Механизмы патогенеза наследственной патологии. Патогенез наследственных болезней

Мутация - начальное звено патогенеза. Под мутацией (от лат. mutatio - изменение) в широком смысле слова понимают изменение структуры гена, хромосомы или их числа. В результате мутаций образуется аномальный ген с измененным кодом.
Мутации могут быть благоприятными и неблагоприятными (патогенными). Патогенные мутации подразделяются по причине возникновения, по «масштабу» изменений генетического материала, по механизму его изменения.
По причине возникновения мутации делятся на спонтанные и индуцированные.
По «масштабу» изменений генетического материала мутации делятся на генные («точечные»), хромосомные, геномные.
По механизму изменения генетического материала (гена или хромосомы) мутации делятся на делеции - выпадение какого либо участка гена или хромосомы; транслокации - перемещения участка; инверсии - поворота участка на 180 градусов и др.
Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждения ДНК, называемых системами репарации.

Мутации как источник наследственных болезней

Мутация - устойчивое наследуемое изменение дезоксирибонуклеино-вой кислоты (ДНК). Мутацию характеризует изменение первичной нуклеотидной последовательности ДНК.
Дети наследуют мутации в половых клетках родителей, то есть гаметические мутации.
Мутации могут быть масштабными изменениями структуры хромосом, которые затрагивают миллионы нуклеотидов. К таким мутациям относятся дупликация (удвоение), делеция (удаление, потеря) и транслокация (перемещение из одного участка хромосомы в другой или другую хромосому) фрагментов хромосом.

Мутации в одном или нескольких нуклеотидах называют точечными.
Делеция или вставка одного или двух нуклеотидов в кодирующей части гена вызывают мутацию со сдвигом рамки считывания. В результате информационная рибонуклеиновая кислота (мРНК) разбивается на кодоны таким образом, что каждый следующий кодон мутантного гена считывается неправильно. Такие мутации меняют аминокислотную последовательность белка, что может обусловить потерю протеином функциональных свойств или извращение физиологической активности белка. Кроме того, сдвиг рамки может вызвать патологическое кодирование мутантным геном белка с абортивной (неполной) структурой. Такое происходит вследствие преждевременного формирования в последовательности кодонов гена терминирующего кодона, который кодирует сигнал к прекращению транскрипции.
При мутации, не меняющей смысла, изменение ДНК не меняет информацию об аминокислотной последовательности и структуру белка, кодируемую геном.
Пример - замена кодона УУУ на кодон УУЦ.
Оба этих кодона кодируют одну и ту же аминокислоту фенилаланин.
При мутации, искажающей смысл, появление одного кодона вместо другого последовательности ДНК приводит к замене одной из аминокислот в аминокислотной последовательности белка. Пример - появление кодона УУА лейцина вместо кодона УУУ фенилаланина.
При мутации, не затрагивающей смысл, замена нуклеотида превращает один из кодонов в терминирующий кодон, кодирующий сигнал к прекращению транскрипции. Такая мутация может быть причиной экспрессии геном абортивной аминокислотной последовательности белка. Пример - появление терминирующего кодона УУА вместо кодона УАУ тирозина.

Сплайсинг - это процесс удаления интронных последовательностей инфор мационной РНК. Интрон - участок ДНК между двумя экзонами (кодирующим последовательностями), который транскрибируется, но не кодирует аминокис лотную последовательность белка.
Иногда замена нуклеотида в экзоне меняет сплайсинг транскрипта, или образуя скрытый сайт сплайсинга, или нарушая функцию нормального сайта. Сай сплайсинга - участок ДНК, кодирующий сигнал к сплайсингу. В результате об разования скрытого сайта сплайсинга образуется белок с аномальной аминокис лотной последовательностью, лишенный какого-либо своего фрагмента. При на рушении функции нормального сайта сплайсинг не происходит, аминокислотная последовательность начинает содержать продукт трансляции интрона.

Крупная деления захватывает часть гена, весь ген или группу соседних генов В результате кодирующая часть гена теряется в такой степени, что синтеза белк: не происходит. Крупная делеция может быть причиной болезни Дюшенна (про грессирующего бульбарного паралича). Болезнь встречается в позднем возраст как прогрессирующие атрофия и паралич мышц языка, губ, нёба, глотки и горта ни. Заболевание связано с атрофической дегенерацией нейронов, иннервирую щих данные мышцы.

Атрофическая дегенерация в данном случае вторична относительно патологи ческих изменений мышц. Причиной миопатии Дюшенна является дефект дистро фина, то есть белка с молекулярной массой 427 000, который находится на внут ренней поверхности сарколеммы. Ген дистрофина - один из самых крупны генов человека; его длина - 2 млн нуклеотидов. Делеция захватывает ген неравномерно, чаще в его начале и середине. Недостаточность дистрофина ослабляет сарколемму, вызывает разрыв мембраны и причинно-следственный ряд, который завершается некрозом мышечных волокон.

Делеция может также привести к слиянию кодирующих последовательносте двух генов и образованию химерного белка. Такие мутации являются весьма нередкими при неравномерном кроссинговере между парными повторами гомологичных генов. Напомним, что кроссинговер - это реципрокный обмен между двумя парными хромосомами в мейозе, приводящий к переносу кластеру генов от каждой хромосомы к ее гомологу. Известен «ген-химера» альдостеронсинтетазы и 11-В-гидролазы. Обычно альдостеронсинтетазу содержат клетки поверхностной клубочковой зоны коры надпочечников. В результате мутации альдостерон-синтетаза появляется в их средней пучковой зоне. Клетки пучковой зоны под влиянием кортикотропина начинают усиленно секретировать не только корти-зол, но и альдостерон. Это обуславливает альдостеронизм как причину артериальной гипертензии.

При определяемом полом наследовании болезни она проявляется специфическим фенотипом только у субъектов определенного пола. Следует отличать данный вид наследования моногенных заболеваний от наследования болезней, кодируемых генами Х-хромосом. Во многом данный вид наследственной патологии определяется действием половых гормонов и другими отличиями мужского и женского организмов. Например, облысение до полового созревания наследуется по аутосомно-доминантному типу и редко составляет фенотип мужчины.

Рецессивное наследование, связанное с Х-хромосомой

При данном виде наследования:
1) почти все больные являются мужчинами;
2) если носителем патогенного аллеля является мать, то она, как правило, здорова;
3) фенотип болезни может быть следствием новой мутации в сегменте Х-хро-мосомы матери, не имеющей гомолога в Y-хромосоме;
4) больной мужчина никогда не передает свою болезнь по наследству сыновьям;
5) все дочери больного мужчины являются носителями патогенного аллеля (переносчиками болезни);
6) женщина-переносчик болезни передает ее 50% процентам своих сыновей;
7) никто из дочерей женщины-переносчика не страдает от моногенной болезни.

Для того, чтобы при рецессивном, связанном с Х-хромосомой наследовании моногенной болезни родилась больная девочка, необходимы следующие условия:
1) больной отец;
2) мать гетерозиготная или гомозиготная по мутантному аллелю.

У мужчин все гены на сегменте Х-хромосоме, не имеющем гомолога на Y-хромосоме, экспрессируются в фенотипе дискретным наследственным признаком. Так как моногенные болезни, наследуемые в связи с Х-хромосомой и по рецессивному типу, - это редкие заболевания, то женщина с такой моногенной болезнью - это большая редкость. Примерно половина братьев матери пробанда больны моногенной болезнью, передаваемой в связи с Х-хромосомой и по рецессивному типу.

Мозаицизм - это присутствие в организме не менее двух клеточных линий, которые отличаются по генотипу и кариотипу, но происходят из одной зиготы.
Деление клеток в многоклеточном организме всегда сопровождается рядом мутаций (одно деление клетки - 4-5 соматических мутаций). Соматические мутации такого генеза обычно устраняются действием многих механизмов коррекции ошибок воспроизведения генетического материала при репликации. Можно считать, что в организме вследствие мутаций при репликации на ранних стадиях формирования многоклеточного организма всегда существует вероятность возникновения новых клеточных линий, отличных по строению своего генетического материала от исходной клеточной линии. При реализации такой возможности органы начинают отчасти составляться клетками новой линии, отличающейся от основной линии своим генетическим материалом.

Клетки новой линии разбросаны в различных органах в виде скоплений, островков. Если бы все регуляторные и исполнительные аппараты состояли из клеток новой линии, то организм был бы обречен на гибель. Например, при синдроме Мак-Куна-Альбрихта скопления клеток новой линии мозаично составляют костную ткань, многие эндокринные железы формируют пигментные пятна кожи, обуславливают аномалии сердца и печени.

Если мутация, лежащая в основе мозаицизма, характеризует генотип гамет, то наследственная патология у детей больного с мозаицизмом всегда тяжелее наследственных аномалий без мозаицизма. Дело в том, что все клетки организма больного ребенка содержат болезнетворный аллель. Иными словами, весь многоклеточный организм больного состоит из клеток одной линии с аномальным генотипом. Иногда мозаицизм обуславливает внутриутробную гибель плода. Иногда репликация клеток нормальных линий компенсирует последствия мозаицизма, и рождается ребенок с патологией, обусловленной существованием в организме клеток патологических линий.

Импринтинг (запечатление) - это различие в экспрессии генетического материала в зависимости от того, кто передал его потомству, отец или мать. Выделяют тканеспецифичный импринтинг и импринтинг, зависящий от времени развития (периода онтогенеза). В одних тканях при тканеспецифичном импринтинге происходит экспрессия двух родительских аллелей, а в других только одной альтернативной формы гена.
В основе синдрома Прадера-Вилли лежит делеция части хромосомы 15. На данной хромосоме локализованы в тесной близости друг к другу определенные гены, которые экспрессируются только при условии, если их наследуют от матери или от отца. В зависимости от того, кто передает хромосому, подвергшуюся делеции, вследствие импринтинга развиваются разные фенотипы наследственных синдромов.
На нескольких хромосомах есть участки, которые содержат гены, экспрессия которых зависит от того, кто передал их по наследству, отец или мать. Некоторые из таких генов определяют процессы роста тела и формирование поведенческих навыков в ранние периоды онтогенеза. Другие гены такого рода вовлечены в канцерогенез. Импринтинг следует заподозрить в том случае, если наследственная болезнь возникает в ряду поколений через раз.

Причинами возникновения наследственных болезней и аномалий развития являются факторы, способные изменить качественную или количественную характеристику генотипа (структуру отдельных генов, хромосом, их число), то есть вызвать мутации. Такого рода факторы называют мутагенами. Мутагены классифицируют на экзогенные и эндогенные. Экзогенные мутагены могут быть химической, физической и биологической природы. Кхимическим экзогенным мутагенам относятся многие вещества промышленного производства (бензпирен, альдегиды, кетоны, эпоксид, бензол, асбест, фенол, формалин, ксилол и др.), пестициды. Выраженной мутагенной активностью обладает алкоголь. В клетках крови алкоголиков число дефектов в генетическом аппарате встречаются в 12-16 раз чаще, чем у непьющихили мало пьющих людей. Намного чаще в семьях алкоголиков рождаются дети с синдромами Дауна, Клайнфельтера, Патау, Эдвардса и другими хромосомными болезнями. Мутагенные свойства присущи и некоторым лекарственным препаратам (цитостатикам, акрихину, клофелину, соединениям ртути и др.), веществам, применяемым с пищей (сильный мутаген гидразин содержится в больших количествах в съедобных грибах, эстрагон и пиперин в черном перце; множество веществ, обладающих генотоксическими свойствами, образуется при кулинарной обработке жира и т.д.). Значительный генетический риск возникает при длительном употреблении человеком молока и мяса животных, в кормах которых преобладают травы, содержащие много мутагенов (например, люпин). Группу экзогенных физических мутагенов составляют все виды ионизирующей радиации (α-, β-, γ-, рентгеновские лучи), ультрафиолетовое излучение. Продуцентами биологических экзогенных мутагенов являются вирусыкори, краснухи, гепатита.

Эндогенные мутагены также могут быть химической (Н 2 О 2 , перекиси липидов, свободные радикалы) и физической (К 40 , С 14 , родон) природы.

Различают также истинные и косвенные мутагены. К числу последних относятся соединения, которыесами в обычном состоянии не оказывают повреждающего действия на генетический аппарат, однако, попав в организм, в процессе метаболизма приобретают мутагенные свойства. Например, некоторые широко распространенные азотсодержащие вещества, (нитраты азотистых удобрений), преобразуются в организме в весьма активные мутагены и канцерогены (нитриты).

Роль дополнительных условий в этиологии наследственных заболеваний в одних случаях весьма существенна (если развитие наследственной болезни, клиническое ее проявление сопряжено с действием определенных «проявляющих» факторов среды), в других менее значима, ограничивается лишь влиянием на экспрессивность болезни, не связанной с действием каких-либо специфических факторов среды.

6. Общие закономерности патогенеза наследственных болезней

Инициальным звеном патогенеза наследственных болезней являются мутации – внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признаетналичия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации – в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутацияили амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

Делеция (нехватка) – вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующиеим гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8....... 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8...... 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 – p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Н в – генов связано развитие одной из форм наследственных гемоглобинопатий – α-талассемии (см. раздел «Патофизиология системы крови»);

Дупликация – вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом – 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

Инверсия – вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° – 1, 2, 6, 5, 4,3, 7, 8 .... 10000;

Транслокация – вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз – реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенилаланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенил-аланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяет избежать развития болезни, наиболее тяжелого ее проявления – умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении β-цепи гемоглобина глутаниновая аминокислота заменена на валин, образуется нестабильный Н в S. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рециссивное или полудоминантное (более подробные сведения в разделе «Патология системы крови»).

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешнейили внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инголяции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание – пигментная ксеродерма – наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникает

а) выпадение нормальной наследственной информации,

б) увеличение объема нормальной наследственной информации,

в) замена нормальной наследственной информации на патологическую;

2) нарушением репарации поврежденной ДНК;

3) стойкими изменениями регуляции генной активности.

ОБЩИЙ ПАТОГЕНЕЗ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Наименование параметра Значение
Тема статьи: ОБЩИЙ ПАТОГЕНЕЗ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ
Рубрика (тематическая категория) Медицина

В 1909 году А. Гарод на примере алкаптонурии разработал классическую концепцию метаболического блока, как основы патогенеза наследственных нарушений обмена веществ. В 1941-1944 годах американские ученые Дж. У. Бидл и Э. Л. Тейтам сформулировали свой знаменитый принцип, перекинувший мостик между классической и биохимической генетикой - с одной стороны, и клиникой наследственных болезней, с другой.

В исходном варианте принцип Бидла-Тейтама звучит, как ʼʼодин ген - один фермент - один признак (симптом)ʼʼ.

Согласно концепции метаболического блока, при наследственном заболевании имеется дефицит белка-фермента. Это ведет к нарушению определœенной биохимической реакции. Создается избыток вовлеченного в эту реакцию субстрата. Часть его может выделяться из организма или откладываться в тканях ʼʼболезни накопленияʼʼ или тезаурисмозы) . Избыток субстрата может вовлекаться в альтернативные превращения, давая такие продукты, которые отсутствуют или имеются лишь в виде следов в норме. Помимо избытка субстрата и действия альтернативных продуктов (которые бывают токсическими), часть симптомов наследственных болезней порождается нехваткой конечных продуктов блокированной реакции и подавлением реакций, следующих в цепи превращений за блокированным этапом.

Классическая концепция обменного блока хорошо объясняет симптомы многих наследственных болезней. К примеру, большинство случаев фенилкетонурии сопровождается дефицитом печеночного фермента фенилаланин-4-гидроксилазы. Это ведет к резкому увеличению концентрации фенилаланина в крови. Недостаток превращения фенилаланина в тирозин и подавление избытком фенилаланина активности тирозиназы поведет, в конечном итоге, к дефициту тирозиновых и триптофановых производных, включая пигмент меланин (что делает кожу, глаза и волосы больных светлыми), а также катехоламины (что проявляется гипотензией) и серотонин (что имеет отношение к развитию эпилептиморфных ʼʼсалаамовых судорогʼʼ. Избыток фенилаланина метаболизируется обходными путями, повышается концентрация его альтернативных продуктов метаболизма, избыток которых выводится с мочой (фенил-пировиноградная и фенилмолочная кислоты, фенилацетилглутамин). При этом образуются метаболиты, практически отсутствующие в норме (фенилэтиламин, ортофенилуксусная кислота). Эти соединœения рассматриваются, как нейротоксины и способны нарушать метаболизм липидов в мозге. В сочетании с дефицитом некоторых нейромедиаторов данный механизм считают ответственным за прогрессирующее снижение интеллекта у больных фенилкетонурией.

Современная трактовка принципа Бидла-Тейтама и положений Гарода о метаболическом блоке сильно изменилась по сравнению с оригинальной, поскольку появилось много новых данных, не укладывающихся в классическую схему.

1. Не всœе гены кодируют белки. Некоторые из них кодируют транспортные и рибосомальные РНК. Теоретически, мутации этих генов должны вызывать генетические болезни без первичного нарушения в структуре белков - за счёт аномалий в структуре транспортных РНК и рибосом..

2. Не всœе белки, кодируемые генами - ферменты. Множество наследственных болезней не связано с дефектом какого бы то ни было фермента͵ так как при них поражаются гены, кодирующие неэнзиматические белки. Метаболический блок не обязательно развивается как блок ферментативный (каталитический). Это должна быть и результат блока информационного (когда дефектный белок не распознает или не распознается

3. Один белок кодируется чаще всœего не одним геном, а несколькими, причем каждый ответственен за структуру одного полипептида в составе белка. Это создает основу для неаллельной гетерогенности наследственных болезней, когда мутации в различных генных локусах ведут к разным дефектам одного и того же белка. К примеру, синдром Леша-Нихена , характеризующийся у мальчиков умственной отсталостью, центральными спастическими параличами, хореоатетозом, гиперурикемией, артритом и уролитиазом, а также мазохистским поведением (больные кусают сами себя), вызван рецессивными сцепленными с Х-хромосомой дефектами гипоксантин:гуанин-фосфорибозилтрансферазы. Снижение активности этого фермента наблюдается и при семейной подагре. Но клиническая картина подагры сильно отличается от синдрома Леша-Нихена, несмотря на наличие общих симптомов (артрит, уролитиаз). Так, умственная активность у подагриков, напротив - повышена.

В функциональном отношении, в составе белков-ферментов выделяют каталитический участок, аллостерический участок и якорный участок, имеющие разные функции и кодируемые разными генами. У распознающих белков (к примеру, иммуноглобулинов) имеется вариабельная и константная часть. Патогенез наследственных болезней различается как при поражении генов, кодирующих функционально различные белки, так и при дефектах генов, шифрующих их функционально разные участки.

4. Гены в генотипах взаимодействуют, и, в силу этого, существует явление плейотропии - множественного действия гена. Стоит сказать, что для наследственной патологии это означает, что нельзя отождествлять одну нарушенную биохимическую реакцию с одним признаком болезни. Метаболические связи данной реакции могут привести к тому, что ее нарушение проявится в обмене веществ сразу многими эффектами.

Рассмотрим классификацию патогенетических вариантов наследственных нарушений метаболизма (по Е. Л. Розенфельду, 1980).

Наследственные болезни, поражающих белки-ферменты могут затрагивать каталитический участок фермента͵ якорный или аллостерический.

ОБЩИЙ ПАТОГЕНЕЗ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ - понятие и виды. Классификация и особенности категории "ОБЩИЙ ПАТОГЕНЕЗ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ" 2017, 2018.

Инициальным звеном патогенеза наследственных болезней являются мутации - внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генетиков не признает наличия специ-фических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации - в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутация или амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные или точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные аберрации, в свою очередь, подразделяются на следующие виды:

делеция (нехватка) - вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующие им гены хромосомы. Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция короткого плеча 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Нb - генов связано развитие одной из форм наследственных гемоглобинопатии – α-талассемии;

дупликация - вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко;

инверсия - вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180°.

транслокация - вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с X-хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс, который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенила-ланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенилаланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяют избежать развития болезни, наиболее тяжелого ее проявления - умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении (b-цепи гемоглобина глутаминовая аминокислота заменена на валин, образуется нестабильный HbS. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рецессивное или полудоминантное.

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешней или внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инсоляции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание - пигментная ксеродерма - наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникают:

а) выпадение нормальной наследственной информации;

б) увеличение объема нормальной наследственной информации;

в) замена нормальной наследственной информации на патологическую;

2. нарушением репарации поврежденной ДНК

3. стойкими изменениями регуляции генной активности.

Хромосомные болезни

Особую группу заболеваний, связанных со структурными изменениями в генетическом материале, составляют хромосомные болезни, условно относящиеся к категории наследственных. Дело в том, что в подавляющем большинстве случаев хромосомные болезни не передаются потомству, поскольку их носители чаще всего бывают бесплодными.

Хромосомные болезни обусловлены геномными или хромосомными мутациями, произошедшими в гамете одного из родителей, или в зиготе, сформированной гаметами с нормальным набором хромосом. В первом случае все клетки будущего ребенка будут содержать аномальный хромосомный набор (полная форма хромосомной болезни), во втором - развивается мозаичный организм, лишь часть клеток которого с аномальным набором хромосом (мозаичная форма болезни). Степень выраженности патологических признаков при мозаичной форме болезни слабее, нежели при полной.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбриогенеза, вследствие чего болезнь всегда характеризуется множественными пороками развития.

Частота хромосомных нарушений достаточно высока: из каждой 1000 живорожденных младенцев 3-4 имеют хромосомные болезни, у мертворожденных детей они составляют 6%; дисбалансом хромосом обусловлено около 40% спонтанных абортов (Н.П.Бочков, 1984). Дисбаланс, затрагивающий все пары хромосом, вызывает настолько значительные нарушения в организме, что они, как правило, оказываются несовместимыми с жизнью уже на ранних или более поздних этапах эмбриогенеза. Чаще встречаются изменения числа или структуры отдельных хромосом. Недостаток генетического материала вызывает более значительные дефекты, чем избыток. Полные моносомии, например, по аутосомам практически не обнаружены. По-видимому такой дисбаланс вызывает летальный исход уже в гаметогенезе или на стадии зиготы и ранней бластулы.

Основа для развития хромосомных болезней, связанных с изменением числа хромосом, формируется в гаметогенезе, во время первого или второго мейотических делений или в период дробления оплодотворенной яйцеклетки, чаще всего в результате нерасхождения хромосом. При оплодотворении аномальной яйцеклетки сперматозоидом с нормальным набором хромосом или нормальной яйцеклетки аномальным сперматозоидом, реже при сочетании двух гамет, содержащих измененное число хромосом, создаются предпосылки для развития хромосомной болезни.

Вероятность такого рода нарушений, а, следовательно, и рождения детей с хромосомными болезнями, нарастает с возрастом родителей, особенно матери.

Самой частой хромосомной болезнью является болезнь Дауна. Кариотип больных в 94% состоит из 47 хромосом за счет трисомии по 21 хромосоме. Примерно в 4% случаев отмечается транслокация лишней 21-ой хромосомы в 14-ю или 22-ю, общее число хромосом равно 46. Болезнь характеризуется резкой задержкой и нарушением физического и психического развития ребенка. Такие дети низкорослы, поздно начинают ходить, говорить. Бросаются в глаза внешний вид ребенка (характерная форма головы со скошенным затылком, широкая, глубоко запавшая переносица, монголоидный разрез глаз, открытый рот, неправильный рост зубов, макроглоссия, мышечная гипотония с разболтанностью суставов, особенно мизинца, брахидактилия, поперечная складка на ладони и др.) и выраженная умственная отсталость, иногда до полной идиотии. Нарушения отмечаются во всех системах и органах. Особенно часты пороки развития нервной (в 67%), сердечно-сосудистой (64,7%) систем. Как правило, изменены реакции гуморального и клеточного иммунитета, страдает система репарации поврежденной ДНК. С этим связана повышенная восприимчивость к инфекции, более высокий процент развития злокачественных новообразований, в особенности лейкозов. В большинстве случаев больные бесплодны. Однако, встречаются случаи рождения больной женщиной детей, часть из них страдают той же болезнью.

Второй по частоте (1:5000-7000 родов) патологией, обусловленной изменением числа аутосом, является синдром Патау (трисомия 13). Синдром характеризуется тяжелыми пороками головного мозга и лица (дефекты строения костей мозгового и лицевого черепа, головного мозга, глаз; микроцефалия, расщелина верхней губы и неба), полидактилией (чаще - гексодактилия), дефектами перегородок сердца, незавершенным поворотом кишечника, поликистозом почек, пороками развития других органов. 90% детей, родившихся с этой патологией, погибают в течение 1-го года жизни.

Третье место (1:7000 рождений) среди полисомии аутосом занимает трисомия 18 (синдром Эдвардса). Основные клинические проявления болезни: многочисленные пороки костной системы (патология строения лицевой части черепа: микрогнатия, эпикант, птоз, гипертелоризм), сердечно-сосудистой (дефекты межжелудочковой перегородки, пороки клапанов легочной артерии, аорты), гипоплазия ногтей, подковообразная почка, крипторхизм у мальчиков. 90% больных погибает на первом году жизни.

Намного чаще встречаются хромосомные болезни, связанные с нерасхождением половых хромосом. Известные варианты гоносомных полисомий приведены в таблице 6.

Таблица 6

Типы гоносомных полисомий, обнаруженных у новорожденных

(по Н.П. Бочкову, А.Ф. Захарову, В.И. Иванову; 1984)

Как следует из таблицы, подавляющее число полисомий по половым хромосомам приходится на трисомии XXX, XXY, XYY.

При трисомии по Х-хромосоме («сверхженщина») клинические признаки болезни нередко отсутствуют или минимальны. Болезнь диагностируется по обнаружению вместо одного двух телец Барра и по кариотипу 47,ХХХ. В других случаях у больных отмечается гипоплазия яичников, матки, бесплодие, различные степени умственной неполноценности. Увеличение в кариотипе числа Х-хромосом увеличивает проявление умственной отсталости. Такие женщины чаще, чем в общей популяции страдают шизофренией.

Варианты полисомий с участием Y-хромосом более многочислены и многообразны. Наиболее частый из них - синдром Клайнфельтера - обусловлен увеличением общего числа хромосом до 47 за счет Х-хромосомы. Больной мужчина (наличие Y-хромосомы доминирует при любом количестве X-хромосом) отличается высоким ростом, женским типом строения скелета, инертностью и умственной отсталостью. Генетический дисбаланс обычно начинает проявляться в период полового созревания недоразвитием мужских половых признаков. Яички уменьшены в размерах, наблюдается аспермия или олигоспермия, часто гинекомастия. Надежным диагностическим признаком синдрома служит обнаружение в клетках мужского организма полового хрома­тина. Синдром сверхклайнфельтера (XXXY, два тельца Барра) характеризуется большей выраженностью названных признаков, умственная несостоятельность достигает степени идиотии.

Обладатель кариотипа 47, XYY - «супермужчина» отличается импуль­сивным поведением с выраженными элементами агрессивности. Большое число таких индивидов выявляется среди заключенных.

Гоносомная моносомия встречается намного реже, чем полисомия, и ограничивается лишь моносомией X (синдром Шерешевского-Тернера). Кариотип состоит из 45 хромосом, половой хроматин отсутствует. Больные (женщины) отличаются низким ростом, короткой шеей, шейными боковыми кожными складками. Характерны лимфатический отек стоп, слабое развитие половых признаков, отсутствие гонад, гипоплазия матки и фалопиевых труб, первичная аменорея. Такие женщины бесплодны. Умственная способность, как правило, не страдает.

Случаев моносомии V не выявлено. По-видимому, отсутствие Х-хро-мосомы несовместимо с жизнью и особи типа «OV» гибнут на ранних этапах эмбриогенеза.

Хромосомные болезни, обусловленные структурными изменениями хромосом, встречаются реже и, как правило, приводят к более тяжелым последствиям: спонтанным абортам, недоношенности, мертворождению, ранней детской смертности.

Проявление генов опосредуется через процессы регуляции белковосинтетических процессов. В цепи ген-признак протекают сложные процессы, зависящие от многих факторов. Одни только структурные гены, непосредственно отвечающие за синтез белка, не в состоянии обеспечить детерминацию развития. В процессе обмена веществ одновременно имеет место активация синтеза не одним, целой группой ферментов, обеспечивающих последовательность определенной цепи реакций, поскольку каждый фермент связан со своим геном структурно-функциональной организации.

Согласно процессу генетической регуляции синтеза белка деятельность структурного гена находится под контролем гена-оператора, активность которого, в свою очередь, определяется геном-регулятором, продуктом длительности которого является белок-репрессор, способный связываться с тем или иным веществом, образовавшимся в клетке в процессе обмена. При этом, в зависимости от характера вещества, с которым связывается репрессор, возможно двоякое его действие на оперон: с одной стороны - тормозящее, с другой, если подавляющее влияние репрессора устраняется (связь с веществом) - начинается деятельность соответствующего оперона - активация синтеза.

Можно предполагать, что определенные изменения контролирующих генов наряду с мутациями структурных ответственны за возникновение генетически обусловленных болезней. Кроме того, в ряде случаев средовые факторы нарушают реализацию действия нормального гена, т.е. наследственную информацию. Отсюда появляется основание для утверждения, что в ряде случаев заболевания являются связанными не столько с патологией регуляции наследственной информации, сколько с патологией ее реализации.



В условиях эксперимента есть возможность заблокировать рецепторное поле клетки - мишень для действия стероидных гормонов с помощью, например, анилиновых красителей. В связи с этим происходит снятие регулирующего влияния гормонов и нарушение синтеза белка - нарушается реализация действия нормального гена.

Указанный механизм демонстративен при тестикулярной феминизации - заболевании, при котором формируется псевдогермафродит с наружными гениталиями по женскому типу (внутренние половые органы отсутствуют). При генетическом обследовании выявляется мужской набор половых хромосом, половой хроматин в клетках слизистой отсутствует. Патогенез страдания связан с первичной андрогеноустойчивостью органов-мишеней.

Один и тот же мутантный ген у разных организмов может проявить свой эффект различным образом. Фенотипическое проявление гена может варьировать по степени выраженности признака. Это явление связано с экспрессивностью гена - степенью выраженности действия в фенотипическом отношении. Один и тот же признак может проявляться у одних и не проявляется у других особей родственной группы - это явление называется пенетрантностью проявления гена - % особей в популяции, имеющих мутантный фенотип (отношение числа носителей патологического признака к числу носителей мутантного гена). Экспрессивность и пенетрантность характеризуют фенотипические проявления гена, что обусловлено взаимодействием генов в генотипе и различной реакцией генотипа на средовые факторы. Пенетрантность отражает гетерогенность популяции не по основному гену, определяющему конкретный признак, а по модификаторам, создающим генотипическую среду для проявления гена. К модификаторам относят простагландины, активные метаболиты, биоактивные вещества различного происхождения.

По характеру изменений генома выделяют следующие мутации:

1. Генные - связанные с одной парой нуклеотидов в полипептидной цепи ДНК (цитологически невидимые изменения).

2. Хромосомные - на уровне отдельной хромосомы (делеция - фрагментация хромосом, приводящая к утрате ее части; дупликация - удвоение участка, перестройки хромосом, обусловленные изменением групп сцепленных генов внутри хромосом - инверсия; перемещение участков - инсерция и др).

3. Геномные - а) полиплоидия - изменение числа хромосом, кратное гаплоидному набору; б) анэуплоидия (гетероплоидия) - некратное гаплоидному набору.

По проявлению в гетерозиготе:

1. Доминантные мутации.

2. Рецессивные мутации.

По уклонению от нормы:

1. Прямые мутации.

2. Реверсии (часть из них – обратные, супрессорные).

В зависимости от причин, вызвавших мутации:

1. Спонтанные

2. Индуцированные

По локализации в клетке:

1. Ядерные

2. Цитоплазматические

По отношению к особенностям наследования:

1. Генеративные, происходящие в половых клетках

2. Соматические

По фенотипу (летальные, морфологические, биохимические, поведенческие, чувствительности к повреждающим агентам и др.).

Мутации могут изменить поведение, касаться любых физиологических особенностей организма, вызывать изменение какого-либо фермента и, конечно, затрагивать строение особи. По влиянию на жизнеспособность мутации могут быть летальными и полулетальными, снижающими в большей или меньшей степени жизнеспособность организма. Могут быть практически нейтральными в данных условиях, прямо не влияющими на жизнеспособность и, наконец, хотя и редко, мутации, которые уже при возникновении оказываются полезными.

Итак, в связи с этим, согласно фенотипической классификации выделяют:

1. Морфологические мутации, при которых отмечается преимущественно изменение роста и формирования органов.

2. Физиологические мутации - повышающие или понижающие жизнедеятельность организма, полностью или частично тормозящие развитие (полу- и летальные мутации). Существует понятие о летальных генах. Такие гены (обычно в гомозиготном состоянии) или ведут к летальному исходу, или увеличивают его вероятность в раннем эмбриогенезе, или в раннем постнатальном периоде. В большинстве случаев конкретная патология пока не выявлена.

3. Биохимические мутации - мутации, тормозящие или изменяющие синтез определенных химических веществ в организме.

Приведенные принципы классификации дают возможность систематизировать наследственные болезни по характеристике генетического дефекта.

Классификация форм наследственной патологии .

Наследственность и среда играют роль этиологических факторов при любом заболевании, хотя и с разной долей участия. В связи с этим выделяют следующие группы наследственных болезней:

1) собственно наследственные болезни, в которых этиологическую роль играет изменение наследственных структур, роль среды заключается лишь в модификации проявлений заболевания. В эту группу входят моногеннно обусловленные болезни (фенилкетонурия, гемофилия, ахондроплазия), а также хромоомные болезни.

2) экогенетические заболевания, которые также являются наследственными, обусловленными патологическими мутациями, однако для их проявления необходимо специфическое воздействие среды. Например, серповидноклеточная анемия у гетерозиготных носителей при пониженном парциальном давлении кислорода; острая гемолитическая анемия у лиц с мутацией в локусе глюкозо-6-фосфат-дегидрогеназы под влиянием сульфаниламидов.

3) в этой группе многие распространенные заболевания, особенно у пожилых – гипертоническая болезнь, ишемическая болезнь сердца, язвенная болезнь желудка. Этиологическим фактором в их возникновении является средовое воздействие, однако его реализация зависит от индивидуальной генетически детерминируемой предрасположенности организма, в связи с чем эти болезни называют мультифакториальными или болезнями с наследственным предрасположением.

С генетической точки зрения наследственные болезни делят на генные и хромосомные. Генные болезни связаны с генными мутациями и далее по количеству затронутых генов выделяют моногенные и полигенные болезни. Выделение моногенных болезней основывается на их сегрегации в поколениях по закону Менделя. Полигенные – болезни с наследственным предрасположением, поскольку предрасположенность является многофакторной.

Хромосомные болезни – большая группа патологических состояний, основные проявления которых составляют множественные пороки развития и которые определяются отклонениями в содержании хромосомного материала.

Деление наследственных болезней на эти группы не формально. Генные болезни передаются из поколения в поколение без изменений, в то время как большинство хромосомных болезней вообще не передаются, структурные перестройки передаются с дополнительными перекомбинациями.

Генные болезни.

Ген может мутировать, приводя к изменению или полному отсутствию белка. В связи с этим выделяют отдельные формы генных болезней. Так, нарушение синтеза структурного белка ведет к возникновению пороков развития (синдактилия, полидактилия, брахидактилия, ахондроплазия, микроцефалия и т.д.), нарушение со стороны транспортного белка приводит к функциональным болезням (болезни зрения, слуха и др.), ферментопатии - с нарушением белков – ферментов.

По аутосомно-доминантному типу наследуется около 900 болезней: полидактилия, синдактилия и брахидактилия, астигматизм, гемералопия, анонихия, арахнодактилия и ахондроплазия.

При аутосомно-рецессивном типе наследования признак проявляется только у особей гомозиготных по данному гену, т.е. когда рецессивный ген получен от каждого родителя. По этому типу наследуется более 800 заболеваний, основная группа – ферментопатии (фенилкетонурия, алкаптонурия, амавротическая идиотия, галактоземия, мукополисахаридозы), различные виды глухоты и немоты.

Выделено также и неполное доминирование. Такой тип наследования показан для эссенциальной гиперхолестеринемии: соответствующий ген в гетерозиготном состоянии определяет лишь предрасположенность к гиперхолестеринемии, в гомозиготном же состоянии он приводит к наследственной форме патологии холестеринового обмена – ксантоматозу.

Наследование в связи с полом имеет ряд особенностей. Х и Y –хромосомы имеют общие (гомологичные) участки, в которых локализованы гены, наследуемые одинаково как у мужчин, так и у женщин. Например, пигментная ксеродерма, спастическая параплегия, эпидермальный буллез. Негомологичный участок Y-хромосомы (голандрическое наследование) содержит гены перепонок между пальцами и волосатых ушей с передачей только сыновьям.

Негомологичный участок Х-хромосомы (рецессивные для женщин и доминантные для мужчин в силу гемизиготности) содержит гены гемофилии, агаммаглобулинемии, несахарного диабета, дальтонизма, ихтиоза. К числу доминантных, полностью сцепленных с полом по Х-хромосоме (с ее негомологичным участком) относятся гипофосфатемический рахит, отсутствие резцов в челюстях. Выявлена также возможность передачи наследственных признаков через цитоплазму яйцеклетки (плазмогены) только через мать – слепота в результате атрофии зрительных нервов (синдром Лебера).

Хромосомные болезни отличаются от других наследственных заболеваний тем, что они за редким исключением ограничиваются распространением в пределах одного поколения в связи с полным отсутствием плодовитости у носителей. Тем не менее, хромосомные болезни относятся к группе наследственных, так как они обусловлены мутацией наследственного вещества в половых клетках одного или обоих родителей на хромосомном или геномном уровне. Клинически эти заболевания проявляются тяжелыми нарушениями психики в сочетании с рядом дефектов соматического развития. Хромосомные болезни встречаются в среднем с частотой 1: 250 новорожденных. У 90% эмбрионов с аномалиями хромосом происходит нарушение хромосомного баланса и большая часть прекращает свое развитие на ранних стадиях.

Факторы, ведущие к хромосомным аномалиям, по-видимому, общие:

1. Возраст матери. По сравнению со средним возрастом (19-24) у женщин после 35 лет вероятность рождения детей с хромосомными аномалиями возрастает в 10 раз, после 45 лет - в 60 раз. В отношении возраста отцов данных почти нет. Влияние возраста может быть и обратным, например, синдром Шерешевского-Тернера чаще появляется у детей молодых матерей.

2. Ионизирующая радиация - поскольку все виды ионизирующего излучения вызывают хромосомные аберрации в зародышевых и соматических клетках.

3. Вирусные инфекции - корь, краснуха, ветряная оспа, опоясывающий лишай, желтая лихорадка, вирусный гепатит, токсоплазмоз.

Хромосомные болезни в своей основе могут иметь либо структурные, либо числовые нарушения как со стороны аутосом, так и хромосом половых клеток.

1. Структурные нарушения аутосом: 5р - утрата короткого плеча (делеция) - синдром «кошачьего крика» - название обусловлено сходством плача ребенка с кошачьем мяуканьем. Это связано с нарушениями ЦНС и с нарушением гортани. Для синдрома характерны также микрогнатия, синдактилия. Отмечается понижение сопротивляемости к инфекциям, поэтому больные погибают рано. Выявляются различные пороки развития (аномалии сердца, почек, грыжи). Встречаются и другие хромосомные аберрации типа делеций: синдромы 4р, 13р, 18р и 18q, 21р, 22q. Транслокации могут быть несбалансированными, что приводит к патологическим состояниям их носителей и сбалансированными - фенотипически не проявляющимися. Структурные нарушения со стороны половых хромосом описаны при синдроме Шерешевского-Тернера со стороны единственной Х-хромосомы (р, q, r, изохромосомы р и q).

2. Числовые нарушения. Аномалии крупных хромосом 1-12 пары обычно летальны. Достаточная жизнеспособность имеет место при трисомии по 21 паре, аномальных половых хромосом и частичных аномалиях. Нуллисомия - отсутствие пары - нежизнеспособность. Моносомия - жизнеспособность только при синдроме ХО. Полиплоидии обычно летальны. Трисомия по 13 паре - синдром Патау - характеризуется множественными пороками головного мозга, сердца, почек, (дети погибают обычно на 3-4 месяце жизни). Трисомия по 18 паре - синдром Эдвардса - множественные дефекты жизненноважных органов, до 1 года обычно доживают не более 7% больных. Транслокационная форма болезни Дауна выражается переносом лишней хромосомы с 22, 4, 15 на 21 пару. Числовые нарушения по половым хромосомам встречаются в виде синдрома Клейнфельтера - ХХУ и его вариантах (ХХХУ, ХХХХУ), характеризуется снижением интеллекта и гипогонадизмом. Известны синдромы ХХХ и варианты, а также ХУУ - в этом случае добавочная У-хромосома влияет больше на поведение, чем на интеллект. Больные агрессивны, отличаются неправильным, даже криминальным поведением.

Явление мозаичности связано с разными видами соотношения нормальных и аномальных клеток. В этом случае - промежуточное положение между здоровыми и больными (стертые в клиническом отношении формы).

Важным методом предупреждения хромосомных болезней является планирование семьи. Так, в частности, идеальным условием считается зачатие в день овуляции. Также, за 1 месяц до зачатия не должно быть воздействия мутагенов (химических – их основной источник производство; физических – рентгеновское облучение в диагностических или лечебных целях). Особенно опасны вирусные инфекции и соответственно рекомендуется зачатие только спустя 6 месяцев после инфекции. Важно также повышенное введение витаминов – А, С, Е, фолиевой кислоты, микроэлементов – Са, Мg, Zn.

Важна также пренатальная диагностика: проводятся скриннинговые обследования с 16 недели оценка a-фетопротеина, при показаниях также амниоцентез, кариограмма, хориондиагностика.



Понравилась статья? Поделитесь с друзьями!