Kas yra atvirkštinės funkcijos išvestinė

Išvestinės radimo operacija vadinama diferenciacija.

Išsprendus paprasčiausių (ir nelabai paprastų) funkcijų išvestinių radimo uždavinius, išvestinę apibrėžiant kaip argumento prieaugio santykio ribą, atsirado išvestinių lentelė ir tiksliai apibrėžtos diferenciacijos taisyklės. . Pirmieji darinių paieškos srityje pradėjo dirbti Izaokas Niutonas (1643-1727) ir Gotfrydas Vilhelmas Leibnicas (1646-1716).

Todėl mūsų laikais, norint rasti bet kurios funkcijos išvestinę, nereikia skaičiuoti minėtos funkcijos prieaugio ir argumento prieaugio santykio ribos, o tik pasinaudoti lentele dariniai ir diferenciacijos taisyklės. Išvestinei rasti tinka toks algoritmas.

Norėdami rasti išvestinę, jums reikia išraiškos po pirminiu ženklu suskaidyti paprastas funkcijas į komponentus ir nustatyti kokius veiksmus (produktas, suma, koeficientas)šios funkcijos yra susijusios. Toliau elementariųjų funkcijų išvestinius randame išvestinių lentelėje, o sandaugos, sumos ir dalinio išvestinių formules - diferenciacijos taisyklėse. Išvestinių lentelė ir diferenciacijos taisyklės pateikiamos po pirmųjų dviejų pavyzdžių.

1 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Iš diferenciacijos taisyklių sužinome, kad funkcijų sumos išvestinė yra funkcijų išvestinių suma, t.y.

Iš išvestinių lentelės sužinome, kad „X“ išvestinė yra lygi vienetui, o sinuso – kosinusui. Šias reikšmes pakeičiame išvestinių suma ir randame išvestinę, kurios reikia pagal problemos sąlygą:

2 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Diferencijuojame kaip sumos, kurioje antrasis narys turi pastovų koeficientą, išvestinę, ją galima paimti iš išvestinės ženklo:

Jei vis tiek kyla klausimų, iš kur kažkas atsiranda, jie dažniausiai išsiaiškinami susipažinus su išvestinių išvestinių dalių lentele ir paprasčiausiomis diferenciacijos taisyklėmis. Šiuo metu pereiname prie jų.

Paprastų funkcijų išvestinių lentelė

1. Konstantos (skaičiaus) išvestinė. Bet koks skaičius (1, 2, 5, 200...), esantis funkcijos išraiškoje. Visada lygus nuliui. Tai labai svarbu atsiminti, nes to reikalaujama labai dažnai
2. Nepriklausomo kintamojo išvestinė. Dažniausiai „X“. Visada lygus vienam. Tai taip pat svarbu atsiminti ilgą laiką
3. Laipsnio išvestinė. Sprendžiant uždavinius, reikia konvertuoti ne kvadratines šaknis į galias.
4. Kintamojo išvestinė į laipsnį -1
5. Kvadratinės šaknies vedinys
6. Sinuso išvestinė
7. Kosinuso vedinys
8. Tangento išvestinė
9. Kotangento išvestinė
10. Arsinuso vedinys
11. Arkosino darinys
12. Arktangento vedinys
13. Lanko kotangento išvestinė
14. Natūralaus logaritmo išvestinė
15. Logaritminės funkcijos išvestinė
16. Rodiklio išvestinė
17. Eksponentinės funkcijos išvestinė

Diferencijavimo taisyklės

1. Sumos arba skirtumo išvestinė
2. Produkto darinys
2a. Išraiškos, padaugintos iš pastovaus koeficiento, išvestinė
3. Dalinio išvestinė
4. Sudėtinės funkcijos išvestinė

1 taisyklė.Jei funkcijos

yra diferencijuojami tam tikru momentu, tada funkcijos skiriasi tame pačiame taške

ir

tie. algebrinės funkcijų sumos išvestinė lygi šių funkcijų išvestinių algebrinei sumai.

Pasekmė. Jei dvi diferencijuojamos funkcijos skiriasi pastoviu nariu, tai jų išvestinės yra lygios, t.y.

2 taisyklė.Jei funkcijos

yra diferencijuojami tam tikru momentu, tada jų produktas skiriasi tame pačiame taške

ir

tie. Dviejų funkcijų sandaugos išvestinė yra lygi kiekvienos iš šių funkcijų sandaugų ir kitos išvestinei sumai.

1 išvada. Pastovų koeficientą galima išimti iš išvestinės ženklo:

2 išvada. Kelių diferencijuojamų funkcijų sandaugos išvestinė yra lygi kiekvieno veiksnio ir visų kitų išvestinės sandaugų sumai.

Pavyzdžiui, trims daugintuvams:

3 taisyklė.Jei funkcijos

tam tikru momentu skiriasi Ir , tada šioje vietoje jų koeficientas taip pat yra diferencijuotasu/v , ir

tie. dviejų funkcijų dalinio išvestinė yra lygi trupmenai, kurios skaitiklis yra vardiklio sandaugų ir skaitiklio išvestinės bei skaitiklio ir vardiklio išvestinės sandaugų skirtumas, o vardiklis yra kvadratas buvęs skaitiklis.

Kur ieškoti dalykų kituose puslapiuose

Realiose problemose ieškant sandaugos išvestinės ir koeficiento, visada reikia taikyti kelias diferenciacijos taisykles vienu metu, todėl straipsnyje yra daugiau šių išvestinių pavyzdžių."Produkto išvestinė ir funkcijų dalis".

komentuoti. Neturėtumėte painioti konstantos (ty skaičiaus) kaip sumos termino ir kaip pastovaus koeficiento! Termino atveju jo išvestinė lygi nuliui, o esant pastoviam veiksniui – išimama iš išvestinių ženklo. Tai tipiška klaida, pasitaikanti pradiniame išvestinių studijų etape, tačiau vidutinis studentas išsprendžia kelis vienos ir dviejų dalių pavyzdžius, šios klaidos nebedaro.

Ir jei diferencijuodami produktą ar koeficientą turite terminą u"v, kuriame u- skaičius, pavyzdžiui, 2 arba 5, tai yra konstanta, tada šio skaičiaus išvestinė bus lygi nuliui, todėl visas terminas bus lygus nuliui (šis atvejis aptartas 10 pavyzdyje).

Kita dažnai pasitaikanti klaida yra mechaniškai sudėtingos funkcijos išvestinė sprendžiama kaip paprastos funkcijos išvestinė. Štai kodėl sudėtingos funkcijos išvestinė skirtas atskiras straipsnis. Bet pirmiausia išmoksime rasti paprastų funkcijų išvestinius.

Pakeliui neapsieisite be posakių transformavimo. Norėdami tai padaryti, gali tekti atidaryti vadovą naujuose languose. Veiksmai su galiomis ir šaknimis Ir Veiksmai su trupmenomis .

Jei ieškote sprendimų dėl trupmenų išvestinių su laipsniais ir šaknimis, tai yra, kai funkcija atrodo taip , tada sekite pamoką „Trupmenų sumų su laipsniais ir šaknimis išvestinė“.

Jei turite užduotį, pvz , tada lankysi pamoką „Paprastų trigonometrinių funkcijų dariniai“.

Žingsnis po žingsnio pavyzdžiai – kaip rasti išvestinę

3 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Apibrėžiame funkcijos išraiškos dalis: visa išraiška reprezentuoja sandaugą, o jos veiksniai yra sumos, kurių antrajame viename iš terminų yra pastovus veiksnys. Taikome sandaugų diferenciacijos taisyklę: dviejų funkcijų sandaugos išvestinė yra lygi kiekvienos iš šių funkcijų sandaugų sumai iš kitos išvestinės:

Toliau taikome sumos diferenciacijos taisyklę: algebrinės funkcijų sumos išvestinė lygi šių funkcijų išvestinių algebrinei sumai. Mūsų atveju kiekvienoje sumoje antrasis narys turi minuso ženklą. Kiekvienoje sumoje matome ir nepriklausomą kintamąjį, kurio išvestinė lygi vienetui, ir konstantą (skaičius), kurios išvestinė lygi nuliui. Taigi, „X“ virsta vienu, o minus 5 virsta nuliu. Antroje išraiškoje „x“ padauginama iš 2, todėl du padauginame iš to paties vieneto kaip ir „x“ išvestinė. Gauname šias išvestinių priemonių vertes:

Rastas išvestis pakeičiame sandaugų suma ir gauname visos funkcijos išvestinę, kurios reikalauja uždavinio sąlyga:

4 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Turime rasti koeficiento išvestinę. Taikome dalinio diferencijavimo formulę: dviejų funkcijų dalinio išvestinė yra lygi trupmenai, kurios skaitiklis yra skirtumas tarp vardiklio sandaugų ir skaitiklio ir skaitiklio išvestinės bei išvestinės vardiklis, o vardiklis yra buvusio skaitiklio kvadratas. Mes gauname:

Veiksnių išvestinę skaitiklyje jau radome 2 pavyzdyje. Taip pat nepamirškime, kad sandauga, kuri dabartiniame pavyzdyje yra antrasis skaitiklio veiksnys, imamas su minuso ženklu:

Jei ieškote sprendimų problemoms, kuriose reikia rasti funkcijos išvestinę, kurioje yra nuolatinė šaknų ir galių krūva, pvz., , tada sveiki atvykę į klasę "Trupmenų sumų su laipsniais ir šaknimis darinys" .

Jei reikia daugiau sužinoti apie sinusų, kosinusų, liestinių ir kitų trigonometrinių funkcijų išvestis, tai yra, kai funkcija atrodo kaip , tada pamoka jums "Paprastų trigonometrinių funkcijų dariniai" .

5 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Šioje funkcijoje matome sandaugą, kurios vienas iš faktorių yra nepriklausomo kintamojo kvadratinė šaknis, su kurio išvestine mes susipažinome išvestinių lentelėje. Naudodami sandaugos diferencijavimo taisyklę ir kvadratinės šaknies išvestinės lentelės reikšmę, gauname:

6 pavyzdys. Raskite funkcijos išvestinę

Sprendimas. Šioje funkcijoje matome koeficientą, kurio dividendas yra nepriklausomo kintamojo kvadratinė šaknis. Naudodami koeficientų diferenciacijos taisyklę, kurią pakartojome ir taikėme 4 pavyzdyje, ir kvadratinės šaknies išvestinės reikšmę lentelėje, gauname:

Norėdami atsikratyti trupmenos skaitiklyje, padauginkite skaitiklį ir vardiklį iš .

Laipsninės funkcijos (x iki a laipsnio) išvestinės formulės išvedimas. Nagrinėjamos išvestinės iš x šaknų. Aukštesnės eilės galios funkcijos išvestinės formulė. Išvestinių finansinių priemonių skaičiavimo pavyzdžiai.

x išvestinė iš laipsnio a lygi iš karto x iš laipsnio minus vienas:
(1) .

x n-osios šaknies išvestinė iki m-osios laipsnio yra:
(2) .

Laipsninės funkcijos išvestinės formulės išvedimas

Atvejis x > 0

Apsvarstykite kintamojo x laipsnio funkciją su eksponentu a:
(3) .
Čia a yra savavališkas realusis skaičius. Pirmiausia panagrinėkime atvejį.

Norėdami rasti funkcijos (3) išvestinę, naudojame laipsnio funkcijos savybes ir paverčiame ją tokia forma:
.

Dabar randame išvestį naudodami:
;
.
čia .

Formulė (1) buvo įrodyta.

n laipsnio šaknies x išvestinės iki m laipsnio formulės išvedimas

Dabar apsvarstykite funkciją, kuri yra šios formos šaknis:
(4) .

Norėdami rasti išvestinę, transformuojame šaknį į galios funkciją:
.
Lyginant su (3) formule matome, kad
.
Tada
.

Naudodami (1) formulę randame išvestinę:
(1) ;
;
(2) .

Praktiškai nereikia įsiminti formulės (2). Daug patogiau iš pradžių šaknis transformuoti į laipsniškas funkcijas, o tada pagal (1) formulę rasti jų išvestinius (žr. pavyzdžius puslapio pabaigoje).

Atvejis x = 0

Jei , tai galios funkcija yra apibrėžta kintamojo x = reikšmei 0 . 0 Raskime funkcijos (3) išvestinę ties x =
.

. 0 :
.
Norėdami tai padaryti, naudojame darinio apibrėžimą:

Pakeiskime x =
.
Šiuo atveju išvestine turime omenyje dešinės pusės ribą, kuriai .
Taigi mes radome:
Taigi mes radome:
Iš to aišku, kad , .
(1) .
adresu , . 0 .

Šis rezultatas taip pat gaunamas iš (1) formulės:< 0

Todėl formulė (1) galioja ir x =
(3) .
Atvejis x
,
Dar kartą apsvarstykite funkciją (3):

Tam tikroms konstantos a reikšmėms ji taip pat apibrėžiama neigiamoms kintamojo x reikšmėms. 3 Būtent, tegul a yra racionalus skaičius. Tada ją galima pavaizduoti kaip neredukuojamą trupmeną: 1 kur m ir n yra sveikieji skaičiai, kurie neturi bendro daliklio.
.
Jei n yra nelyginis, tada galios funkcija taip pat apibrėžiama neigiamoms kintamojo x reikšmėms.

Pavyzdžiui, kai n =
.
ir m =
.
turime x kubinę šaknį:

.
Jis taip pat apibrėžiamas neigiamoms kintamojo x reikšmėms.
.
Raskime galios funkcijos (3) išvestinę konstantos a, kuriai ji apibrėžta, racionalioms reikšmėms. Norėdami tai padaryti, pavaizduokime x tokia forma:
.
Tada
.
Tada,
(1) .

Išvestinę randame pastatydami konstantą už išvestinės ženklo ribų ir taikydami sudėtingos funkcijos diferencijavimo taisyklę:

čia . Bet
(3) .
Nuo tada
.

Tai yra, formulė (1) taip pat galioja:
.
Aukštesnės eilės išvestinės priemonės
;

.

Dabar suraskime aukštesnės eilės galios funkcijos išvestines Mes jau radome pirmos eilės išvestinį: Paėmę konstantą a už išvestinės ženklo ribų, randame antros eilės išvestinę:
.

Panašiai randame trečios ir ketvirtos eilės išvestinius: Iš to aišku, kad savavališkos n-osios eilės išvestinė
.
turi tokią formą:
,
pastebėti, kad

jei a yra natūralusis skaičius

, tada n-oji išvestinė yra pastovi:

Tada visos paskesnės išvestinės yra lygios nuliui:
.

adresu .

Išvestinių finansinių priemonių skaičiavimo pavyzdžiai
;
.
Pavyzdys
.

Raskite funkcijos išvestinę:
;
.
Sprendimas
.

Paverskime šaknis į galias: Tegul funkcija \(y = f(x)\) yra apibrėžta tam tikrame intervale, kurio viduje yra taškas \(x_0\). Suteikime argumentui prieaugį \(\Delta x \), kad jis nepaliktų šio intervalo. Raskime atitinkamą funkcijos \(\Delta y \) prieaugį (judėdami iš taško \(x_0 \) į tašką \(x_0 + \Delta x \)) ir sudarykime ryšį \(\frac(\Delta y)(\Delta x) \). Jei šio santykio riba yra \(\Delta x \rightarrow 0\), tada nurodyta riba vadinama funkcijos išvestinė\(y=f(x) \) taške \(x_0 \) ir pažymėkite \(f"(x_0) \).

$$ \lim_(\Delta x \iki 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Simbolis y dažnai naudojamas išvestinei žymėti. Atkreipkite dėmesį, kad y" = f(x) yra nauja funkcija, tačiau natūraliai susijusi su funkcija y = f(x), apibrėžta visuose x taškuose, kuriuose egzistuoja aukščiau nurodyta riba. Ši funkcija vadinama taip: funkcijos y = f(x) išvestinė.

Geometrinė išvestinės reikšmė yra taip. Jeigu galima nubrėžti funkcijos y = f(x) grafiko liestinę taške su abscise x=a, kuris nėra lygiagretus y ašiai, tai f(a) išreiškia liestinės nuolydį :
\(k = f"(a)\)

Kadangi \(k = tg(a) \), tai lygybė \(f"(a) = tan(a) \) yra teisinga.

Dabar interpretuokime išvestinės apibrėžimą apytikslių lygybių požiūriu. Tegul funkcija \(y = f(x)\) turi išvestinę konkrečiame taške \(x\):
$$ \lim_(\Delta x \iki 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Tai reiškia, kad šalia taško x apytikslė lygybė \(\frac(\Delta y)(\Delta x) \approx f"(x) \), t.y. \(\Delta y \approx f"(x) \cdot\ Delta x\). Gautos apytikslės lygybės prasminga reikšmė yra tokia: funkcijos prieaugis yra „beveik proporcingas“ argumento prieaugiui, o proporcingumo koeficientas yra išvestinės reikšmė duotame taške x. Pavyzdžiui, funkcijai \(y = x^2\) galioja apytikslė lygybė \(\Delta y \approx 2x \cdot \Delta x \). Jei atidžiai išanalizuosime išvestinės apibrėžimą, pamatysime, kad jame yra algoritmas, kaip jį rasti.

Suformuluokime.

Kaip rasti funkcijos y = f(x) išvestinę?

1. Pataisykite \(x\) reikšmę, raskite \(f(x)\)
2. Suteikite argumentui \(x\) prieaugį \(\Delta x\), eikite į naują tašką \(x+ \Delta x \), raskite \(f(x+ \Delta x) \)
3. Raskite funkcijos prieaugį: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Sukurkite ryšį \(\frac(\Delta y)(\Delta x) \)
5. Apskaičiuokite $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ši riba yra funkcijos taške x išvestinė.

Jei funkcija y = f(x) turi išvestinę taške x, tada ji vadinama diferencijuojama taške x. Iškviečiama funkcijos y = f(x) išvestinės radimo procedūra diferenciacija funkcijos y = f(x).

Aptarkime tokį klausimą: kaip funkcijos tęstinumas ir diferencijuotumas taške yra susiję vienas su kitu?

Tegul funkcija y = f(x) taške x diferencijuojama. Tada funkcijos grafiko taške M(x; f(x)) galima nubrėžti liestinę ir, prisiminkime, liestinės kampinis koeficientas yra lygus f "(x). Toks grafikas negali "nutrūkti" taške M, ty funkcija taške x turi būti ištisinė.

Tai buvo „rankiniai“ argumentai. Pateikime griežtesnį samprotavimą. Jei funkcija y = f(x) yra diferencijuojama taške x, galioja apytikslė lygybė \(\Delta y \approx f"(x) \cdot \Delta x\). Jei šioje lygybėje \(\Delta x) \) linkęs į nulį, tada \(\Delta y \) bus linkęs į nulį, ir tai yra funkcijos tęstinumo taške sąlyga.

Taigi, jei funkcija yra diferencijuojama taške x, tai tame taške ji yra ištisinė.

Atvirkščias teiginys nėra teisingas. Pavyzdžiui: funkcija y = |x| yra ištisinis visur, ypač taške x = 0, bet funkcijos grafiko liestinė "sandūros taške" (0; 0) neegzistuoja. Jei tam tikru momentu funkcijos grafiko liestinės negalima nubrėžti, tai išvestinė tame taške neegzistuoja.

Dar vienas pavyzdys. Funkcija \(y=\sqrt(x)\) yra ištisinė visoje skaičių tiesėje, įskaitant tašką x = 0. O funkcijos grafiko liestinė egzistuoja bet kuriame taške, įskaitant tašką x = 0 Bet šioje vietoje liestinė sutampa su y ašimi, t.y., ji yra statmena abscisių ašiai, jos lygtis yra x = 0. Tokia tiesė neturi kampo koeficiento, o tai reiškia, kad \(f). „(0)\) neegzistuoja.

Taigi, susipažinome su nauja funkcijos savybe – diferenciacija. Kaip iš funkcijos grafiko galima daryti išvadą, kad ji yra diferencijuojama?

Atsakymas iš tikrųjų pateiktas aukščiau. Jei tam tikru momentu galima nubrėžti funkcijos grafiko liestinę, kuri nėra statmena abscisių ašiai, tai šioje vietoje funkcija yra diferencijuojama. Jei tam tikru momentu funkcijos grafiko liestinė neegzistuoja arba ji yra statmena abscisių ašiai, tai šiuo metu funkcija nediferencijuojama.

Diferencijavimo taisyklės

Išvestinės radimo operacija vadinama diferenciacija. Atliekant šią operaciją dažnai tenka dirbti su koeficientais, sumomis, funkcijų sandaugomis, taip pat su „funkcijų funkcijomis“, tai yra su sudėtingomis funkcijomis. Remdamiesi išvestinės apibrėžimu, galime išvesti diferencijavimo taisykles, kurios palengvina šį darbą. Jei C yra pastovus skaičius, o f=f(x), g=g(x) yra kai kurios diferencijuojamos funkcijos, tai teisinga diferenciacijos taisyklės:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Sudėtingos funkcijos išvestinė:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Kai kurių funkcijų išvestinių lentelė

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Matematikos fizinių uždavinių ar pavyzdžių sprendimas yra visiškai neįmanomas be išvestinės ir jos skaičiavimo metodų žinių. Išvestinė yra viena iš svarbiausių matematinės analizės sąvokų. Šiandienos straipsnį nusprendėme skirti šiai esminei temai. Kas yra išvestinė, kokia jos fizikinė ir geometrinė reikšmė, kaip apskaičiuoti funkcijos išvestinę? Visus šiuos klausimus galima sujungti į vieną: kaip suprasti išvestinę?

Geometrinė ir fizikinė išvestinės reikšmė

Tegul būna funkcija f(x) , nurodyta tam tikru intervalu (a, b) . Taškai x ir x0 priklauso šiam intervalui. Pasikeitus x, pasikeičia ir pati funkcija. Argumento keitimas – jo vertybių skirtumas x-x0 . Šis skirtumas parašytas kaip delta x ir vadinamas argumentų prieaugiu. Funkcijos pakeitimas arba padidėjimas yra skirtumas tarp funkcijos reikšmių dviejuose taškuose. Išvestinės priemonės apibrėžimas:

Funkcijos išvestinė taške yra funkcijos padidėjimo tam tikrame taške ir argumento prieaugio santykio riba, kai pastarasis linkęs į nulį.

Kitu atveju jis gali būti parašytas taip:

Kokia prasmė rasti tokią ribą? Ir štai kas tai yra:

funkcijos išvestinė taške yra lygi kampo tarp OX ašies ir funkcijos grafiko liestinės liestei duotame taške.


Fizinė išvestinės reikšmė: kelio išvestinė laiko atžvilgiu lygi tiesinio judėjimo greičiui.

Iš tiesų, nuo mokyklos laikų visi žino, kad greitis yra tam tikras kelias x=f(t) ir laikas t . Vidutinis greitis per tam tikrą laikotarpį:

Norėdami sužinoti judėjimo greitį tam tikru momentu t0 reikia apskaičiuoti ribą:

Pirma taisyklė: nustatykite konstantą

Konstantą galima išimti iš išvestinio ženklo. Be to, tai turi būti padaryta. Spręsdami matematikos pavyzdžius, priimkite tai kaip taisyklę - Jei galite supaprastinti išraišką, būtinai ją supaprastinkite .

Pavyzdys. Apskaičiuokime išvestinę:

Antra taisyklė: funkcijų sumos išvestinė

Dviejų funkcijų sumos išvestinė yra lygi šių funkcijų išvestinių sumai. Tas pats pasakytina ir apie funkcijų skirtumo išvestinę.

Mes nepateiksime šios teoremos įrodymo, o apsvarstysime praktinį pavyzdį.

Raskite funkcijos išvestinę:

Trečia taisyklė: funkcijų sandaugos išvestinė

Dviejų diferencijuojamų funkcijų sandaugos išvestinė apskaičiuojama pagal formulę:

Pavyzdys: suraskite funkcijos išvestinę:

Sprendimas:

Čia svarbu kalbėti apie sudėtingų funkcijų išvestinių skaičiavimą. Sudėtinės funkcijos išvestinė yra lygi šios funkcijos išvestinės sandaugai tarpinio argumento atžvilgiu ir tarpinio argumento išvestinei nepriklausomo kintamojo atžvilgiu.

Aukščiau pateiktame pavyzdyje susiduriame su tokia išraiška:

Šiuo atveju tarpinis argumentas yra 8 kartus didesnis už penktą laipsnį. Norėdami apskaičiuoti tokios išraiškos išvestinę, pirmiausia apskaičiuojame išorinės funkcijos išvestinę tarpinio argumento atžvilgiu, o tada padauginame iš paties tarpinio argumento išvestinės nepriklausomo kintamojo atžvilgiu.

Ketvirta taisyklė: dviejų funkcijų dalinio išvestinė

Dviejų funkcijų dalinio išvestinės nustatymo formulė:

Mes bandėme kalbėti apie išvestinius manekenams nuo nulio. Ši tema nėra tokia paprasta, kaip atrodo, todėl perspėkite: pavyzdžiuose dažnai pasitaiko spąstų, todėl būkite atsargūs skaičiuodami išvestines.

Jei turite klausimų šia ir kitomis temomis, galite susisiekti su studentų tarnyba. Per trumpą laiką padėsime išspręsti sunkiausią testą ir suprasti užduotis, net jei dar niekada nedarėte išvestinių skaičiavimų.



Ar jums patiko straipsnis? Pasidalinkite su draugais!