Определение теплоемкости тела. Теплоемкость газа

Известно, что подвод теплоты к рабочему телу в каком-либо процессе сопровождается изменением температуры. Отношение теплоты, подведённой (отведённой) в данном процессе, к изменению температуры называется теплоёмкостью тела .

где dQ - элементарное количество теплоты

dT - элементарное изменение температуры.

Теплоёмкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить температуру на 1 градус. Измеряется в [Дж/К].

Количество теплоты, подведённое к рабочему телу, всегда пропорционально количеству рабочего тела. Например, количество теплоты, необходимое для нагревания на 1 градус кирпича и кирпичной стены неодинаково, поэтому для сравнения вводят удельные величины теплоёмкости, отнеся подведённую теплоту к единице рабочего тела. В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике , различают массовую, объёмную и мольную теплоёмкости.

Массовая теплоёмкость - это теплоёмкость, отнесённая к единице массы рабочего тела,

.

Количество теплоты, необходимое для нагревания 1 кг газа на 1 К называется массовой теплоёмкостью.

Единицей измерения массовой теплоёмкости является Дж/(кг К). Массовую теплоёмкость называют также удельной теплоёмкостью.

Объёмная теплоёмкость - теплоёмкость, отнесённая к единице объёма рабочего тела,

.

Количество теплоты, необходимое для нагревания 1 м 3 газа на 1 К называется объёмной теплоёмкостью.

Объёмная теплоёмкость измеряется в Дж/(м 3 К).

Мольная теплоёмкость - теплоёмкость, отнесённая к количеству рабочего тела,

,

где n - количество газа в моль.

Количество теплоты, необходимое для нагревания 1 моль газа на 1 К называется мольной теплоёмкостью.

Мольную теплоёмкость измеряют в Дж/(моль×К).

Массовая и мольная теплоёмкости связаны следующим соотношением:

или С m = mс, где m - молярная масса

Теплоёмкость зависит от условий протекания процесса. Поэтому обычно в выражении для теплоёмкости указывается индекс х, который характеризует вид процесса теплообмена.

.

Индекс х означает, что процесс подвода (или отвода) теплоты идёт при постоянном значении какого-либо параметра, например, давления, объёма.

Среди таких процессов наибольший интерес представляют два: один при постоянном объёме газа, другой при постоянном давлении. В соответствии с этим различают теплоёмкости при постоянном объёме C v и теплоёмкость при постоянном давлении C p .

1) Теплоёмкость при постоянном объёме равна отношению количества теплоты dQ к изменению температуры dT тела в изохорном процессе (V = const):

;

2) Теплоёмкость при постоянном давлении равна отношению количества теплоты dQ к изменению температуры dT тела в изобарном процессе (Р = const):


Для понимания сути этих процессов рассмотрим пример.

Пусть имеется два цилиндра, в которых находится по 1 кг одного и того же газа при одинаковой температуре. Один цилиндр полностью закрыт (V = const), другой цилиндр сверху закрыт поршнем, который оказывает на газ постоянное давление Р (P = const).

Подведём к каждому цилиндру такое количество тепла Q, чтобы температура газа в них повысилась от Т 1 до Т 2 на 1К. В первом цилиндре газ не совершил работу расширения, т.е. количество подведённого тепла будет равно

Q v = c v (T 2 - T 1) ,

здесь индекс v - означает, что теплота подводится к газу в процессе с постоянным объёмом.

Во втором цилиндре, кроме повышения температуры на 1К, произошло ещё передвижение нагруженного поршня (газ изменил объём), т.е. была совершена работа расширения. Количество подведённого тепла в этом случае определится из выражения:

Q р = c р (T 2 - T 1)

Здесь индекс р - означает, что тепло подводится к газу в процессе с постоянным давлением.

Общее количество тепла Q p будет больше Q v на величину, соответствующую работе преодоления внешних сил:

где R - работа расширения 1 кг газа при повышении температуры на 1К при Т 2 - Т 1 = 1К.

Отсюда С р - С v = R

Если поместить в цилиндр не 1 кг газа, а 1 моль, то выражение примет вид

Сm Р - Сm v = R m , где

R m - универсальная газовая постоянная.

Это выражение носит название уравнения Майера .

Наряду с разностью С р - С v в термодинамических исследованиях и практических расчетах широкое применение имеет отношение теплоемкостей С р и С v , которое называется показателем адиабаты .

k = С р / С v .

В молекулярно - кинетической теории для определения k приводится следующая формула k = 1 + 2/n,

где n - число степеней свободы движения молекул (для одноатомных газов n = 3, для двухатомных n = 5, для трёх и более атомных n = 6).

Способы изменения внутренней энергии тела

Существует два способа изменения внутренней энергии тела (системы) -- совершение работы над ним или передача тепла. Процесс обмена внутренними энергиями соприкасающихся тел, который не сопровождается совершением работы, называется теплообменом. Энергия, которая передана телу в результате теплообмена, называется количеством теплоты, полученным телом. Обозначается количество тепла обычно Q. Вообще говоря, изменение внутренней энергии тела в процедуре теплообмена - результат работы внешних сил, только это не работа, связанная с изменением внешних параметров системы. Это работа, которую производят молекулярные силы. Например, если привести в соприкосновении тело с горячим газом, то энергия газа передается через столкновения молекул газа с молекулами тела.

Количество тепла не является функцией состояния, так как Q зависит от пути перехода системы из одного состояния в другое. Если задано состояние системы, но не указан процесс перехода, то ничего нельзя сказать о количестве тепла, которое получено системой. В этом смысле нельзя говорить о количестве тепла, запасенном в теле.

Иногда говорят о теле, обладающем запасом тепловой энергии, это имеется в виду не количество тепла, а внутренняя энергия тела. Такое тело называют тепловым резервуаром. Подобные «ляпы» в терминологии остались в науке от теории теплорода, впрочем, как и сам термин количество тепла. Теория теплорода рассматривала теплоту как некую невесомую жидкость, которая содержится в телах и не может быть создана или уничтожена. Существовала версия сохранения теплорода. С такой точки зрения было логично говорить о запасе тепла в теле без отношения к процессу. Сейчас в калориметрии часто рассуждают так, если бы был справедлив закон сохранения количества теплоты. Так, например, поступают в математической теории теплопроводности.

В связи с тем, что теплота не является функцией состояния, то для бесконечно малого количества теплоты используют обозначение $\delta Q$, а не $dQ$. Этим подчёркивается, что $\delta Q$ не рассматривается как полный дифференциал, т.е. не всегда могут быть представлены как бесконечно малые приращения функций состояния (только в частных случаях, например в изохорном и изобарном процессах). Принято считать, что теплота положительна, если система ее получает, и отрицательна в противном случае.

Что такое теплоемкость

Рассмотрим теперь, что такое теплоемкость.

Определение

Количество теплоты, переданное телу с целью нагреть его на 1К, -- теплоемкость тела (системы). Обычно обозначается "C":

\[С=\frac{\delta Q}{dT}\left(1\right).\]

Теплоемкость единицы массы тела:

удельная теплоемкость. m -- масса тела.

Теплоемкость единицы молярной массы тела:

молярная теплоемкость. $\nu $- количество вещества (количество молей вещества), $\mu $ -- молярная масса вещества.

Средней теплоемкостью $\left\langle C\right\rangle $ в интервале температур от $T_1$ до $T_2\ $называют:

\[\left\langle C\right\rangle =\frac{Q}{T_2-T_1}\ \left(4\right).\]

Связь между средней теплоемкостью тела и его «просто» теплоемкостью выражается как:

\[\left\langle C\right\rangle =\frac{1}{T_2-T_1}\int\limits^{T_2}_{T_1}{CdT}\ \left(5\right).\]

Мы видим, что теплоемкость определена через понятие «теплота».

Как уже отмечалось, количество тепла подведенного к системе зависит от процесса. Соответственно, получается, что и теплоемкость зависит от процесса. Поэтому формулу определения теплоемкости (1) следует уточнить и записать в виде:

\[С_V={\left(\frac{\delta Q}{dT}\right)}_V,\ С_p={\left(\frac{\delta Q}{dT}\right)}_p(6)\]

теплоёмкости (газа) в постоянном объеме и при постоянном давлении.

Таким образом, теплоемкость в общем случае характеризует как свойства тела, так и условия, при которых происходит нагрев тела. Если определить условия нагревания, то теплоемкость становится характеристикой свойств тела. Такие теплоемкости мы видим в справочных таблицах. Теплоемкости в процессах при постоянном давлении и постоянном объеме являются функциями состояния.

Пример 1

Задание: Идеальный газ, молекула которого имеет число степеней свободы, равное i, расширили по закону: $p=aV,$где $a=const.$ Найти молярную теплоемкость в этом процессе.

\[\delta Q=dU+\delta A=\frac{i}{2}\nu RdT+pdV\left(1.2\right).\]

Так как газ идеальный, то используем уравнение Менделеева -- Клайперона и уравнение процесса для преобразования элементарной работы и получения выражения для нее через температуру:

Итак, элемент работы имеет вид:

\[\delta A=pdV=aVdV=\frac{\nu RdT}{2}\left(1.4\right).\]

Подставим (1.4) в (1.2), получим:

\[\delta Q=\nu c_{\mu }dT=\frac{i}{2}\nu RdT+\frac{\nu RdT}{2}\left(1.5\right).\]

Выразим молярную теплоемкость:

Ответ: Молярная теплоемкость в заданном процессе имеет вид: $c_{\mu }=\frac{R}{2}\left(i+1\right).$

Пример 2

Задание: Найти изменение количества теплоты идеального газа в процессе p$V^n=const$ (такой процесс называется политропическим), если число степеней свободы молекулы газа равно i, изменение температуры в процессе $\triangle T$, количество вещества $\nu $.

Основой для решения задачи станет выражение:

\[\triangle Q=C\triangle T\ \left(2.1\right).\]

Значит, необходимо найти C (теплоемкость в заданном процессе). Используем первое начало термодинамики:

\[\delta Q=dU+pdV=\frac{i}{2}\nu RdT+pdV=CdT\to C=\frac{i}{2}\nu R+\frac{pdV}{dT}\ \left(2.2\right).\]

Найдем $\frac{dV}{dT}$ используя уравнение процесса и уравнение Менделеева - Клайперона:

Подставим давление и объем из (2.3.) в уравнение процесса, который задан, получим уравнение политропы в параметрах $V,T$:

В таком случае:

\[\frac{dV}{dT}=B"\cdot \frac{1}{1-n}T^{\frac{n}{1-n}}\left(2.5\right).\] \ \ \[\triangle Q=C\triangle T=\nu R\left(\frac{i}{2}+\frac{1}{1-n}\right)\triangle T\left(2.8\right).\]

Ответ: Изменение количества теплоты идеального газа в процессе задано формулой: $\triangle Q=\nu R\left(\frac{i}{2}+\frac{1}{1-n}\right)\triangle T$.

Теплоемкостью тела называют количество теплоты, которое нужно сообщить данному телу, чтобы повысить его температуру на один градус. При остывании на один градус тело отдает такое же количество тепла. Теплоемкость пропорциональна массе тела. Теплоемкость единицы массы тела называется удельной, а произведение удельной теплоемкости на атомную или молекулярную массу - соответственно атомной или молярной.

Теплоемкости различных веществ сильно различаются между собой. Так, удельная теплоемкость воды при 20° С составляет 4200 Дж/кг К, соснового дерева - 1700, воздуха - 1010. У металлов она меньше: алюминия - 880 Дж/кг К, железа - 460, меди - 385, свинца - 130. Удельная теплоемкость слабо растет с температурой (при 90° С теплоемкость воды составляет 4220 Дж/кг К) и сильно меняется при фазовых превращениях: теплоемкость льда при 0° С в 2 раза меньше, чем воды; теплоемкость водяного пара при 100° С около 1500 Дж/кг К.

Теплоемкость зависит от условий, в которых происходит изменение температуры тела. Если размеры тела не меняются, то вся теплота идет на изменение внутренней энергии. Здесь говорится о теплоемкости при постоянном объеме . При постоянном внешнем давлении благодаря тепловому расширению совершается механическая работа против внешних сил, и нагревание на ту или иную температуру требует большего тепла. Поэтому теплоемкость при постоянном давлении всегда больше, чем . Для идеальных газов (см. рис.), где R - газовая постоянная, равная 8,32 Дж/моль К.

Обычно измеряется . Классический способ измерения теплоемкости следующий: тело, теплоемкость которого хотят измерить, нагревают до определенной температуры и помещают в калориметр с начальной температурой , наполненный водой или другой жидкостью с известной теплоемкостью и - теплоемкости калориметра и жидкости).

Измеряя температуру в калориметре после установления теплового равновесия , можно вычислить теплоемкость тела по формуле:

где и - массы тела, жидкости и калориметра.

Наиболее развита теория теплоемкости газов. При обычных температурах нагревание приводит в основном к изменению энергии поступательного и вращательного движения молекул газа. Для молярной теплоемкости одноатомных газов теория дает , двухатомных и многоатомных - и . При очень низких температурах теплоемкость несколько меньше из-за квантовых эффектов (см. Квантовая механика). При высоких температурах добавляется колебательная энергия, и теплоемкость многоатомных газов растет с ростом температуры.

Атомная теплоемкость кристаллов, по классической теории, равна , что согласуется с эмпирическим законом Дюлонга и Пти (установлен в 1819 г. французскими учеными П. Дюлонгом и А. Пти). Квантовая теория теплоемкости приводит к такому же выводу при высоких температурах, но предсказывает уменьшение теплоемкости при понижении температуры. Вблизи абсолютного нуля теплоемкость всех тел стремится к нулю (третий закон термодинамики).

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

ТЕПЛОЁМКОСТЬ - кол-во теплоты; поглощаемой телом при нагревании на 1 градус (1 °С или 1 К); точнее - отношение кол-ва теплоты, поглощаемой телом при бесконечно малом изменении его темп-ры, к этому изменению. Т. единицы массы вещества наз. удельной Т., 1 моля вещества-молярной (мольной) Т. Единицами Т. служат Дж/(кг · К), ДжДмоль · К), Дж/(м 3 · К) и внесистемная единица кал/(моль·К).

Кол-во теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их темп-ры), но и от способа, к-рым был осуществлён процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при пост. объёме (C V )и Т. при пост. давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. При нагревании при пост. давлении часть теплоты идёт на производство работы расширения тела, а часть - на увеличение его внутренней энергии , тогда как при нагревании при пост. объёме вся теплота расходуется на увеличение внутр. энергии; в связи с этим С Р всегда больше, чем C V . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. С P - C V = R , где R - универсальная газовая постоянная ,равная 8,314 Дж/(Дмоль·К) или 1,986 калДмоль·К). У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала. Т. С Р нек-рых веществ и материалов приведены в табл. 1 и 2.

В твёрдых (кристаллич.) телах тепловое движение атомов представляет собой малые колебания вблизи определ. положений равновесия (узлов кристаллич. решётки). Каждый атом обладает, т. о., тремя колебат. степенями свободы, и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллич. решётки) должна быть равной ЗnR , где n -число атомов в молекуле. В действительности, однако, это значение - лишь предел, к к-рому стремится Т. твёрдого тела при высоких темп-pax. Он достигается уже при обычных темп-pax у мн. элементов, в т. ч. у металлов (п=1 , т.н. Дюлонга и Пти закон )и у нек-рых простых соединений ; у сложных соединений этот предел фактически не достигается, т. к. раньше наступает плавление вещества или его разложение.

При низких темп-pax решёточная составляющая Т, твёрдого тела оказывается пропорц. T 3 (Дебая закон теплоёмкости) . Критерием, позволяющим различать высокие и низкие темп-ры, является сравнение их с характерным для каждого данного вещества параметром - т. н. характеристической или Дебая температурой q D , Эта величина определяется спектром колебания атомов в теле и тем самым существенно зависит от его кристаллич. структуры (см. Колебания кристаллической решётки) . Обычно q D -величина порядка неск. сотен К, но может достигать (напр., у алмаза) и тысяч К,

У металлов определ. вклад в Т. дают также и электроны проводимости (см. Электронная теплоёмкость) . Эта часть Т. может быть вычислена с помощью Ферми - Дирака, статистики, к-рой подчиняются электроны. Электронная Т. металла пропорц. Т . Она представляет собой, однако, сравнительно малую величину, её вклад в Т. металла становится существенным лишь при темп-pax, близких к абс, нулю (порядка неск. К), когда решёточная Т. ( 3 )становится пренебрежимо малой. У кристаллич. тел с упорядоченным расположением спиновых магн. моментов атомов (ферро- и антиферромагнетиков) существует дополнит. магн, составляющая Т. При темп-ре фазового перехода в парамагн. состояние (в Кюри точке или соответственно Нееля точке )эта составляющая Т. испытывает резкий подъём - наблюдается "пик" Т., что является характерной особенностью фазовых переходов 2-го рода. .

Лит..: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976; Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976. E. М. Лифшиц .



Понравилась статья? Поделитесь с друзьями!