Apskaičiuokite figūros plotą, kurį riboja linija r. Figūros, apribotos tiesėmis y=f(x), x=g(y) ploto radimas

Tiesą sakant, norint rasti figūros plotą, jums nereikia tiek daug žinių apie neapibrėžtą ir apibrėžtą integralą. Užduotis „apskaičiuoti plotą naudojant apibrėžtąjį integralą“ visada apima brėžinio konstravimą, todėl jūsų žinios ir įgūdžiai kuriant brėžinius bus daug aktualesnis klausimas. Šiuo atžvilgiu naudinga atnaujinti atmintį apie pagrindinių elementariųjų funkcijų grafikus ir bent jau sugebėti sukurti tiesę ir hiperbolę.

Lenkta trapecija yra plokščia figūra, apribota ašies, tiesių ir atkarpos ištisinės funkcijos, kuri nekeičia ženklo šiame intervale, grafikas. Tegul ši figūra yra išdėstyta ne mažiau x ašis:

Tada kreivinės trapecijos plotas yra skaitiniu būdu lygus apibrėžtajam integralui. Bet koks apibrėžtas integralas (egzistuojantis) turi labai gerą geometrinę reikšmę.

Geometrijos požiūriu apibrėžtasis integralas yra PLOTAS.

Tai yra, tam tikras integralas (jei jis yra) geometriškai atitinka tam tikros figūros plotą. Pavyzdžiui, apsvarstykite apibrėžtąjį integralą. Integrandas apibrėžia kreivę plokštumoje, esančioje virš ašies (norintieji gali piešti), o pats apibrėžtasis integralas yra skaitiniu būdu lygus atitinkamos kreivinės trapecijos plotui.

1 pavyzdys

Tai yra tipiškas priskyrimo pareiškimas. Pirmas ir svarbiausias sprendimo momentas yra piešimas. Be to, brėžinys turi būti sudarytas TEISINGAI.

Statant brėžinį rekomenduoju tokią tvarką: pirmiausia geriau sukonstruoti visas tieses (jei yra) ir tik tada – paraboles, hiperboles ir kitų funkcijų grafikus. Labiau apsimoka kurti funkcijų grafikus taškas po taško.

Šios problemos sprendimas gali atrodyti taip.
Nubraižykime brėžinį (atkreipkite dėmesį, kad lygtis apibrėžia ašį):


Segmente funkcijos grafikas yra virš ašies, todėl:

Atsakymas:

Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. Tokiu atveju „iš akies“ skaičiuojame langelių skaičių brėžinyje - gerai, jų bus apie 9, atrodo, kad tai tiesa. Visiškai aišku, kad jei gavome, tarkime, atsakymą: 20 kvadratinių vienetų, tai akivaizdu, kad kažkur buvo padaryta klaida – 20 langelių akivaizdžiai netelpa į nagrinėjamą figūrą, daugiausia keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

3 pavyzdys

Apskaičiuokite figūros plotą, apribotą linijomis ir koordinačių ašimis.

Sprendimas: Padarykime piešinį:


Jei išlenkta trapecija yra po ašimi (arba bent jau ne aukščiau nurodyta ašis), tada jos plotą galima rasti naudojant formulę:


Tokiu atveju:

Dėmesio! Negalima painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokios geometrinės reikšmės, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusplokštumoje, todėl nuo paprasčiausių mokyklinių uždavinių pereiname prie prasmingesnių pavyzdžių.

4 pavyzdys

Raskite plokštumos figūros, apribotos linijomis , plotą.

Sprendimas: Pirmiausia turite užbaigti piešinį. Paprastai tariant, brėžinį konstruojant plotų uždaviniuose mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės ir tiesės susikirtimo taškus. Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis. Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba yra , viršutinė integracijos riba yra .

Geriau, jei įmanoma, nenaudoti šio metodo.

Kur kas pelningiau ir greičiau tiesti linijas taškas po taško, o integracijos ribos išryškėja „savaime“. Nepaisant to, analitinį ribų radimo metodą vis tiek kartais tenka naudoti, jei, pavyzdžiui, grafikas pakankamai didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios). Ir mes taip pat apsvarstysime tokį pavyzdį.

Grįžkime prie savo užduoties: racionaliau pirmiausia konstruoti tiesę, o tik tada parabolę. Padarykime piešinį:

O dabar darbinė formulė: Jei atkarpoje tam tikra ištisinė funkcija yra didesnė už kokią nors ištisinę funkciją arba jai lygi, tada figūros plotą, kurį riboja šių funkcijų grafikai ir tiesės, galima rasti naudojant formulę:

Čia nebereikia galvoti, kur yra figūra – virš ašies ar žemiau ašies, ir, grubiai tariant, svarbu, kuris grafikas yra AUKŠČESČIUS (kito grafiko atžvilgiu), o kuris – ŽEMIAUS.

Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl reikia atimti iš

Užbaigtas sprendimas gali atrodyti taip:

Norimą figūrą riboja parabolė viršuje ir tiesi linija apačioje.
Segmente pagal atitinkamą formulę:

Atsakymas:

4 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos , , , .

Sprendimas: pirmiausia nupieškime:

Figūra, kurios plotą turime rasti, yra nuspalvinta mėlyna spalva (atsargiai pažiūrėkite į būklę – kaip figūra ribota!). Tačiau praktikoje dėl neatidumo dažnai nutinka „gedimas“, kai reikia rasti figūros plotą, nuspalvintą žaliai!

Šis pavyzdys taip pat naudingas tuo, kad apskaičiuoja figūros plotą naudojant du apibrėžtuosius integralus.

Tikrai:

1) Atkarpoje virš ašies yra tiesės grafikas;

2) Atkarpoje virš ašies yra hiperbolės grafikas.

Visiškai akivaizdu, kad sritis galima (ir reikia) pridėti, todėl:

Šiame straipsnyje sužinosite, kaip naudojant integralinius skaičiavimus rasti linijomis apribotos figūros plotą. Pirmą kartą su tokios problemos formulavimu susiduriame vidurinėje mokykloje, kai ką tik baigėme apibrėžtųjų integralų studijas ir atėjo laikas praktiškai pradėti geometrinę įgytų žinių interpretaciją.

Taigi, ko reikia norint sėkmingai išspręsti figūros ploto, naudojant integralus, problemą:

  • Gebėjimas atlikti kompetentingus brėžinius;
  • Gebėjimas išspręsti apibrėžtąjį integralą naudojant gerai žinomą Niutono-Leibnizo formulę;
  • Galimybė „pamatyti“ pelningesnį sprendimo variantą – t.y. supranti, kaip vienu ar kitu atveju bus patogiau vykdyti integraciją? Išilgai x ašies (OX) ar y ašies (OY)?
  • Na, kur mes būtume be teisingų skaičiavimų?) Tai apima supratimą, kaip išspręsti kito tipo integralus, ir teisingus skaitinius skaičiavimus.

Figūros, apribotos linijomis, ploto skaičiavimo uždavinio sprendimo algoritmas:

1. Statome brėžinį. Patartina tai daryti ant languoto popieriaus lapo, dideliu mastu. Šios funkcijos pavadinimą pasirašome pieštuku virš kiekvieno grafiko. Grafikai pasirašomi tik tolesnių skaičiavimų patogumui. Gavus norimos figūros grafiką, daugeliu atvejų iš karto bus aišku, kokios integracijos ribos bus naudojamos. Taigi problemą išsprendžiame grafiškai. Tačiau atsitinka taip, kad ribų reikšmės yra trupmeninės arba neracionalios. Todėl galite atlikti papildomus skaičiavimus, pereikite prie antrojo veiksmo.

2. Jei integravimo ribos nėra aiškiai nurodytos, tada randame grafikų susikirtimo taškus tarpusavyje ir žiūrime, ar mūsų grafinis sprendimas sutampa su analitiniu.

3. Toliau reikia išanalizuoti brėžinį. Priklausomai nuo to, kaip išdėstyti funkcijų grafikai, yra įvairių būdų, kaip rasti figūros plotą. Pažvelkime į skirtingus figūros ploto suradimo naudojant integralus pavyzdžius.

3.1. Klasikiškiausia ir paprasčiausia problemos versija yra tada, kai reikia rasti išlenktos trapecijos plotą. Kas yra lenkta trapecija? Tai plokščia figūra, kurią riboja x ašis (y = 0), tiesės x = a, x = b ir bet kokia ištisinė kreivė intervale nuo a iki b. Be to, šis skaičius nėra neigiamas ir yra ne žemiau x ašies. Šiuo atveju kreivinės trapecijos plotas yra skaitiniu būdu lygus tam tikram integralui, apskaičiuotam pagal Niutono-Leibnizo formulę:

1 pavyzdys y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Kokiomis linijomis riboja figūra? Turime parabolę y = x2 - 3x + 3, kuri yra virš OX ašies, ji yra neneigiama, nes visi šios parabolės taškai turi teigiamas reikšmes. Toliau pateikiamos tiesės x = 1 ir x = 3, kurios eina lygiagrečiai ašiai OU ir yra ribinės figūros linijos kairėje ir dešinėje. Na, y = 0, kuri taip pat yra x ašis, kuri riboja figūrą iš apačios. Gauta figūra yra užtamsinta, kaip matyti iš paveikslo kairėje. Tokiu atveju galite nedelsiant pradėti spręsti problemą. Prieš mus yra paprastas išlenktos trapecijos pavyzdys, kurį toliau sprendžiame naudodami Niutono-Leibnizo formulę.

3.2. Ankstesnėje 3.1 pastraipoje nagrinėjome atvejį, kai lenkta trapecija yra virš x ašies. Dabar apsvarstykite atvejį, kai problemos sąlygos yra tokios pačios, išskyrus tai, kad funkcija yra po x ašimi. Prie standartinės Niutono-Leibnizo formulės pridedamas minusas. Toliau apsvarstysime, kaip išspręsti tokią problemą.

2 pavyzdys. Apskaičiuokite figūros plotą, kurį riboja tiesės y = x2 + 6x + 2, x = -4, x = -1, y = 0.

Šiame pavyzdyje turime parabolę y = x2 + 6x + 2, kuri kyla iš po OX ašies, tiesės x = -4, x = -1, y = 0. Čia y = 0 riboja norimą skaičių iš viršaus. Tiesės x = -4 ir x = -1 yra ribos, per kurias bus skaičiuojamas apibrėžtasis integralas. Figūros ploto radimo problemos sprendimo principas beveik visiškai sutampa su 1 pavyzdžiu. Skirtumas tik tas, kad duota funkcija nėra teigiama, o taip pat yra tolydi intervale [-4; -1]. Ką reiškia ne teigiama? Kaip matyti iš paveikslo, figūra, esanti duotųjų x ribose, turi išskirtinai „neigiamas“ koordinates, kurias turime pamatyti ir atsiminti spręsdami problemą. Figūros ploto ieškome naudodami Niutono-Leibnizo formulę, tik su minuso ženklu pradžioje.

Straipsnis nebaigtas.

Šiame straipsnyje sužinosite, kaip naudojant integralinius skaičiavimus rasti linijomis apribotos figūros plotą. Pirmą kartą su tokios problemos formulavimu susiduriame vidurinėje mokykloje, kai ką tik baigėme apibrėžtųjų integralų studijas ir atėjo laikas praktiškai pradėti geometrinę įgytų žinių interpretaciją.

Taigi, ko reikia norint sėkmingai išspręsti figūros ploto, naudojant integralus, problemą:

  • Gebėjimas atlikti kompetentingus brėžinius;
  • Gebėjimas išspręsti apibrėžtąjį integralą naudojant gerai žinomą Niutono-Leibnizo formulę;
  • Galimybė „pamatyti“ pelningesnį sprendimo variantą – t.y. supranti, kaip vienu ar kitu atveju bus patogiau vykdyti integraciją? Išilgai x ašies (OX) ar y ašies (OY)?
  • Na, kur mes būtume be teisingų skaičiavimų?) Tai apima supratimą, kaip išspręsti kito tipo integralus, ir teisingus skaitinius skaičiavimus.

Figūros, apribotos linijomis, ploto skaičiavimo uždavinio sprendimo algoritmas:

1. Statome brėžinį. Patartina tai daryti ant languoto popieriaus lapo, dideliu mastu. Šios funkcijos pavadinimą pasirašome pieštuku virš kiekvieno grafiko. Grafikai pasirašomi tik tolesnių skaičiavimų patogumui. Gavus norimos figūros grafiką, daugeliu atvejų iš karto bus aišku, kokios integracijos ribos bus naudojamos. Taigi problemą išsprendžiame grafiškai. Tačiau atsitinka taip, kad ribų reikšmės yra trupmeninės arba neracionalios. Todėl galite atlikti papildomus skaičiavimus, pereikite prie antrojo veiksmo.

2. Jei integravimo ribos nėra aiškiai nurodytos, tada randame grafikų susikirtimo taškus tarpusavyje ir žiūrime, ar mūsų grafinis sprendimas sutampa su analitiniu.

3. Toliau reikia išanalizuoti brėžinį. Priklausomai nuo to, kaip išdėstyti funkcijų grafikai, yra įvairių būdų, kaip rasti figūros plotą. Pažvelkime į skirtingus figūros ploto suradimo naudojant integralus pavyzdžius.

3.1. Klasikiškiausia ir paprasčiausia problemos versija yra tada, kai reikia rasti išlenktos trapecijos plotą. Kas yra lenkta trapecija? Tai plokščia figūra, kurią riboja x ašis (y = 0), tiesės x = a, x = b ir bet kokia ištisinė kreivė intervale nuo a iki b. Be to, šis skaičius nėra neigiamas ir yra ne žemiau x ašies. Šiuo atveju kreivinės trapecijos plotas yra skaitiniu būdu lygus tam tikram integralui, apskaičiuotam pagal Niutono-Leibnizo formulę:

1 pavyzdys y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Kokiomis linijomis riboja figūra? Turime parabolę y = x2 - 3x + 3, kuri yra virš OX ašies, ji yra neneigiama, nes visi šios parabolės taškai turi teigiamas reikšmes. Toliau pateikiamos tiesės x = 1 ir x = 3, kurios eina lygiagrečiai ašiai OU ir yra ribinės figūros linijos kairėje ir dešinėje. Na, y = 0, kuri taip pat yra x ašis, kuri riboja figūrą iš apačios. Gauta figūra yra užtamsinta, kaip matyti iš paveikslo kairėje. Tokiu atveju galite nedelsiant pradėti spręsti problemą. Prieš mus yra paprastas išlenktos trapecijos pavyzdys, kurį toliau sprendžiame naudodami Niutono-Leibnizo formulę.

3.2. Ankstesnėje 3.1 pastraipoje nagrinėjome atvejį, kai lenkta trapecija yra virš x ašies. Dabar apsvarstykite atvejį, kai problemos sąlygos yra tokios pačios, išskyrus tai, kad funkcija yra po x ašimi. Prie standartinės Niutono-Leibnizo formulės pridedamas minusas. Toliau apsvarstysime, kaip išspręsti tokią problemą.

2 pavyzdys. Apskaičiuokite figūros plotą, kurį riboja tiesės y = x2 + 6x + 2, x = -4, x = -1, y = 0.

Šiame pavyzdyje turime parabolę y = x2 + 6x + 2, kuri kyla iš po OX ašies, tiesės x = -4, x = -1, y = 0. Čia y = 0 riboja norimą skaičių iš viršaus. Tiesės x = -4 ir x = -1 yra ribos, per kurias bus skaičiuojamas apibrėžtasis integralas. Figūros ploto radimo problemos sprendimo principas beveik visiškai sutampa su 1 pavyzdžiu. Skirtumas tik tas, kad duota funkcija nėra teigiama, o taip pat yra tolydi intervale [-4; -1]. Ką reiškia ne teigiama? Kaip matyti iš paveikslo, figūra, esanti duotųjų x ribose, turi išskirtinai „neigiamas“ koordinates, kurias turime pamatyti ir atsiminti spręsdami problemą. Figūros ploto ieškome naudodami Niutono-Leibnizo formulę, tik su minuso ženklu pradžioje.

Straipsnis nebaigtas.

Apibrėžtasis integralas. Kaip apskaičiuoti figūros plotą

Pereikime prie integralinio skaičiavimo taikymo. Šioje pamokoje analizuosime tipišką ir dažniausiai pasitaikančią problemą – kaip apskaičiuoti plokštumos figūros plotą naudojant apibrėžtąjį integralą. Pagaliau tie, kurie ieško prasmės aukštojoje matematikoje – tegul ją randa. Niekada nežinai. Realiame gyvenime turėsite apytiksliai apskaičiuoti vasarnamio sklypą naudodami elementarias funkcijas ir rasti jo plotą naudodami apibrėžtą integralą.

Norėdami sėkmingai įsisavinti medžiagą, turite:

1) Suprasti neapibrėžtąjį integralą bent jau tarpiniu lygiu. Taigi, manekenai pirmiausia turėtų susipažinti su pamoka Ne.

2) Mokėti taikyti Niutono-Leibnizo formulę ir apskaičiuoti apibrėžtąjį integralą. Puslapyje Definite Integral galite užmegzti šiltus draugiškus santykius su apibrėžtais integralais. Sprendimų pavyzdžiai.

Tiesą sakant, norint rasti figūros plotą, jums nereikia tiek daug žinių apie neapibrėžtą ir apibrėžtą integralą. Užduotis „apskaičiuoti plotą naudojant apibrėžtąjį integralą“ visada apima brėžinio konstravimą, todėl jūsų žinios ir įgūdžiai kuriant brėžinius bus daug aktualesnis klausimas. Šiuo atžvilgiu naudinga atnaujinti atmintį apie pagrindinių elementariųjų funkcijų grafikus ir bent jau turėti galimybę sukurti tiesę, parabolę ir hiperbolę. Tai galima padaryti (daugeliui tai būtina) pasitelkus metodinę medžiagą ir straipsnį apie geometrines grafų transformacijas.

Tiesą sakant, visi buvo susipažinę su užduotimi rasti sritį naudojant apibrėžtą integralą nuo mokyklos laikų, ir mes neperžengsime daug daugiau nei mokyklos mokymo programa. Šio straipsnio galėjo ir nebūti, bet faktas yra tas, kad problema iškyla 99 atvejais iš 100, kai studentas kenčia nuo nekenčiamos mokyklos ir entuziastingai įvaldo aukštosios matematikos kursą.

Šio seminaro medžiaga pateikiama paprastai, išsamiai ir turint minimalų teoriją.

Pradėkime nuo lenktos trapecijos.

Lenkta trapecija yra plokščia figūra, apribota ašies, tiesių ir atkarpos ištisinės funkcijos, kuri nekeičia ženklo šiame intervale, grafikas. Tegul ši figūra yra išdėstyta ne mažiau x ašis:

Tada kreivinės trapecijos plotas yra skaitiniu būdu lygus apibrėžtajam integralui. Bet koks apibrėžtas integralas (egzistuojantis) turi labai gerą geometrinę reikšmę. Pamokoje Apibrėžtasis integralas. Sprendimų pavyzdžiai Sakiau, kad apibrėžtasis integralas yra skaičius. O dabar laikas pasakyti dar vieną naudingą faktą. Geometrijos požiūriu apibrėžtasis integralas yra PLOTAS.

Tai yra, tam tikras integralas (jei jis yra) geometriškai atitinka tam tikros figūros plotą. Pavyzdžiui, apsvarstykite apibrėžtąjį integralą. Integrandas apibrėžia kreivę plokštumoje, esančioje virš ašies (norintieji gali piešti), o pats apibrėžtasis integralas yra skaitiniu būdu lygus atitinkamos kreivinės trapecijos plotui.

1 pavyzdys

Tai yra tipiškas priskyrimo pareiškimas. Pirmas ir svarbiausias sprendimo momentas yra piešimas. Be to, brėžinys turi būti sudarytas TEISINGAI.

Statant brėžinį rekomenduoju tokią tvarką: pirmiausia geriau sukonstruoti visas tieses (jei yra) ir tik tada – paraboles, hiperboles ir kitų funkcijų grafikus. Funkcijų grafikus labiau apsimoka sudaryti taškinės konstrukcijos techniką rasite pamatinėje medžiagoje Elementariųjų funkcijų grafikai ir savybės. Ten taip pat galite rasti labai naudingos medžiagos mūsų pamokai – kaip greitai sukonstruoti parabolę.

Šios problemos sprendimas gali atrodyti taip.
Nubraižykime brėžinį (atkreipkite dėmesį, kad lygtis apibrėžia ašį):


Neužtemdysiu lenktos trapecijos, čia akivaizdu, apie kokią sritį kalbame. Sprendimas tęsiasi taip:

Segmente funkcijos grafikas yra virš ašies, todėl:

Atsakymas:

Kas turi sunkumų apskaičiuojant apibrėžtąjį integralą ir taikant Niutono-Leibnizo formulę , skaitykite paskaitą Apibrėžtinis integralas. Sprendimų pavyzdžiai.

Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. Šiuo atveju brėžinyje esančių langelių skaičių skaičiuojame „iš akies“ - na, jų bus apie 9, o tai atrodo tiesa. Visiškai aišku, kad jei gavome, tarkime, atsakymą: 20 kvadratinių vienetų, tai akivaizdu, kad kažkur buvo padaryta klaida – 20 langelių akivaizdžiai netelpa į nagrinėjamą figūrą, daugiausia keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

2 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, , ir ašimi, plotą

Tai pavyzdys, kurį galite išspręsti patys. Visas sprendimas ir atsakymas pamokos pabaigoje.

Ką daryti, jei po ašimi yra išlenkta trapecija?

3 pavyzdys

Apskaičiuokite figūros plotą, apribotą linijomis ir koordinačių ašimis.

Sprendimas: Padarykime piešinį:

Jei išlenkta trapecija yra po ašimi (arba bent jau ne aukščiau nurodyta ašis), tada jos plotą galima rasti naudojant formulę:
Tokiu atveju:

Dėmesio! Negalima painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokios geometrinės reikšmės, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusplokštumoje, todėl nuo paprasčiausių mokyklinių uždavinių pereiname prie prasmingesnių pavyzdžių.

4 pavyzdys

Raskite plokštumos figūros, apribotos linijomis , plotą.

Sprendimas: Pirmiausia turite užbaigti piešinį. Paprastai tariant, brėžinį konstruojant plotų uždaviniuose mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės ir tiesės susikirtimo taškus. Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis. Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba yra , viršutinė integracijos riba yra .
Geriau, jei įmanoma, nenaudoti šio metodo.

Kur kas pelningiau ir greičiau tiesti linijas taškas po taško, o integracijos ribos išryškėja „savaime“. Įvairių grafų taškinės konstravimo technika išsamiai aptarta žinyne Elementariųjų funkcijų grafikai ir savybės. Nepaisant to, analitinį ribų radimo metodą vis tiek kartais tenka naudoti, jei, pavyzdžiui, grafikas pakankamai didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios). Ir mes taip pat apsvarstysime tokį pavyzdį.

Grįžkime prie savo užduoties: racionaliau pirmiausia konstruoti tiesę, o tik tada parabolę. Padarykime piešinį:

Kartoju, kad konstruojant taškiškai integracijos ribos dažniausiai išsiaiškinamos „automatiškai“.

O dabar darbinė formulė: Jei atkarpoje tam tikra ištisinė funkcija yra didesnė už kokią nors ištisinę funkciją arba jai lygi, tada figūros plotą, kurį riboja šių funkcijų grafikai ir tiesės, galima rasti naudojant formulę:

Čia nebereikia galvoti, kur yra figūra – virš ašies ar žemiau ašies, ir, grubiai tariant, svarbu, kuris grafikas yra AUKŠČESČIUS (kito grafiko atžvilgiu), o kuris – ŽEMIAUS.

Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl reikia atimti iš

Užbaigtas sprendimas gali atrodyti taip:

Norimą figūrą riboja parabolė viršuje ir tiesi linija apačioje.
Segmente pagal atitinkamą formulę:

Atsakymas:

Tiesą sakant, mokyklos formulė kreivinės trapecijos plotui apatinėje pusplokštumoje (žr. paprastą pavyzdį Nr. 3) yra specialus formulės atvejis. . Kadangi ašis nurodoma lygtimi, o funkcijos grafikas yra ne aukščiau tada kirvius

O dabar pora pavyzdžių jūsų sprendimui

5 pavyzdys

6 pavyzdys

Raskite figūros plotą, kurį riboja linijos , .

Sprendžiant problemas, susijusias su ploto apskaičiavimu naudojant apibrėžtąjį integralą, kartais nutinka juokingas įvykis. Piešinys atliktas teisingai, skaičiavimai buvo teisingi, bet dėl ​​neatsargumo... rastas netinkamos figūros plotas, būtent taip kelis kartus suklydo jūsų nuolankus tarnas. Štai realus atvejis:

7 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos , , , .

Sprendimas: pirmiausia nupieškime:

...Ech, piešinys išėjo mėšlas, bet viskas lyg ir įskaitoma.

Figūra, kurios plotą turime rasti, yra nuspalvinta mėlyna spalva (atsargiai pažiūrėkite į būklę – kaip figūra ribota!). Tačiau praktikoje dėl neatidumo dažnai nutinka „gedimas“, kai reikia rasti figūros plotą, nuspalvintą žaliai!

Šis pavyzdys taip pat naudingas tuo, kad apskaičiuoja figūros plotą naudojant du apibrėžtuosius integralus. Tikrai:

1) Atkarpoje virš ašies yra tiesės grafikas;

2) Atkarpoje virš ašies yra hiperbolės grafikas.

Visiškai akivaizdu, kad sritis galima (ir reikia) pridėti, todėl:

Atsakymas:

Pereikime prie kitos prasmingos užduoties.

8 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą,
Pateikime lygtis „mokykloje“ ir nubrėžkime tašką po taško:

Iš brėžinio aišku, kad mūsų viršutinė riba yra „gera“: .
Bet kokia yra apatinė riba?! Aišku, kad tai nėra sveikasis skaičius, bet kas tai yra? Gal būt ? Bet kur garantija, kad piešinys padarytas tobulai tiksliai, gali pasirodyti, kad... Arba šaknis. Ką daryti, jei grafiką sudarėme neteisingai?

Tokiais atvejais tenka skirti papildomo laiko ir analitiškai išsiaiškinti integracijos ribas.

Raskime tiesės ir parabolės susikirtimo taškus.
Norėdami tai padaryti, išsprendžiame lygtį:


,

Tikrai,.

Tolesnis sprendimas yra trivialus, svarbiausia nesusipainioti su pakeitimais ir ženklais, skaičiavimai čia nėra patys paprasčiausi.

Ant segmento , pagal atitinkamą formulę:

Atsakymas:

Na, o pamokos pabaigoje pažvelkime į dvi sudėtingesnes užduotis.

9 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos, ,

Sprendimas: pavaizduokime šią figūrą brėžinyje.

Po velnių, pamiršau pasirašyti tvarkaraštį ir, atsiprašau, nenorėjau perdaryti nuotraukos. Ne piešimo diena, trumpai tariant, šiandien tokia diena =)

Norint sukurti tašką po taško, reikia žinoti sinusoido išvaizdą (ir apskritai naudinga žinoti visų elementariųjų funkcijų grafikus), taip pat kai kurias sinuso reikšmes, jas galima rasti trigonometrinė lentelė. Kai kuriais atvejais (kaip ir šiuo atveju) galima sukonstruoti scheminį brėžinį, kuriame turėtų būti iš esmės teisingai atvaizduoti integracijos grafikai ir ribos.

Čia nėra problemų dėl integravimo ribų, jos tiesiogiai išplaukia iš sąlygos: „x“ keičiasi iš nulio į „pi“. Priimkime kitą sprendimą:

Segmente funkcijos grafikas yra virš ašies, todėl:

Kaip į svetainę įterpti matematines formules?

Jei kada nors reikės pridėti vieną ar dvi matematines formules į tinklalapį, paprasčiausias būdas tai padaryti yra taip, kaip aprašyta straipsnyje: matematinės formulės lengvai įterpiamos į svetainę paveikslėlių pavidalu, kuriuos automatiškai sugeneruoja Wolfram Alpha. . Be paprastumo, šis universalus metodas padės pagerinti svetainės matomumą paieškos sistemose. Jis veikia jau seniai (ir, manau, veiks amžinai), bet jau morališkai pasenęs.

Jei savo svetainėje reguliariai naudojate matematines formules, rekomenduoju naudoti MathJax – specialią „JavaScript“ biblioteką, kuri žiniatinklio naršyklėse, naudojant MathML, LaTeX arba ASCIIMathML žymėjimą, rodo matematinius žymėjimus.

Yra du būdai pradėti naudotis MathJax: (1) naudodami paprastą kodą, prie savo svetainės galite greitai prijungti MathJax scenarijų, kuris tinkamu metu bus automatiškai įkeltas iš nuotolinio serverio (serverių sąrašas); (2) atsisiųskite MathJax scenarijų iš nuotolinio serverio į savo serverį ir prijunkite jį prie visų savo svetainės puslapių. Antrasis metodas – sudėtingesnis ir daug laiko reikalaujantis – pagreitins jūsų svetainės puslapių įkėlimą, o jei pagrindinis MathJax serveris dėl kokių nors priežasčių laikinai taps nepasiekiamas, tai neturės jokios įtakos jūsų svetainei. Nepaisant šių privalumų, pasirinkau pirmąjį būdą, nes jis paprastesnis, greitesnis ir nereikalaujantis techninių įgūdžių. Sekite mano pavyzdžiu ir vos per 5 minutes savo svetainėje galėsite naudotis visomis MathJax funkcijomis.

Galite prijungti MathJax bibliotekos scenarijų iš nuotolinio serverio naudodami dvi kodo parinktis, paimtas iš pagrindinės MathJax svetainės arba dokumentacijos puslapyje:

Vieną iš šių kodo parinkčių reikia nukopijuoti ir įklijuoti į tinklalapio kodą, pageidautina tarp žymų ir arba iškart po žymos. Pagal pirmąjį variantą MathJax įkeliamas greičiau ir mažiau sulėtina puslapį. Tačiau antroji parinktis automatiškai stebi ir įkelia naujausias MathJax versijas. Jei įterpsite pirmąjį kodą, jį reikės periodiškai atnaujinti. Jei įterpsite antrą kodą, puslapiai bus įkeliami lėčiau, tačiau jums nereikės nuolat stebėti MathJax atnaujinimų.

Lengviausias būdas prisijungti MathJax yra „Blogger“ arba „WordPress“: svetainės valdymo skydelyje pridėkite valdiklį, skirtą trečiosios šalies „JavaScript“ kodui įterpti, nukopijuokite į jį pirmąją arba antrąją aukščiau pateikto atsisiuntimo kodo versiją ir įdėkite valdiklį arčiau. į šablono pradžią (beje, tai visai nebūtina, nes MathJax scenarijus įkeliamas asinchroniškai). Tai viskas. Dabar išmokite MathML, LaTeX ir ASCIIMathML žymėjimo sintaksę ir būsite pasirengę įterpti matematines formules į savo svetainės tinklalapius.

Bet kuris fraktalas konstruojamas pagal tam tikrą taisyklę, kuri nuosekliai taikoma neribotą skaičių kartų. Kiekvienas toks laikas vadinamas iteracija.

Iteratyvus Menger kempinės konstravimo algoritmas yra gana paprastas: originalus kubas su 1 kraštine plokštumos, lygiagrečios jo paviršiams, padalintas į 27 vienodus kubus. Iš jo pašalinamas vienas centrinis kubas ir 6 šalia jo esantys kubeliai. Rezultatas yra rinkinys, susidedantis iš likusių 20 mažesnių kubelių. Tą patį padarę su kiekvienu iš šių kubelių, gauname rinkinį, kurį sudaro 400 mažesnių kubelių. Tęsdami šį procesą be galo, gauname Menger kempinę.



Ar jums patiko straipsnis? Pasidalinkite su draugais!