf {x} =\alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}} .

    Линейная оболочка

    Линейная оболочка подмножества X {\displaystyle X} линейного пространства V {\displaystyle V} - пересечение всех подпространств V {\displaystyle V} , содержащих X {\displaystyle X} .

    Линейная оболочка является подпространством V {\displaystyle V} .

    Линейная оболочка также называется подпространством, порожденным X {\displaystyle X} . Говорят также, что линейная оболочка V (X) {\displaystyle {\mathcal {V}}(X)} - пространство, натянутое на множество X {\displaystyle X} .



Понравилась статья? Поделитесь с друзьями!