С какой целью осуществлялся индийский поход. Индийский поход войска донского

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 500 3 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 10 35 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 3 5 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (30 80 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 4 5 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 6 15 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 10 15 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 10 15 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 25 30 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

Искусственные источники света. Шумовое (акустическое) загрязнение

контрольная работа

Искусственные источники света: типы источников света и их основные характеристики, Особенности применения газоразрядных энергосберегающих источников света. Светильники: назначение, типы, особенности применения

Источники искусственного света играют в нашей жизни важную роль. Они выполняют не только практическую, но и эстетическую функцию. Так, существует множество ламп, различающихся по форме, размерам и техническим характеристикам.

Источники искусственного света:

Лампы накаливания

Галогенная лампа

Газоразрядные источники света

Натриевая лампа

Люминесцентные лампы

Светодиоды

Лампы накаливания являются наиболее распространённым видом источников света. Они широко применяются в различных видах помещений, как во внутренних, так и в наружных.

Лампа накаливания

Принцип действия: свет в лампах накаливания создается путем прохождения электрического тока через тонкую проволоку, обычно изготовляемую из вольфрама. Принцип действия основан на тепловом действии электрического тока.

Преимущества лампы: низкие первоначальные затраты, удовлетворительное качество воспроизведения цвета, возможность управления степенью концентрации и направлением распространения света, разнообразие конструкций, удобство применения, отсутствие систем электронного запуска и стабилизации.

Недостатки: срок службы обычно не более 1000 часов; 95% производимой ими энергии преобразуется в тепло и только 5 % - в свет! Лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт -- 145°C, 75 Вт -- 250°C, 100 Вт -- 290°C, 200 Вт -- 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Применение: предназначены для внутреннего и наружного освещения при параллельном включении ламп в электрические сети напряжением 127 и 220 В.

Средняя цена: 15 рублей за 1 штуку.

Галогенная лампа

Галогенные лампы, как и лампы накаливания, излучают тепло.

Принцип действия: спираль, изготовленная из жаропрочного вольфрама, находится в колбе, заполненной инертным газом. При прохождении через спираль электрического тока она накаляется, вырабатывая тепловую и световую энергию. Частички вольфрама при температуре 1400°C еще до достижения поверхности колбы соединяются с частичками галогена. Благодаря термической циркуляции эта галогенно-вольфрамовая смесь приближается к раскаленной спирали и под воздействием более высокой температуры разлагается. Частички вольфрама снова осаждаются на спирали, а частички галогена возвращаются в процесс циркуляции.

Преимущества: Спираль имеет более высокую температуру, что позволяет получить больше света при той же мощности лампы, спираль постоянно обновляется, что увеличивает срок службы лампы, колба не чернеет, и лампа дает постоянный световой поток в течение всего срока эксплуатации.
При одинаковой способности к цветопередаче с лампами накаливания, имеют компактную конструкцию.

Недостатки: низкая светоотдача, маленький срок службы

Газоразрядные источники света

Газоразрядные источники света представляют собой стеклянную, керамическую или металлическую (с прозрачным выходным окном) оболочку, содержащую газ, некоторое количество металла или др. вещества с достаточно высокой упругостью пара. В оболочку герметично вмонтированы электроды, между которыми происходит разряд. Существуют газоразрядные источники света с электродами, работающими в открытой атмосфере или протоке газа.

Различают:

газосветные лампы - излучение создаётся возбуждёнными атомами, молекулами, рекомбинирующими ионами и электронами;

люминесцентные лампы - источником излучения являются люминофоры, возбуждаемые излучением газового разряда;

электродосветные лампы - излучение создаётся электродами, разогретыми разрядом.

Люминесцентные лампы

Принцип действия: свет в этих лампах возникает за счет преобразования ультрафиолeтoвoгo излучения люминофорным покрытием в видимый cвeт пocлe вoзникнoвeния в ниx газoвoгo pазpяда.

Преимущества: этo эффективный cпocoб пpeoбpазoвания энepгии; в cлeдcтвиe бoльшoй излучающей пoвepxнocти создаваемый люминесцентными лампами cвeт не столь яркий, как у "тoчeчныx" итoчникoв cвeта (лампы накаливания, галoгeнныe и газоразpядныe лампы выcoкoгo давления); по энepгeтичecкoй эффeктивнocти люминecцeнтныe лампы являются идеальными для ocвeщeния бoльшиx oткpытыx пoмeщeний (oфиcы, кoммepчecкиe, пpoмышлeнныe и oбщecтвeнныe здания).

Свет ламп может быть белым, тёплых и холодных цветов, а также цвета, близкого к естественному дневному свечению.

Недостатки: все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью.

Срок службы: достигает 15000 часов, что в 10-15 раз больше по сравнению с лампами накаливания.

Лампа дневного света

Одна из разновидностей люминесцентных ламп с голубоватым цветом свечения. Выделяют 2 типа таких ламп -- ЛДЦ (дневного света, с правильной цветопередачей) и ЛД (дневного света).

Лампы ЛД не обеспечивают правильной передачи цвета освещаемых объектов; используются для целей общего освещения, особенно в южных районах.

Лампы ЛДЦ служат для освещения объектов, для которых важно точное воспроизведение цветовых оттенков, преимущественно в синей и голубой областях спектра. Их световая отдача на 10--15% ниже, чем у ламп ЛД. Такие лампы применяют для освещения производственных помещений.

Энергосберегающие лампы

Компактные люминесцентные лампы (КЛЛ), благодаря специальной технологии и дизайну, могут быть сравнимы в размерах или равны лампам накаливания. Эти современные лампы имеют все передовые характеристики люминесцентных ламп.

Преимущества: экономия электроэнергии составляет до 80% в зависимости от производителя и конкретной модели; энергосберегающие лампы слабо нагреваются.

Недостатки: высокая стоимость и содержание в них ядовитых веществ.

Срок службы: приблизительно в 5-6 раз дольше, чем ламп накаливания, но может до 20 раз превышать его при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя.

Натриевая лампа

Газоразрядный источник света, в котором излучение оптического диапазона возникает при электрическом разряде в парах Na. Выделяют лампы низкого давления и лампы высокого давления.

Принцип действия: лампа высокого давления изготовляется из светопропускающего поликристаллического состава Al2O3, устойчивого к воздействию электрического разряда в парах Na до температур выше 1200 °С. Внутрь разрядной трубки после удаления воздуха вводят дозированные количества Na, Hg и инертный газ при давлении 2,6--6,5 кн/м2 (20--50 мм рт. ст.). Существуют натриевые лампы высокого давления «с улучшенными экологическими свойствами» -- безртутные.

Натриевые лампы низкого давления (далее - НТЛД) отличаются рядом особенностей, существенно затрудняющих как их производство, так и эксплуатацию. Во-первых, пары натрия при высокой температуре дуги весьма агрессивно воздействуют на стекло колбы, разрушая его. Из-за этого горелки НЛНД обычно выполняются из боросиликатных стёкол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима горелки последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Преимущества: большой срок службы, применяют для наружного и внутреннего освещения; лампы дают приятный золотисто-белый свет.

Недостатки: включаются в электрическую сеть через пускорегулирующие аппараты; для обеспечения наибольшего выхода резонансного излучения Na разрядные трубки натриевой лампы утепляют, помещая их внутри стеклянного баллона, из которого откачан воздух.

Светодиод

Светодиод -- это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Минимальное потребление энергии обеспечивается за счёт свойств специально выращенного кристалла.

Применение светодиодов: в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах, в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях. Так же используются в качестве подсветки небольших жидкокристаллических экранов (на мобильных телефонах, цифровых фотоаппаратах).

Преимущества:

Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной лампе с холодным катодом (CCFL).

Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

Длительный срок службы. Но и он не бесконечен -- при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.

Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это -- достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

Малый угол излучения -- также может быть как достоинством, так и недостатком.

Безопасность -- не требуются высокие напряжения.

Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

Недостаток - высокая цена, но в ближайшие 2-3 года ожидается снижение цен на светодиодную продукцию.

Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания. С учетом того, что в году 8 760 или 8784 часов, светодиодные лампы могут работать несколько лет.

К газоразрядным лампам высокого давления относятся также металлогалогенные лампы (МГ).

Металлогалогенные лампы(HMI-лампы - Hydrargyrum medium Arc-length Iodide) - это большое семейство газоразрядных ламп переменного тока, в которых световое излучение образуется в результате электрического разряда в плотной атмосфере смеси паров ртути и галогенидов редкоземельных элементов.

В отличие от ламп накаливания, являющихся тепловыми излучателями в полном смысле этого слова, свет в этих лампах генерируется горящей между двумя электродами дугой. Это фактически ртутные лампы высокого давления с добавками йодидов металлов или йодидов редкоземельных элементов (диспрозий (Dy), гольмий (Ho) и тулий (Tm), а также комплексных соединений с цезием (Cs) и галогенидов олова (Sn). Эти соединения распадаются в центре разрядной дуги, и пары металла могут стимулировать эмиссию света, чьи интенсивность и спектральное распределение зависят от давления пара металлогалогенов.

Световая отдача и цветопередача дугового разряда ртути и световой спектр значительно улучшаются. Этот тип ламп нельзя путать с галогенными. Они абсолютно разные по характеристикам и принципам работы. Галогенный цикл: в баллоне лампы присутствуют пары йодидов металлов. При инициации электрического разряда с разогретых электродов начинает испаряться вольфрам, и его пары вступают в соединение с йодидами, образуя газообразное соединение - йодид вольфрама. Этот газ не оседает на стенках колбы (баллон остается прозрачным в течение всего срока работы лампы). Непосредственно вблизи разогретых электродов газ разлагается на пары вольфрама и йод, т.е. электроды окутаны облаком паров металла, оберегающим электроды от разрушения, а стенки колбы от потемнения. При выключении лампы вольфрам оседает (возвращается) на электроды. Таким образом, галогенный цикл обеспечивает длительную работу лампы без потускнения колбы.

МГ лампы -- это те же ртутные, но с внесенными в колбу ионами редкоземельных элементов, что значительно увеличивает срок службы, улучшает светоотдачу и спектр. Стандартные мощности (как и у натриевых) 70, 150, 250 и 400 ватт.

В целом, светоотдача МГ ламп равна светоотдаче люминесцентных (на один ватт) с тем исключением, что свет получается не рассеянный, а прямой.

Лампы МГ бывают по форме -- от матовых шаров под стандартную резьбу, до двухцокольных трубок под компактные прожекторы. Все эти лампы дают белый свет. Спектр сбалансирован по составу и имеет, как и синюю, так и красную области.

В связи с этим металлогалогенные лампы широко используются в осветительных установках различных коммерческих помещений, выставок, торговых центров, служебных помещений, гостиниц, ресторанов, в установках для подсветки рекламных щитов и витрин, для освещения спортивных сооружений и стадионов, для архитектурной подсветки зданий и сооружений. Например, чтобы получить освещенность сопоставимую с прожектором мощностью 1 кВт достаточно металлогалогенной лампы мощностью 250 Вт.

Последнее достижение в мeталлoгалогенной технологии - мeталлoгалогенная лампа с керамической оболочкой (КМГ), имеющая улучшенные параметры. Лампы КМГ обеспечивают высокий уровень воспроизведения световых характеристик. Благодаря этому эти лампы подходят для зон, в которых цвет имеет особое значение. Лампы включаются в сеть переменного тока частотой 50 Гц напряжением 220 или 380 В с соответствующей пускорегулирующей аппаратурой (ПРА) и импульсным зажигающим устройством (ИЗУ).

Световым прибором или светильником называют устройство, обеспечивающее нормальное функционирование электрической лампы. Светильник выполняет оптические, механические, электрические и защитные функции.

Осветительные приборы ближнего действия называют светильниками, а дальнего действия -- прожекторами.

Основными составляющими светильника являются арматура для установки и крепления, рассеиватель и собственно источник света. Все светильники имеют свои светотехнические характеристики, такие как светораспределение, оцениваемое посредством кривых силы света, световая направленность (отношение потоков света, направленных в верхнюю и нижнюю полусферы), а также коэффициент полезного действия.

Светильники в зависимости от условий среды, для которой они предназначены, по своей конструкции разделяют на следующие: открытые незащищенные, частично пылезащищенные, полностью пылезащищенные, частично и полностью пыленепроницаемые, брызгозащищенные, повышенной надежности против взрыва и взрывонепроницаемые.

По характеру светораспределения светильники делят на классы: прямого, преимущественно прямого, рассеянного, преимущественно отраженного и отраженного света.

По способу установки светильники подразделяют на группы: потолочные, встраиваемые в потолок, подвесные, настенные и напольные (торшеры).

Классификация светильников по назначению Таблица 1

Разновидности светильников

Назначение

Светильники общего освещения (подвесные, потолочные, настенные, напольные, настольные)

Для общего освещения помещений

Светильники местного освещения (настольные, напольные, настенные, подвесные, пристраиваемые, встраиваемые в мебель)

Для обеспечения освещения рабочей поверхности в соответствии с выполняемой зрительной работой

Светильники комбинированного освещения (подвесные, настенные, напольные, настольные)

Выполняют функции как светильника общего, так и местного освещения или одновременно обе функции

Декоративные светильники (настольные, настенные)

Выполняют функцию элемента убранства интерьера

Светильники для ориентации -- ночники (настольные, настенные)

Для создания освещения, необходимого для ориента-ции в жилых помещениях в темное время суток

Экспозиционные светильники (настольные, настенные, пристраиваемые, встраиваемые, потолочные, подвесные, напольные)

Для освещения отдельных объектов

Область применения различных типов выпускаемых светильников приведена в таблице 2. Буквенные обозначения светильников приняты по каталогам светотехнических изделий и номенклатурам заводов-изготовителей, преимущественно для помещений без особых требований к архитектурному оформлению.
Конструкции наиболее распространенных светильников показаны на рисунке 1.

Таблица 2 - Типы светильников и область их применения

Рисунок 1 - Светильники:

а -- «универсаль»;

б -- глубокоизлучатель эмалированный Гэ;

в -- глубокоизлучатель зеркальвый Гк;

г -- широкоизлучатель СО;

д -- пыленепроницаемые ППР и ППД;

е -- пыленепроницаемые ПСХ-75;

ж-- взрывозащищенный ВЗГ;

з -- повышенной надежности против взрыва НЗБ -- Н4Б;

и -- для химически активной среды СХ;

к -- люминесцентные ОД и ОДР (с решеткой);

л -- люминесцентные ЛД и ЛДР;

м -- люминесцентные ПУ;

н -- люминесцентные ПВЛ;

о -- люминесцентные ВЛО;

п--для наружного освещения СПО-200

Светильники «универсаль» (У) выпускают для ламп 200 и 500 Вт. Это основные светильники для нормальных производственных помещений. При малых высотах их применяют с полуматовым затенителем. Для сырых помещений или помещений с активной средой применяют светильники с диском из теплостойкой резины, уплотняющим контактную полость.
Эмалированные глубокоизлучатели Гэ выпускают двух размеров: для ламп до 500 и до 1000 Вт. Применяют, как и «универсаль», во всех нормальных производственных помещениях, но с большей высотой.

Глубокоизлучатели со средней концентрацией светового потока Гс выпускают для ламп 500, 1000, 1500 Вт. Корпус светильника изготовлен из алюминия с отражателем, близким к зеркальному. Применяют для нормальных и сырых помещений и среды с повышенной химической активностью.

Глубокоизлучатели концентрированного светораспределения Гк по конструкции аналогичны светильникам Гс. Их применяют в помещениях при необходимости высокой концентрации светового потока и отсутствии требований к освещению вертикальных поверхностей. В уплотненном исполнении имеют марку ГкУ.

Люцетту цельного молочного стекла (Лц) выпускают для ламп 100 и 200 Вт и применяют для помещений с нормальной средой. Светильники ПУ и СХ применяют для сырых, пыльных и пожароопасных помещений. Область применения взрывозащищенных светильников определяется исполнением, категорией и группой среды: В4А-50, В4А-100, ВЗГ-200, НОБ.
Светильники для местного света (СМО-1, 50 Вт, СМО-2, 100 Вт) укомплектовывают кронштейнами с выключателями и соответствующими шарнирами для поворота светильника. Им аналогичны светильники К-1, К-2, КС-50 и КС-100 -- миниатюрные кососветы.

Светильники для люминесцентных ламп типов ОДР и ОДОР применяют для освещения производственных помещений, а типа АОД -- для административных, лабораторных и других помещений. Светильники поставляют укомплектованными ПРУ-2, с патронами, колодками для стартеров и коммутацией для включения на одну фазу сети 220 В. Завод может поставлять светильники серии ОД сдвоенными, т. е. фактически четырехламповыми и с лампами 80 Вт.

Основными частями каждого светильника являются: корпус, отражатель, рассеиватель, узел крепления, контактное соединение и патрон для крепления лампы (рисунок 2).

Светильники с лампами ДРЛ и люминесцентными получили широкое распространение, так как имеют более высокий КПД, большую световую отдачу и значительный срок службы по сравнению со светильниками и лампами накаливания.

Для зажигания и устойчивого горения газоразрядные лампы включаются с помощью специальной пускорегулирующей аппаратуры (ПРА), стартеров, конденсаторов, разрядников и выпрямителей.

Рисунок 2 - Светильник УПД:

а -- общий вид; б -- вводный узел: 1 -- накидная гайка, 2 -- корпус, 3 -- фарфоровый патрон, 4 -- замок, 5 -- отражатель, б -- контакт заземления, 7-колодка зажимов.

Безопасность жизнедеятельности в разных сферах

С физической точки зрения любой источник света - это скопление множества возбуждённых или непрерывно возбуждаемых атомов. Каждый отдельный атом вещества является генератором световой волны...

Безопасность жизнедеятельности на производстве

Источники света, применяемые для искусственного освещения, делят на две группы - газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Искусственное освещение рабочего места

Зрение человека позволяет воспринимать форму, цвет, яркость и движение окружающих предметов. До 90 % информации об окружающем мире человек получает с помощью зрительных органов...

Медико-биологическая характеристика искусственного освещения с учетом класса точности зрительных работ

Источники света, применяемые для искусственного освещения, делят на две группы газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Организация охраны труда. Экономическая оценка источников света

Освещенность - важный фактор производственной и окружающей среды. Для нормальной жизнедеятельности человека крайне важны солнечные лучи, свет, освещение. Напротив, недостаточные уровни...

Освещение выставочной экспозиции

Как бы ни были удачны композиции выставочных интерьеров и подбор экспонатов, они не будут производить нужного впечатления, пока свет не станет компонентом оформления...

Освещенность производственных помещений металлургического производства

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные. Лампы накаливания...

Основные требования к производственному освещению

При сравнении источников света друг с другом и при их выборе пользуются следующими характеристиками: 1) электрические характеристики -- номинальное напряжение, т. е. напряжение...

Охрана труда на предприятиях

Искусственное освещение по своему назначению делится на две системы: общее, предназначенное для освещения всего рабочего помещения, и комбинированное, когда к общему освещению добавляется местное освещение...

Проблема обеспечения безопасности человека при использовании световых и звуковых эффектов

Фотосенситивная (светочувствительная) эпилепсия - это такое состояние, при котором мерцающий свет большой интенсивности вызывает эпилептические приступы. Ее иногда называют рефлекторной эпилепсией...

Прогнозирование и разработка мероприятий по предупреждению и ликвидации чрезвычайной ситуации на АГЗС №2 ООО "АКОЙЛ"

АГЗС предназначены для приема и хранения сжиженного углеводородного газа, а также заправки газобаллонного оборудования автомобиля сжиженным углеводородным газом . Принципиальная технологическая схема АГЗС представлена на рисунке 1.1...

Производственная санитария и гигиена труда

Основные типы радиоактивных излучений: альфа, бета, нейтронные (группа корпускулярных излучений), рентгеновские и гамма-излучения (группа волновых). Корпускулярные излучения представляют собой потоки невидимых элементарных частиц...

Производственное освещение

При выборе источника света искусственного освещения принимают во внимание следующие характеристики: 1. электрические (номинальное напряжение, В; мощность лампы, ВТ) 2. светотехнические (световой поток лампы, лм; максимальная сила света Imax, КД). 3...

Рациональное оформление помещений и рабочих мест

Согласно теории Максвелла, предложенной им еще в 1876 году, свет представляет собой разновидность электромагнитных волн. Эта теория основывалась на том, что скорость света совпадала со скоростью...

Технологии спасения пострадавших в ДТП

Для ведения АСР в ходе ликвидации последствий ДТП для разборки ТС, деблокирования и извлечения пострадавших и других работ применяют гидравлические инструменты, приспособления и оборудование, а также ручные лебедки...

Приветствую вас на своем блоге вновь. С вами на связи, Тимур Мустаев. Хочу поздравить всех мусульман со священным праздником Курбан Байрам, пожелать чистого неба над головой, искренней любви и здоровья! Берегите близких вам людей!

Сегодня мы рассмотрим искусственные и естественные источники света. Поскольку важным аспектом фотографии является освещение, без которого съемка вообще невозможна. Приступим к разбору понятий.

Источники подразделяются на два вида:

  1. Естественные;
  2. Искусственные.

Естественное освещение

Источники естественного освещения:

  • Солнце;
  • Луна замещает солнце ночью;
  • Биолюминесценция – свечение живых организмов;
  • Атмосферные электрические заряды, например, гроза.

Первые два источника являются обыденными и постоянными, два последующих могут служить фотографу только в особых условиях.

Естественное освещение является менее контролируемым, поскольку зависит от многих факторов:

1. Погода

  • Солнечная

Все знают, что в солнечный день не стоит фотографировать, так как в результате фотографии будут иметь жесткие тени и четко очерченные контуры, которые будут не в пользу фотографа. В солнечный день, лучше фотографировать в глубокой тени, куда не попадают лучи солнца, например, тень большого здания, беседки и прочее.

  • Облачная

Облачная погода является самой предпочтительной для съемок, поскольку облака дают мягкое освещение и изображение построено так, что цвета плавно вливаются один в другой по тону.

К сожалению, не всегда облачность может быть равномерной, а зачастую плотность ее колеблется, что влияет на интенсивность света.

  • Другие необычные погодные условия

Можно ли фотографировать в необычных условиях? При урагане, грозе и шторме черное небо внесет в вашу фотографию драматичности.

Съемка в тумане поможет зрителю лучше почувствовать глубину изображения и выстроить хорошую перспективу.

2. Время суток

Чтобы получить идеальный результат при портретной или пейзажной съемке, то выбирайте рассвет или закат. 30 минут до заката и после рассвета, считается золотым временем для фотосъемки. Преимуществом является то, что освещение быстро меняется. Это позволяет получить целый ряд уникальных разнообразных снимков.

Единственный недостаток – возможность упустить идеальный момент съемки. На закате тени удлиняются и становятся менее яркими, а утром все с точностью наоборот.

3. Географическое положение

4. Загрязнение воздуха

Загрязненные частицы рассеивают лучи света, делая его мягче и менее ярким.

Преимущества:

  1. Бесплатный источник;
  2. Цветопередача отлична, поскольку солнечный спектр непрерывен во всем диапазоне видимости.

Недостатки:

  1. Невозможно использование в темное время суток;
  2. Непостоянная температура цвета, что требует частых изменений настройки ;
  3. Трудность применения для построения сложных схем освещения;
  4. Малая яркость требует длительную выдержку, которую нельзя получить при съемке с рук.

Искусственное освещение

Все иначе обстоит с контролем искусственного света. Фотограф становится властным хозяином освещения и регулирует все параметры:

  • Количество;
  • Угол;
  • Расположение;
  • Интенсивность;
  • Жесткость;
  • Температуру цвета;
  • Баланс белого.

Зачем нужно выставление баланса белого? Чтобы цветопередача не имела искажений или имела лишь минимальные погрешности.

Цветовая температура

Остановимся подробнее на этом параметре. Что это такое? Ну, если опираться на теорию, то это характеристика, определяющая температуру черного предмета, который излучает свой цвет. Измеряется данная характеристика в Кельвинах (К).

Постоянное освещение

Что может являться примером источников постоянного освещения? Самый распространенный – галогенные лампы, а также натриевая лампа, лампы дневного холодного света и накаливания. Все они имеют разные параметры цветовой температуры.

К примеру, если взять вольфрамовые лампы, то они излучают красноватый оттенок, а галогенные – холодный голубой свет.

Преимущества использования:

  1. Умеренная цена;
  2. Полный контроль над светом;
  3. Можно выстраивать необходимые световые схемы по своему вкусу, получая различные светотеневые рисунки.

Недостатки:

  1. Большое потребление электроэнергии, соответственно, большие финансовые затраты;
  2. При съемке нужна длинная (не во всех случаях);
  3. Большая теплоотдача нагревает воздух и объекты съемки в помещении, что может сказаться на их деформации.

Импульсивное освещение

Что относится к источникам импульсивного цвета? Встроенные и внешние вспышки, моноблоки и генераторные системы.

Как происходит процесс съемки? В студиях, кроме импульсивной лампы установлен пилотный свет, то есть постоянный источник. Он выступает в виде вспомогательного параметра и помогает правильно построить светотеневой рисунок . Когда фотограф нажимает кнопку спуска затвора, вспышка срабатывает и в тот же момент пилотный свет гаснет и загорается после завершения работы вспышки.

Преимущества:

  1. Потребление энергии меньше, чем у постоянных искусственных источников;
  2. Теплоотдача низкая;
  3. Дают при съемке использовать эффект «замораживания объектов», например, брызги или падающие капли;
  4. Можно придумывать сложные световые схемы, что поможет поднять ваши работы на более высокий уровень.

Недостатки:

  1. Дороговизна приобретения;
  2. Если пилотный свет отсутствует, то придется искать «золотой» кадр среди пробников;
  3. Требуется соединение с фотокамерой, поэтому может замедлить съемку в случае фотографирования несколькими камерами.

Какой источник света выбрать?

Если вы производите портретную съемку или фотографируете предметы, то используйте искусственное освещение, чтобы регулировать все параметры.

Если вы фотографируете пейзажи или дикую природу, то там выбора нет. Только естественное освещение.

До начала съемок подберите подходящее настроение и чувства, которые вы хотите передать в вашей фотографии. После этого подберите нужную схему освещения.

Напоследок, изучите видео курс «» или «Моя первая ЗЕРКАЛКА ». Он поможет вам разобраться в основах фотографии и станет незаменимым помощникам в ваших начинаниях в качестве фотографа.

Моя первая ЗЕРКАЛКА — для сторонников зеркалки CANON.

Цифровая зеркалка для новичка 2.0 — для сторонников зеркалки NIKON.

На этом наш курс по типам источников света подошел к концу. Можно сочетать все источники вместе, если это нужно для воплощения творческой идеи. Нужно лишь учитывать различную температуру, которая влияет на цветопередачу. Например, фотографирование человека на закате, не обойтись без искусственного освещения, если вы хотите получить освещенное лицо модели и красивый закат.

Так же данная комбинация характерна при съемке черно-белой фотографии. Делитесь статьей со своими друзьями в социальных сетях и подписывайтесь на блог, чтобы стать профессионалом в деле фотографии.

Всех вам благ, Тимур Мустаев.

Что же представляют собой искусственные источники света?

Это технические устройства, которые могут иметь самую различную конструкцию и при этом служат для преобразования энергии различными способами. В источниках света, как правило, используется электроэнергия, однако в некоторых случаях может использоваться химическая энергия или другой способ генерации света. По большому счету все источники света делятся на два вида: естественные и искусственные. О вторых мы поговорим в нашей сегодняшней статье более подробно.

История развития искусственных источников света берет свое начало еще в глубокой древности. Самым первым источником света был огонь (пламя) костра. Однако со временем люди стали понимать, что свет можно получать при сжигании каких-либо смолистых пород дерева, причем в больших количествах. Уже позже люди научились переносить источники света, перезаряжать горючим, а также устанавливать в любом пространственном положении.

В дальнейшем для получения источников света (искусственных) люди стали использовать газ. На протяжении долгого периода времени было востребовано газовое освещение. Главная особенность данного вида освещения заключалась в том, что с его помощью можно было освещать большие городские улицы или даже целые здания. Позже для городского газового освещения стали использовать «светильный газ». Люди стали придумывать различные конструкции для того чтобы усилить отдачу света и питания. Сначала это были фитили, которые, кстати, позже были усовершенствованы путем добавления минералов и пропитке борной кислотой.

Дальнейший прогресс в области изобретения и использования искусственных источников света был связан с тем, что было открыто электричество, а также появились источники тока. Но и над электрическими источниками была проведена огромная работа, ведь было очевидно, что для увеличения яркости требуется поднятие температуры конкретно той области, которая излучает свет. А для увеличения долговечности электрических источников люди стали размещать рабочие тела в различных баллонах.

Параллельно с развитием ламп накаливания, уже в эпоху открытия электричества начались работы по электродуговым источникам света, а также по источникам света на основе тлеющего разряда. Первые, в свою очередь, позволили получить очень мощные потоки света, а с помощью вторых источников удалось достичь чрезвычайной экономичности. Кстати, сегодня самыми яркими и мощными источниками света являются лазеры.

Источники света применяются во всех областях жизнедеятельности человека. От области применения напрямую зависят и требования, которые предъявляются к источникам света (технические, эстетические и экономические).

Рассмотрим искусственный источник света на примере светильника.

Светильник – искусственный источник света, прибор, который перераспределяет свет лампы внутри больших телесных углов, а также обеспечивает угловую концентрацию потока света. Сфера применения светильников достаточно обширна; они используются как для освещения, так и в качестве сигнализации. К тому же, их очень часто используют просто в качестве декоративных предметов.



Понравилась статья? Поделитесь с друзьями!