Применение радиоактивного распада в науке и технике. Реферат: Радиация, использование и проблемы

Радиоактивные излучения широко используют в диагностике и в терапии заболеваний.

Радионуклидная диагностика или, как его называют, метод меченых атомов используется для определения заболеваний щитовидной железы (с использованием изотопа 131 I). Этот метод также позволяет изучать распределения крови и других биологических жидкостей, диагностировать заболевания сердца и ряда других органов.

Гамма-терапия – это метод лечения онкологических заболеваний с помощью g-излучения. Для этого применяют чаще всего специальные установки, называемые кобальтовыми пушками, в которых в качестве излучающего изотопа используют 66 Со. Применение гамма-излучения высокой энергии позволяет разрушать глубоко расположенные опухоли, при этом поверхностно расположенные органы и ткани подвергаются меньшему губительному действию.

Применятся также радоновая терапия: минеральные воды, содержащие и его продукты, используются для воздействия на кожу (радоновые ванны), органы пищеварения (питье), органы дыхания (ингаляция).

Для лечения онкологических заболеваний применяются a-частицы в комбинации с потоками нейтронов. В опухоль вводят элементы, ядра которых под воздействием потока нейтронов вызывают ядерную реакцию с образованием a-излучения:

.

Таким образом, a-частицы и ядра отдачи образуются в том месте органа, которое необходимо подвергать воздействию.

В современной медицине в диагностических целях используют жесткое тормозное рентгеновское излучение, полученное на ускорителях и имеющее высокую энергию квантов (до нескольких десятков МэВ).

Дозиметрические приборы

Дозиметрическими приборами, или дозиметрами, называют устройства для измерения доз ионизирующих излучений или величин связанных с дозами.

Конструктивно дозиметры из детектора ядерных излучений и измерительного устройства. Обычно они проградуированы в единицах дозы или мощности дозы. В некоторых случаях предусмотрена сигнализация о превышении заданного значения мощности дозы.

В зависимости от используемого детектора различают дозиметры ионизационные, люминесцентные, полупроводниковые, фотодозиметры и др.

Дозиметры могут быть рассчитаны на измерение доз какого-либо определенного вида излучения или регистрацию смешанного излучения.

Дозиметры для измерения экспозиционной дозы рентгеновского и g-излучения или ее мощности называют рентгенометрами.

В качестве детектора у них обычно применяется ионизационная камера. Заряд, протекающий в цепи камеры, пропорционален экспозиционной дозе, а сила тока - ее мощности.

Состав газа в ионизационных камерах, а также вещество стенок, из которых они состоят, подбирают таким, чтобы осуществлялись тождественные условия с поглощением энергии в биологических тканях.

Каждый индивидуальный дозиметр представляет собой миниатюрную цилиндрическую камеру, которая предварительно заряжается. В результате ионизации происходит разрядка камеры, что фиксируется вмонтированным в нее электрометром. Показания его зависят от экспозиционной дозы ионизирующего излучения.

Существуют дозиметры, детекторами которых являются газовые счетчики.

Для измерения активности или концентрации радиоактивных изотопов применяют приборы, называемые радиометрами .

Общая структурная схема всех дозиметров аналогична той, что изображена на рис.5. Роль датчика (измерительного преобразователя) выполняет детектор ядерных излучений. В качестве выходных устройств могут использоваться стрелочные приборы, самописцы, электромеханические счетчики, звуковые и световые сигнализаторы.


КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется радиоактивностью? Назовите виды радиоактивности и типы радиоактивного распада.

2. Что называется a-распадом? Какие существуют виды b-распада? Что называется g-излучением?

3. Запишите основной закон радиоактивного распада. Поясните все величины, входящие в формулу.

4. Что называется постоянной распада? периодом полураспада? Напишите формулу, связывающую эти величины. Поясните все величины, входящие в формулу.

5. Какое действие оказывают ионизирующие излучения на биологическую ткань?

7. Приведите определения и формулы поглощенной, экспозиционной и эквивалентной (биологической) доз радиоактивного излучения, их единицы измерения. Поясните формулы.

8. Что такое коэффициент качества? От чего зависит коэффициент качества ? Приведите его значения для разных излучений.

9. Какие существуют способы защиты от ионизирующего излучения?

Медицина. Радий и другие естественные радиоизотопы широко применяются для диагностики и лучевой терапии раковых заболеваний. Использование для этой цели искусственных радиоизотопов значительно повысило эффективность лечения. Например, радиоактивный иод, введенный в организм в виде раствора иодида натрия, селективно накапливается в щитовидной железе и поэтому применяется в в клинической практике для определения нарушений функции щитовидной железы и при лечении базедовой болезни. С помощью меченого по натрию физиологического раствора измеряется скорость кровообращения и определяется проходимость кровеносных сосудов конечностей. Радиоактивный фосфор применяется для измерения объема крови и лечения эритремии.

Научные исследования. Радиоактивные метки, в микроколичествах введенные в физические или химические системы, позволяют следить за всеми происходящими в них изменениями. Например, выращивая растения в атмосфере радиоактивного диоксида углерода, химики смогли понять тонкие детали процесса образования в растениях сложных углеводов из диоксида углерода и воды. В результате непрерывной бомбардировки земной атмосферы космическими лучами с высокой энергией находящийся в ней азот-14, захватывая нейтроны и испуская протоны, превращается в радиоактивный углерод-14. Полагая, что интенсивность бомбардировки и, следовательно, равновесное количество углерода-14 в последние тысячелетия оставались неизменными и учитывая период полураспада C-14 по его остаточной активности, можно определять возраст найденных остатков животных и растений (радиоуглеродный метод). Этим методом удалось с большой достоверностью датировать обнаруженные стоянки доисторического человека, существовавшие более 25 000 лет тому назад.

Ка́мера Ви́льсона (она же туманная камера ) - один из первых в истории приборов для регистрации следов (треков) заряженных частиц.

Изобретена шотландским физиком Чарлзом Вильсономмежду1910и1912гг. Принцип действия камеры использует явлениеконденсацииперенасыщенного пара: при появлении в среде перенасыщенного пара каких-либо центров конденсации (в частности, ионов, сопровождающих след быстрой заряженной частицы) на них образуются мелкие капли жидкости. Эти капли достигают значительных размеров и могут быть сфотографированы. Источник исследуемых частиц может располагаться либо внутри камеры, либо вне ее (в этом случае частицы залетают через прозрачное для них окно).

В 1927 г. советские физики П. Л. КапицаиД. В. Скобельцынпредложили помещать камеру в сильноемагнитное поле, искривляющеетреки, для исследования количественных характеристик частиц (например, массы и скорости) .

Камера Вильсона представляет собой ёмкость со стеклянной крышкой и поршнем в нижней части, заполненная насыщенными парами воды, спирта или эфира. Пары тщательно очищены от пыли, чтобы до пролёта частиц у молекул воды не было центров конденсации. Когда поршень опускается, то за счет адиабатического расширенияпары охлаждаются и становятся перенасыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своем пути цепочку ионов. Пар конденсируется наионах, делая видимым след частицы.

Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений и исследования космических лучей:

    В 1930 году Л. В. МысовскийсР. А. Эйхельбергеромпроводили опыты срубидиеми в камере Вильсона было зарегистрировано испусканиеβ-частиц. Позже была открыта естественная радиоактивность изотопа 87 Rb.

    В 1934 году Л. В. МысовскийсМ. С. Эйгенсономпроводили эксперименты, в которых при помощи камеры Вильсона было доказано присутствиенейтроновв составекосмических лучей.

В 1927 годуВильсонполучил за свое изобретениеНобелевскую премию по физике. Впоследствии камера Вильсона в качестве основного средства исследования радиации уступила местопузырьковымиискровым камерам.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Курсовая работа

На тему: "Радиоактивность. Применение радиоактивных изотопов в технике"

Введение

1.Виды радиоактивных излучений

2.Другие виды радиоактивности

3.Альфа-распад

4.Бета-распад

5.Гамма-распад

6.Закон радиоактивного распада

7.Радиоактивные ряды

9.Применение радиоактивных изотопов

Введение

Радиоактивность - превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio - излучаю, activus - действенный. Это слово ввела Мария Кюри. При распаде нестабильного ядра - радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Лучи Рентгена. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того «излучений». В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826-1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817-1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет - зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba, добавлен 03.05.2014

Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.

реферат , добавлен 30.01.2010

Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.

реферат , добавлен 02.04.2012

Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.

презентация , добавлен 15.10.2013

Ядерные ионизирующие излучения, их источники и биологическое воздействие на органы и ткани живого организма. Характеристика морфологических сдвигов на системном и клеточном уровнях. Классификация последствий облучения людей, радиозащитные средства.

презентация , добавлен 24.11.2014

Работы Эрнеста Резерфорда. Планетарная модель атома. Открытие альфа- и бета-излучения, короткоживущего изотопа радона и образования новых химических элементов при распаде тяжелых химических радиоактивных элементов. Воздействие радиации на опухоли.

презентация , добавлен 18.05.2011

Рентгеновское излучение - электромагнитные волны, спектр которых находится между ультрафиолетовым и гамма-излучением. История открытия; лабораторные источники: рентгеновские трубки, ускорители частиц. Взаимодействие с веществом, биологическое воздействие.

презентация , добавлен 26.02.2012

Понятие и классификация радиоактивных элементов. Основные сведения об атоме. Характеристики видов радиоактивного излучения, его проникающая способность. Периоды полураспада некоторых радионуклидов. Схема процесса индуцированного нейтронами деления ядер.

презентация , добавлен 10.02.2014

Гамма-излучение - коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны.

реферат , добавлен 07.11.2003

Характеристика корпускулярного, фотонного, протонного, рентгеновского видов излучения. Особенности взаимодействия альфа-, бета-, гамма-частиц с ионизирующим веществом. Сущность комптоновского рассеивания и эффекта образования электронно-позитронной пары.

Радиация, радиоактивность и радиоизлучение - понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность - это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества - что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец - это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

  • Калий.
  • Кальций.
  • Ванадий.
  • Германий.
  • Селен.
  • Рубидий.
  • Цирконий.
  • Молибден.
  • Кадмий.
  • Индий.

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение - это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение - это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год - это вообще естественный радиационный фон нашей планеты. 3 дар - ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество - это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри - первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, - это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность - достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества - это опасность и благословение для человечества.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения - радиацией.

Радиоактивный распад - изменение состава нестабильных атомных ядер. Ядра спонтанно распадаются на ядерные фрагменты и элементарные частицы (продукты распада). Распад порождает гамма-излучение. Это фактор поражения, обладающий продолжительным действием, действующий на огромной площади, зоне радиоактивного распада.

Характеристика зон заражения:

Зона умеренного заражения (зона А) - э кспозиционная доза излучения за время полного распада (Д) колеблется от 40 до 400 Р. Зона сильного заражения (зона Б) - э кспозиционная доза излучения за время полного распада (Д) колеблется от 400 до 1200 Р. Зона опасного заражения (зона В)- экспозиционная доза излучения за время полного распада (Д) составляет 1200 Р. Зона чрезвычайно опасного заражения (зона Г)- э кспозиционная доза излучения за время полного распада (Д) составляет 4000 Р.

Основные единицы измерения радиоактивности.

Рентген - внесистемная единица измерения дозы излучения (экспозиционной). 1 Р приблизительно равен 0,0098 Зв. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см 3 воздуха образуется 2 . 10 9 пар ионов. 1 Р = 2, 58 . 10 -4 Кл/кг.

Грей - системная единица измерения дозы излучения (поглощенной). 1 грей поглощает 1 килограмм вещества при получении 1 джоуля энергии: Гр = Дж / кг = м² / с² .

Рад - внесистемная единица измерения дозы излучения (поглощенной). 1 рад - доза при которой вещество в 1 грамм получает 100 эрг энергии. 1 Гр = 100 рад

Бэр - внесистемная единица измерения дозы излучения (эквивалентной и эффективной), биологический эквивалент рентгена. 1 бэр - это такое облучение организма, при котором те же эффекты, что и при экспозиционной дозе 1 рентген.

Зиверт - системная единица измерения дозы излучения (эквивалентной и эффективной). 1 зиверт - энергия, полученная 1 килограммом биологической ткани, равное по воздействию дозе излучения в 1 грей: Зв = Дж / кг = м² / с² . 1 Зв = 100 бэр. Основная единица измерения в дозиметрах.

Беккерель - системная единица измерения активности источника. Определяется как активность источника, при которой происходит один распад в секунду. Выражается Бк = с −1

Кюри - внесистемная единица измерения активности источника. Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7 . 10 10 Бк.

Применение радиоактивных источников в различных сферах деятельности человека .

Медицина: использование радиации для диагностики заболевания (рентгенологическая и радиоизотопная диагностика); использование радиации для лечения (радиоизотопная и радиационная терапия); радиационная стерилизация.

Радиоизотопная диагностика - использование радиоактивных изотопов и меченных ими соединений для распознавания заболеваний. Радиотерапия - это облучение опухоли потоком лучей, иногда применяется и в лечении доброкачественных опухолей, препятствует росту, размножению и распространению раковых клеток на здоровые ткани. Радиационной стерилизации подвергают материалы и препараты для медицинского применения, не выдерживающие термической или химической обработки или теряющие при этом свои лечебные свойства.

Химическая промышленность: модифицирование текстильных материалов для получения шерстоподобных свойств, получение х/б тканей с антимикробными свойствами, радиационное модифицирование хрусталя для получения хрустальных изделий различного цвета, радиационная вулканизация резинотканевых материалов, радиационное модифицирование полиэтиленовых труб для повышения термостойкости и стойкости к агрессивным средам, отвердение лакокрасочных покрытий на различных поверхностях.

Деревообрабатывающая промышленность: В результате облучения мягкое дерево приобретает значительно низкую способность сорбировать воду, высокую стабильность геометрических размеров и более высокую твёрдость (изготовление мозаичного паркета).

Городское хозяйство: радиационная очистка и обеззараживание сточных вод.

С/х : облучение с/х растений малой дозой в целях стимуляции их роста и развития; применение ионизирующих излучений для радиационного мутагенеза и селекции растений; использование метода лучевой стерилизации для борьбы с насекомыми-вредителями.

Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии. Основу ядерной энергетики составляют атомные электростанции (АЭС). Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.



Понравилась статья? Поделитесь с друзьями!