Афт и другие органические соединения клетки. Нуклеиновые кислоты, АТФ и другие органические соединения клетки

Тема: АТФ и другие органические соединения клетки /
Этапы урока Время Ход урока
Деятельность учителя Деятельность ученика
I.Оргмомент Оргмомент
II. Проверка д/з 15­20 мин. 1. ученик у доски сравнительная характеристика ДНК и РНК
2. ученик характеристика ДНК
3. ученик характеристика РНК
4. построение участка молекулы ДНК
5. принцип комплементарности. В чем он заключается. Изобразить на доске.
III.Изучение нового материала 20 мин. АТФ и прочие органические соединения клетки

1. Что такое энергия,Какие виды энергии вам известны?
2. Почему для жизнедеятельности любого организма необходима энергия?
3. Какие витамины вам известны? Какова их роль?
АТФ. Строение. Функции. Нуклеотиды являются структурной основой для целого ряда важных для
жизнедеятельности органических веществ. Наиболее широко распространенными среди них
являются макроэргические соединения (высокоэнергетические соединения, содержащие богатые
энергией, или макроэргические, связи), а среди последних - аденозинтрифосфатп (АТФ).
АТФ состоит из азотистого основания аденина, углевода рибозы и (в отличие от нуклеотидов ДНК и
РНК) трех остатков фосфорной кислоты (рис. 21).
АТФ - универсальный хранитель и переносчик энергии в клетке. Практически все идущие в клетке
биохимические реакции, которые требуют затрат энергии, в качестве ее источника используют АТФ.
При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ),
если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ
переходит в аденозинмонофосфат (АМФ). При отделении третьего и второго остатков фосфорной
кислоты освобождается большое количество энергии (до 40 кДж). Именно поэтому связь между
этими остатками фосфорной кислоты называют макроэргической (она обозначается символом ~).
Связь между рибозой и первым остатком фосфорной кислоты макроэргической не является, и при ее
расщеплении выделяется всего около 14 кДж энергии.
АТФ + H2O­ АДФ + H3PO4+ 40 кДж,
АДФ + H2O – АМФ + H3PO4 + 40кДж,
Макроэргические соединения могут образовываться и на основе других нуклеотидов. Например,
гуанозинтрифосфат (ГТФ) играет важную роль в ряде биохимических процессов, однако АТФ
является наиболее распространенным и универсальным источником энергии для большинства
биохимических реакций, протекающих в клетке. АТФ содержится в цитоплазме, митохондриях,
пластидах и ядрах.
Витамины. Биологически активные органические соединения - витамины (от лат, vita - жизнь)
совершенно необходимы в малых количествах для нормальной жизнедеятельности организмов. Они
играют важную роль в процессах обмена, часто являясь составной частью ферментов.
Витамины были открыты русским врачом Н. И. Луниным в 1880 г. Термин «витамины» предложен в
1912 г. польским ученым К. Функом. В настоящее время известно около 50 витаминов. Суточная
потребность в витаминах очень мала. Так, для человека меньше всего требуется витамина В12 -
0,003 мг/сут, а больше всего - витамина С - 75 мг/сут.
Витамины обозначают латинскими буквами, хотя у каждого из них есть и название. Например,
витамин С - аскорбиновая кислота, витамин А - ретинол и так далее. Одни витамины
растворяются в жирах, и их называют жирорастворимыми (A, D, Е, К), другие - растворимы в воде
(С, В, РР, Н) и соответственно называются водорастворимыми.
Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих
физиологических функций в организме.

>> АТФ и другие органические соединения клетки

АТФ и другие органические соединения клетки.

1. Какие органические вещества вы знаете?
2. Какие витамины вам извеетны? Какова их роль?
3. Какие виды энергии вам известны?
4. Почему для жизнедеятельности любого организма необходима энергия?

Аденозинтрифосфат (АТФ) - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты (рис. 12), содержится в цитоплазме, митохондриях, пластидах и ядрах.

АТФ - неустойчивая структура. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии.

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж,
АДФ + Н2О →АМФ + Н3РО4 + 40 кДж.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом -)так как при ее разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 13).

АТФ - универсальный источник энергии для всех реакций, протекающих в клетке.

Витамины (от лат. vita - жизнь) - сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов . В отличие от других органических веществ витамины не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины ), другие витамины поступают в организм с пищей.


Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (А, Д, Е и К) и водорастворимые (В, С, РР и др.) витамины.

Витамины играют большую роль в обмене веществ и других процессах жизнедеятельности организма. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме.

Кроме перечисленных выше органических соединений (углеводы, липиды , белки , нуклеиновые кислоты , витамины) в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.

Аденозинтрифосфат (АТФ). Аденозиндифосфат (АДФ). Аденозинмонофосфат (АМФ). Макроэргическая связь.

Витамины жирорастворимые и водорастворимые.


1. Какое строение имеет молекула АТФ?
2. Какую функцию выполняет АТФ?
3. Какие связи называются макроэргическими?
4. Какую роль выполняют в организме витамины?


Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

«Органическая шерсть» - Комплект для новорожденного. Содержите малыша в комфортном тепле и не сковывает движения. Энергетика шерсти похожа на энергетику мамы. Поглощает влагу. Рост 86, 1-2 года Вкладыши для груди. Одежда Organic & Natural ™ Baby из органической шерсти: Нежная и мягкая. Нежная шерсть и наружный шов не раздражает кожу малыша.

«Уроки по органической химии» - Качественная и количественная Фактическая. Термин «органические вещества» введен в науку Й.Я.Берцелиусом в 1807 году. Phosphorus. М.Бертло синтезирует жиры (1854 г.). Классификация органических веществ. А.М.Бутлеров синтезирует сахаристое вещество (1861 г.). Вопросы. А.Кольбе синтезирует уксусную кислоту (1845 г.).

«Эволюция органического мира» - Копчик человека. Гоацин - современная птица, некоторыми признаками сходная с археоптериксом. Интернет источники. Эволюция. Ехидна. Казуар – австралийский страус. Утконос. Изучив материал темы «Доказательства эволюции органического мира» Вы должны уметь: Доказательства эволюции органического мира. Одиннадцатилетний Прутвирай Патил из деревни Сангливади в индийском штате Махараштра.

«Органические вещества клетки» - Спасибо за внимание. Каковы функции углеводов и липидов? Органические вещества, входящие в состав клетки. Вывод. Липиды. Перечислите функции белков. Закрепление. Сделать вывод. Повторить домашнее задание Изучить новую тему. Углеводы состоят из атомов углерода и молекул воды. Какие органические вещества входят в состав клеток?

«Шиповые соединения» - Для упрочнения соединений применяют нагели. Косую стамеску для чистового точения затачивают с двух сторон. Рабочая часть долота имеет форму клина с углом 35 . В зависимости от вида клея изделие выдерживают в сжатом состоянии до 24 ч. Долото предназначено для долбления гнезд и проушин. Характерным элементом фасонных деталей являются галтели.

«Биологически активные соединения» - Мировое производство важнейших жиров и масел. Латанопрост (Ксалатан) – антиглаукомное средство (на основе синтетического простагландина группы F2a). Каскад арахидоновой к-ты. Простые липиды – воски. Первичная классификация липидов биологических мембран. Биологически активные соединения живых организмов.

Полное название образовательного учреждения: Департамент среднего профессионального образования Томской области ОГБПОУ «Колпашевский социально-промышленный колледж»

Курс: Биология

Раздел: Общая биология

Возрастная группа: 10 класс

Тема: Биополимеры. Нуклеиновые кислоты, АТФ и другие органические соединения.

Цель занятия: продолжить изучение биополимеров, способствовать формированию приемов логической деятельности, познавательных способностей.

Задачи урока:

Образовательные: познакомить студентов с понятиями нуклеиновые кислоты, способствовать осмыслению и усвоению материала.

Развивающие: развивать когнитивные качества студентов (умение видеть проблему, умение задавать вопросы).

Воспитательные: формировать положительную мотивацию к изучению биологии, стремление получить конечный результат, умение принимать решения и делать выводы.

Время реализации: 90 мин.

Оборудование:

  • ПК и видеопроектор;
  • авторская презентация, созданная в среде Power Point;
  • раздаточный дидактический материал (список кодирования аминокислот);

План:

1. Типы нуклеиновых кислот.

2. Строение ДНК.

3. Основные виды РНК.

4. Транскрипция.

5. АТФ и другие органические соединения клетки.

Ход занятия:

I. Организационный момент.
Проверка готовности к занятию.

II. Повторение.

Устный опрос:

1. Охарактеризуйте функции жиров в клетке.

2. В чем отличие биополимеров белков от биополимеров углеводов? В чем их сходство?

Тестирование (3 варианта)

III. Изучение нового материала.

1. Типы нуклеиновых кислот. Название нуклеиновые кислоты происходит от латинского слова «нуклеос», т.е. ядро: они впервые были обнаружены в клеточных ядрах. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения и играют центральную роль в хранении и передаче наследственной информации. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Каждый из нуклеотидов, входящих в состав РНК, содержит триуглеродный сахар - рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, - аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

2. Строение ДНК . Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу; одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых основания.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц.

Схематически сказанное можно выразить следующим образом:

А (аденин) - Т (тимин)

Т (тимин) - А (аденин)

Г (гуанин) - Ц (цитозин)

Ц (цитозин) - Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

3. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие и другой вид РНК - транспортная (т-РНК), которая подносит аминокислоты к месту образования белковых молекул - рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (р-РНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина - урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация обо всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

4. Транскрипция.

Процесс образования и-РНК называется транскрипцией (от лат. «транскрипцио» - переписывание). Транскрипция происходит в ядре клетки. ДНК → и-РНК с участием фермента полимеразы. т-РНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот, т-РНК получает команду от и-РНК - антикодон узнает кодон и несет аминокислоту.

5. АТФ и другие органические соединения клетки

В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров. К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды - мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что, в конечном счете, приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями.

АТФ - универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.

Средняя продолжительность жизни 1 молекулы АТФ в организме человека менее минуты, поэтому она расщепляется и восстанавливается 2400 раз в сутки.

В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ = АДФ + Ф + Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

АТФ + H2O → АДФ + H3PO4 + энергия(40 кДж/моль)

АТФ + H2O → АМФ + H4P2O7 + энергия(40 кДж/моль)

АДФ + H3PO4 + энергия(60 кДж/моль) → АТФ + H2O

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

IV. Итог занятия.

1. О б о б щ е н и е изученного материала.

Вопросы к студентам:

1. Какие компоненты входят в состав нуклеотидов?

2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?

3. Дайте сравнительную характеристику ДНК и РНК.

4. Решите задачи:

Г-Г-Г-А-Т-А-А-Ц-А-Г-А-Т достройте вторую цепь.

Ответ: ДНК Г-Г-Г- А-Т-А-А-Ц-А-Г-А-Т

Ц-Ц-Ц-Т-А-Т-Т-Г-Т-Ц-Т-А

(по принципу комплементарности)

2) Укажите последовательность нуклеотидов в молекуле и-РНК, построенной на этом участке цепи ДНК.

Ответ: и-РНК Г-Г-Г-А-У-А-А-Ц-А-Г-Ц-У

3) Фрагмент одной цепи ДНК имеет следующий состав:

  • -А-А-А-Т-Т-Ц-Ц-Г-Г-. достройте вторую цепь.
  • -Ц-Т-А-Т-А-Г-Ц-Т-Г-.

5. Решите тест:

4) Какой из нуклеотидов не входит в состав ДНК?

а) тимин;

б) урацил;

в) гуанин;

г) цитозин;

д) аденин.

Ответ: б

5) Если нуклеотидный состав ДНК

АТТ-ГЦГ-ТАТ- то каким должен быть нуклеотидный состав и-РНК?

А) ТАА-ЦГЦ-УТА;

Б) ТАА-ГЦГ-УТУ;

В) УАА-ЦГЦ-АУА;

Г) УАА-ЦГЦ-АТА.

Ответ: в

Нуклеиновые кислоты - высокомолекулярные органические соединения, образованные остатками нуклеотидов.

Нуклеотид - фосфорные эфиры нуклеозидов, ноклиозидфосфаты.

Макроэргическая связь - это ковалентные связи, которые гидролизуются с выделением значительного кол-ва энергии.

Комплементарностью - взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий.

2) В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР).

3) 1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму;
2) регуляция всех процессов, происходящих в клетке.

4) 1. ДНК содержит сахар дезоксирибозу, РНК - рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил - неметилированная форма тимина.
3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

5) Рибонуклеи́новые кисло́ты (РНК) - нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания - аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.
Дезоксирибонуклеи́новая кислота́ (ДНК) - один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков.

6) АТФ - это главный универсальный поставщик энергии в клетках всех живых организмов. АТФ - Аденозинтрифосфа́т

7) АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.

8) Витамины - это группы сравнительно низкомолекулярных органических соединений разнообразной химической природы. По растворимости они подразделяются на две большие группы: растворимые в жирах и растворимые в воде.



Понравилась статья? Поделитесь с друзьями!