Движение по горизонтальной поверхности формулы. Движение по горизонтальной плоскости

До сих пор мы рассматривали движение волчка с одной неподвижной точкой, наличием которой по сути дела, и вызывались прецессионные и нутационные движения. Как же поведет себя волчок, если такой точки не будет и он сможет свободно двигаться по горизонтальной поверхности? Такая задача рассмотрена в книгах , , где дается полукачественное объяснение характера движения волчка. Мы дадим свое объяснение, хотя тоже приближенное.
Разберем случай, рассмотренный в работе , когда волчок находится на абсолютно гладкой поверхности, т. е трение между поверхностью и волчком отсутствует. Если вращающийся волчок осторожно без толчка поставить на поверхность под углом к вертикали, то его конец, соприкасающийся с поверхностью, будет описывать фигуры, характерные для совокупности нутационного и прецессионного движений (рис. 1). Такой характер движения волчка можно объяснить следующими причинами.
1. На волчок действует активный момент сил G и N, равных по величине друг другу. Под действием этого момента, как и в предыдущих примерах, волчок начнет совершать прецессионное и нутационное движения с опорой на острие. Закон этого движения можно приближенно рассчитать, если вершину волчка считать неподвижной.
2. Поскольку между острием волчка и поверхностью трение отсутствует, движение центра масс волчка приведет к движению его вершины по отношению к поверхности, причем незначительные перемещения центра масс по вертикали, приведут к существенному изменению угла a (см. рис. 1,б). Произведем элементарные расчеты для определения отношения Dx/ Dz . Сперва найдем углы a1 иa2 . Из рисунка 1,б следует:
; (1)
, (2)
где ls - расстояние от точки касания до центра масс волчка, откуда получим:
(3)
(4)
Теперь найдем взаимозависимые изменения координат Dx и Dz :
(5)
(6)
Тогда отношение приращений D X / D Z определится выражением:
(7)
При угле a1= 100 отношение D x / D z изменяется в пределах от 5 до 3.5 при изменении D z /z 1 от 0.01 до 0.05. Кроме этого величина радиуса ОК1 составляет, примерно, 0.18 от длины координаты Z1 . В итоге незначительные колебания центра масс относительно его начального положения как бы усилятся и будут хорошо заметны на поверхности. В работе утверждается, что центр масс будет неподвижным, но этого быть не может, так как конец волчка должен тогда отрываться от поверхности.
3. Нутационные колебания волчка создают устойчивость его движения и не дают ему упасть на поверхность.
Картина движения волчка будет еще более сложной, если он будет двигаться по поверхности при наличии трения. Если вращающемуся волчку сообщить горизонтальную скорость путем толчка, он начнет двигаться по сходящейся спирали (см. рис. 2). Так будут двигаться легкие волчки по полированной поверхности. Через несколько оборотов по этой спирали волчок остановится в точке О и будет продолжать вращаться вокруг своей оси, находясь на одном месте.
Так какая же причина заставляет волчок двигаться по спирали, а не по прямой линии?
Рассмотрим этот вопрос в общих чертах, поскольку физическая картина будет достаточно сложной. Основной причиной такого поведения волчка является сила трения Fтр между волчком и поверхностью. Сила трения будет тормозить движение, в результате чего появится сила инерции, приложенная в центре масс волчка и направленная в сторону движения. Под действием силы инерции, создающей опрокидывающий момент My , ось вращения волчка наклонится вперед на некоторый угол a и займет положение Z’ , а центр масс S - положение S’ (см. рис. 3, а, б). При повороте вращающегося волчка в действие вступает гироскопический эффект, рассмотренный нами в §5, в результате чего возникает момент Mx , вращающий волчок вокруг оси X . Для определения направления момента Mx рассмотрим картину скоростей, возникающую при сложении скоростей вращающегося волчка Vr в любой его точке и равных произведению w на радиус r и скорости DVr от поворота волчка вокруг оси Y (см. рис. 3,в). В результате сложения скоростей в произвольном сечении волчка мгновенный центр скоростей Pv с оси волчка смещается в другую точку. Вследствие этого возникнет реактивная сила инерции F , которая заставит волчок двигаться к новому положению точки Pv , поэтому волчок начнет поворачиваться вокруг оси X против часовой стрелки, если смотреть с конца этой оси. Величина вращающего момента в соответствии с формулой (5.16) определится выражением:
, (8)
где Jx - момент инерции волчка относительно оси X, проходящей через центр масс волчка.
В результате поворота вокруг оси X центр масс волчка займет положение S’’ , а ось Z’ - положение Z’’ , повернувшись на угол b (см. рис. 3, а,б).Результирующее перемещение центра масс волчка определится отрезком DZ , равным геометрической сумме перемещений DX и DY . Таким образом, центр масс волчка сместится относительно системы координат X,Y,Z , начало которой находится в точке А , и будет лежать на прямой I-I , расположенной под углом g к оси X .
Под действием моментов My и Mx волчок должен был бы упасть, но здесь снова проявляет себя гироскопический эффект, обусловленный весом волчка G . Этот эффект мы подробно рассматривали в §§ 4-7, поэтому просто укажем направление возникающих периодических сил инерции и. Для этого покажем сечение I-I волчка вертикальной плоскостью, проходящей через ось Z (см. рис. 3,г), и затем сечение II-II плоскостью, перпендикулярной к оси Z’’ и проходящей через центр масс волчка (см. рис. 3,д) . Величина этих сил определится выражениями:
; (9)
, (10)
где y - угол между осями Z’’ и Z.
Эти силы окажут влияние на движение волчка, заставив его совершать дополнительные перемещения по поверхности. Эти перемещения определятся проекциями сил и на горизонтальное направление (см. рис. 3,г):
; (11)
(12)
Следует отметить, что по истечении одного оборота волчка вокруг его оси результирующее перемещение от действия силы будет равно нулю, а результирующее перемещение вдоль оси Y от силы определится ее проекцией на ось Y и будет равно:
(13)
т.е. на такую величину переместится волчок по поверхности в направлении оси Y за один свой оборот под действием инерционных сил.
В результате действия всех факторов: начального толчка и появившихся инерционных сил, волчок будет двигаться по криволинейной траектории, которую приближенно будем считать дугой окружности. На рисунке 4 показано перемещение волчка из начального нулевого в первое положение после первого оборота вокруг своей оси. Величина перемещения определяется по формуле (13), длина дуги S0S1 может быть найдена путем решения дифференциального уравнения движения волчка:
, (14)
где V - линейная скорость движения волчка по траектории.
Имея в виду, что начальная скорость движения волчка по траектории V0 , а перемещение S вдоль оси X равно нулю, получим следующие выражения:
; (15)
, (16)
где m - масса волчка.
Силу трения на основании закона Кулона представим в виде:
, (17)
где G - вес волчка, f - коэффициент трения скольжения для пары материалов волчок-опора.
Тогда выражения (15) и (16) преобразуются к виду:
; (18)
(19)
Так как время одного оборота волчка равно:
, (20)
то скорость и перемещение в первом положении соответственно будут равны:
; (21)
(22)
Найдем радиус кривизны траектории волчка, заменив дугу S0S1 хордой. Тогда получим:
(23)
Так как из рисунка 4 следует, что:
, (24)
выражение (23) примет вид:
(25)
После определения первого положения волчка можно переходить к определению его второго положения, приняв первое положение за начальное и введя новую систему координат. Так последовательно шаг за шагом можно найти всю траекторию движения волчка.
Для пошагового расчета траектории можно вывести более удобные формулы. Возьмем на траектории два соседних положения волчка, разделенных временем его одного оборота вокруг оси: положения i и i+1 (см. рис. 5). Значение скоростей и перемещений в этих точках можно найти с помощью выражений (18) и (19):
; (26)
; (27)
; (28)
(29)
Перемещение волчка по его траектории между этими двумя положениями определится разностью перемещений Si+1 и Si :
(30)
Здесь: D ti - время одного оборота волчка в i-ом положении, равное:
, (31)
где wi - угловая скорость вращения волчка в i-ом положении.
Угловая скорость вращения волчка при его движении по траектории непрерывно уменьшается из-за трения о поверхность и потерь энергии на инерционное движение за счет действия сил Fx и Fy .
Для определения угловой скорости волчка в любом его положении запишем уравнение энергетического баланса:
, (32)
где J - момент инерции волчка относительно его оси вращения, DAi - суммарные потери энергии за время движения до i -го положения.
Из выражения (32) следует:
(33)
Тогда радиус кривизны траектории определится выражением:
(34)
а угол mi с помощью формулы:
(35)
Поскольку траектория движения волчка является криволинейной на волчок будет действовать еще одна сила, которая также будет влиять на характер движения волчка - это центробежная сила инерции (рис. 6):
, (36)
где wi - угловая скорость вращения центра масс волчка вокруг оси Оi (мгновенного центра скоростей):
(37)
Под действием всех сил волчок будет двигаться по траектории с наклонённой по отношению к вертикали осью собственного вращения. А это приводит к тому, что при наличии трения волчок будет перекатываться по поверхности как тело конической формы в сторону, противоположную вращению вокруг точки О с угловой скоростью w . Вместе в этим движением будет перемещаться и точка А , лежащая на оси волчка, вследствие чего траектория будет отклоняться от окружности радиуса r (см. рис. 7). Это объясняется тем, что острие волчка затуплено и его можно рассматривать как часть сферической поверхности радиуса rсф . В результате перекатывания волчок будет удаляться от центра кривизны траектории, и ее радиус r соответственно будет увеличиваться. Это обстоятельство тоже окажет существенное влияние на характер движения волчка. На рисунке 7 rдоб - это увеличение радиуса кривизны траектории за счет наклона оси волчка. Эксперименты показывают, что при определенном начальном наклоне оси волчка от вертикали после толчка волчок может двигаться по прямой и даже по спирали закрученной в другую сторону.
Рассчитаем величину перемещения Sk за счет перекатывания волчка относительно точки О1 за один его оборот вокруг своей оси (см. рис. 8).
Линейная скорость перемещения точки касания Ak при перекатывании волчка за счет его вращения вокруг своей оси по поверхности, а также скорость и точки А (скорости этих точек будут одинаковы, так как они находятся на одном расстоянии от вертикальной оси Z1 , вокруг которой происходит перекатывание) будет равна:
, (38)
где rk - радиус конической части, который может быть найден по радиусу сферы (см. рис. 8):
(39)
Величина линейного перемещения точки Ak определится ее скоростью:
, (40)
где t - время движения. За один оборот волчка (tоб=2 p/ w ), перемещение Sk , будет равно:
(41)
Из-за этого перекатывания траектория волчка несколько изменится и точка Ak вместо положения попадет в положение (см. рис. 9), что изменит радиус кривизны траектории. В соответствии с рисунком 9 имеем:
(42)
откуда:
; (43)
Угол j’’ можно выразить через угол j’ , приравняв с некоторым допущением хорды и :
; (44)
где:
, (45)
откуда получим:
(46)
Здесь S - перемещение волчка по траектории за один его оборот.
Таким образом, мы рассмотрели в общих чертах характер движения волчка при его движении по горизонтальной поверхности с учетом влияния сил трения. Интересно отметить следующий экспериментальный факт: после прекращения движения по траектории ось вращения волчка принимает вертикальное положение. Это явление можно объяснить тем, что исчезает сила инерции, обусловленная сопротивлением со стороны сил трения.
Из рассмотренной задачи можно сделать следующие выводы:
1. Движение волчка после толчка происходит без воздействия активных внешних сил, за исключением его веса. Сила трения является пассивной силой, тормозящей движение.
2. Наблюдаемое движение волчка по траектории может быть объяснено только совместным действием силы трения и сил инерции после сообщения волчку линейной горизонтальной скорости V0 . Это еще один пример, подтверждающий реальность сил инерции.

Единый государственный экзамен по физике, 2009 год,
демонстрационная версия

Часть A

А1. На рисунке приведён график зависимости про­ек­ции скорости тела от времени. График зависимости проекции ускорения тела от времени в интервале времени от 12 до 16 с совпадает с графиком

1)
2)
3)
4)

Решение. Из графика видно, что в интервале времени от 12 до 16 с скорость менялась рав­номерно от –10 м/с до 0 м/с. Ускорение было постоянным и равным

График ускорения представлен на четвёртом рисунке.

Правильный ответ: 4.

А2. Полосовой магнит массой m поднесли к массивной стальной плите массой M . Сравните силу действия магнита на плиту с силой действия плиты на магнит .

1)
2)
3)
4)

Решение. По третьему закону Ньютона сила, с которой магнит действует на плиту, равна силе, с которой плита действует на магнит.

Правильный ответ: 1.

А3. При движении по горизонтальной поверхности на тело массой 40 кг действует сила трения скольжения 10 Н. Какой станет сила трения скольжения после уменьшения массы тела в 5 раз, если коэффициент трения не изменится?

1) 1 Н
2) 2 Н
3) 4 Н
4) 8 Н

Решение. При уменьшении массы тела в 5 раз вес тела также уменьшится в 5 раз. Значит, и сила трения скольжения уменьшится в 5 раз и составит 2 Н.

Правильный ответ: 2.

А4. Легковой автомобиль и грузовик движутся со скоростями и . Масса легкового автомобиля m = 1000 кг. Какова масса грузовика, если отношение импульса грузовика к импульсу легкового автомобиля равно 1,5?

1) 3000 кг
2) 4500 кг
3) 1500 кг
4) 1000 кг

Решение. Импульс автомобиля равен . Импульс грузовика в 1,5 раза больше. Масса грузовика равна .

Правильный ответ: 1.

А5. Санки массой m тянут в гору с постоянной скоростью. Когда санки поднимутся на высоту h от первоначального положения, их полная механическая энергия

Решение. Поскольку санки тянут с постоянной скоростью, их кинетическая энергия не меняется. Изменение полной механической энергии санок равно изменению их потенциальной энергии. Полная механическая энергия увеличится на mgh .

Правильный ответ: 2.

1) 1
2) 2
3)
4) 4

Решение. Отношение длин волн обратно пропорционально отношению частот: .

Правильный ответ: 4.

А7. На фотографии показана установка для исследования равноускоренного скольжения каретки (1) массой 0,1 кг по наклонной плоскости, установленной под углом 30° к горизонту.

В момент начала движения верхний датчик (А) включает секундомер (2), а при прохождении каретки мимо нижнего датчика (В) секундомер выключается. Числа на линейке обозначают длину в сантиметрах. Какое выражение описывает зависимость скорости каретки от времени? (Все величины указаны в единицах СИ.)

1)
2)
3)
4)

Решение. Из рисунка видно, что за время t = 0,4 с каретка прошло путь s = 0,1 м. Поскольку начальная скорость каретки равна нулю, можно определить её ускорение:

.

Таким образом, скорость каретки зависит от времени по закону .

Правильный ответ: 1.

А8. При понижении абсолютной температуры одноатомного идеального газа в 1,5 раза средняя кинетическая энергия теплового движения его молекул

Решение. Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре. При понижении абсолютной температуры в 1,5 раза средняя кинетическая энергия также уменьшится в 1,5 раза.

Правильный ответ: 2.

А9. Горячая жидкость медленно охлаждалась в стакане. В таблице приведены результаты измерений её температуры с течением времени.

В стакане через 7 мин после начала измерений находилось вещество

Решение. Из таблицы видно, что в период времени между шестой и десятой минутой температура в стакане оставалась постоянной. Значит, в это время проходила кристаллизация (затвердевание) жидкости; вещество в стакане находилось одновременно и в жидком, и в твёрдом состояниях.

Правильный ответ: 3.

А10. Какую работу совершает газ при переходе из состояния 1 в состояние 3 (см. рисунок)?

1) 10 кДж
2) 20 кДж
3) 30 кДж
4) 40 кДж

Решение. Процесс 1–2 изобарический: давление газа равно, объём увеличивается на , газ при этом совершает работу . Процесс 2–3 изохорный: газ работу не совершает. В итоге, при переходе из состояния 1 в состояние 3 газ совершает работу 10 кДж.

Правильный ответ: 1.

А11. В тепловой машине температура нагревателя 600 K, температура холодильника на 200 K меньше, чем у нагревателя. Максимально возможный КПД машины равен

1)
2)
3)
4)

Решение. Максимально возможный КПД тепловой машины равен КПД машины Карно:

.

Правильный ответ: 4.

А12. В сосуде находится постоянное количество идеального газа. Как изменится температура газа, если он перейдёт из состояния 1 в состояние 2 (см. рисунок)?

1)
2)
3)
4)

Решение. Согласно уравнению состояния идеального газа при постоянном количестве газа

Правильный ответ: 1.

А13. Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, а один из зарядов увеличили в 3 раза. Силы взаимодействия между ними

Решение. При уменьшении расстояния между двумя точечными электрическими зарядами в 3 раза сила взаимодействия между ними возрастает в 9 раз. Увеличение одного из зарядов в 3 раза приводит к такому же увеличению силы. В итоге сила их взаимодействия стала в 27 раз больше.

Правильный ответ: 4.

А14. Каким будет сопротивление участка цепи (см. рисунок), если ключ К замкнуть? (Каждый из резисторов имеет сопротивление R .)

1) R
2) 2R
3) 3R
4) 0

Решение. После замыкания ключа клеммы окажутся закороченными, сопротивление этого участка цепи станет равным нулю.

Правильный ответ: 4.

А15. На рисунке изображен проволочный виток, по которому течёт электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

Решение. По правилу правой руки: «Если обхватить соленоид (виток с током) ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида (витка с током)». Мысленно проделав указанные действия, получаем, что в центре витка вектор индукции магнитного поля направлен горизонтально вправо.

Правильный ответ: 3.

А16. На рисунке приведен график гармонических колебаний тока в колебательном контуре. Если катушку в этом контуре заменить другой катушкой, индуктивность которой в 4 раза меньше, то период колебаний станет равен

1) 1 мкс
2) 2 мкс
3) 4 мкс
4) 8 мкс

Решение. Из графика видно, что период колебаний тока в колебательном контуре равен 4 мкс. При уменьшении индуктивности катушки в 4 раза, период уменьшится в 2 раза. После замены катушки он станет равным 2 мкс.

Правильный ответ: 2.

А17. Источник света S отражается в плоском зеркале ab . Изображение S этого источника в зеркале показано на рисунке

Решение. Изображение объекта, полученное с помощью плоского зеркала, расположено симметрично объекту относительно плоскости зеркала. Изображение источника S в зеркале показано на рисунке 3.

Правильный ответ: 3.

А18. В некотором спектральном диапазоне угол преломления лучей на границе воздух - стекло падает с увеличением частоты излучения. Ход лучей для трёх основных цветов при падении белого света из воздуха на границу раздела показан на рисунке. Цифрам соответствуют цвета

Решение. Из-за дисперсии света при переходе из воздуха в стекло луч тем сильнее отклоняется от первоначального направления, чем меньшей его длина волны. У синего цвета самая маленькая длина волны, у красного - самая большая. Синий луч отклонится сильнее всего (1 - синий), красный луч отклонится слабее всего (3 - красный), остаётся 2 - зелёный.

Правильный ответ: 4.

А19. На входе в электрическую цепь квартиры стоит предохранитель, размыкающий цепь при силе тока 10 А. Подаваемое в цепь напряжение равно 110 В. Какое максимальное число электрических чайников, мощность каждого из которых равна 400 Вт, можно одновременно включить в квартире?

1) 2,7
2) 2
3) 3
4) 2,8

Решение. Через каждый чайник проходит электрический ток с силой 400 Вт: 110 В 3,64 А. При включении двух чайников сила суммарная сила тока (2 3,64 А = 7,28 А) будет меньше 10 А, а при включении трёх чайников - больше 10 А (3 3,64 А = 10,92 А). Одновременно можно включить не более двух чайников.

Правильный ответ: 2.

А20. На рисунке изображены схемы четырех атомов, соответствующие модели атома Резерфорда. Чёрными точками обозначены электроны. Атому соответствует схема

1)
2)
3)
4)

Решение. Число электронов в нейтральном атоме совпадает с числом протонов, которое записывается внизу перед наименованием элемента. В атоме 4 электрона.

Правильный ответ: 1.

А21. Период полураспада ядер атомов радия составляет 1620 лет. Это означает, что в образце, содержащем большое число атомов радия,

Решение. Верным является утверждение, что половина изначально имевшихся ядер радия распадается за 1620 лет.

Правильный ответ: 3.

А22. Радиоактивный свинец , испытав один α-распад и два β-распада, превратился в изотоп

Решение. При α-распаде масса ядра уменьшается на 4 а. е. м., а при β-распаде масса не изменяется. После одного α-распад и двух β-распада масса ядра уменьшится на 4 а. е. м.

При α-распаде заряд ядра уменьшается на 2 элементарных заряда, а при β-распаде заряд увеличивается на 1 элементарный заряд. После одного α-распад и двух β-распада заряд ядра не изменится.

В итоге, превратится в изотоп свинца .

Правильный ответ: 3.

А23. Фотоэффект наблюдают, освещая поверхность металла светом фиксированной частоты. При этом задерживающая разность потенциалов равна U . После изменения частоты света задерживающая разность потенциалов увеличилась на ΔU = 1,2 В. На сколько изменилась частота падающего света?

1)
2)
3)
4)

Решение. Запишем уравнение Эйнштейна для фотоэффекта для начальной частоты света и для изменённой частоты . Вычтя из второго равенства первое, получим соотношение:

Правильный ответ: 2.

А24. Проводники изготовлены из одного и того же материала. Какую пару проводников нужно выбрать, чтобы на опыте обнаружить зависимость сопротивления проволоки от её диаметра?

1)
2)
3)
4)

Решение. Чтобы на опыте обнаружить зависимость сопротивления проволоки от её диаметра, нужно взять пару проводников, отличающихся только толщиной. Длина проводников должна быть одинаковой. Нужно взять третью пару проводников.

Правильный ответ: 3.

А25. Исследовалась зависимость напряжения на обкладках воздушного конденсатора от заряда этого конденсатора. Результаты измерений представлены в таблице.

Погрешности измерений величин q и U равнялись соответственно 0,05 мкКл и 0,25 кВ. Ёмкость конденсатора примерно равна

1) 250 пФ
2) 10 нФ
3) 100 пФ
4) 750 мкФ

Решение. Рассчитаем для каждого измерения величину ёмкости конденсатора () и усредним получившиеся значения.

q , мкКл 0 0,1 0,2 0,3 0,4 0,5
U , кВ 0 0,5 1,5 3,0 3,5 3,5
С , пФ - 200 133 100 114 142 140

Рассчитанное значение ёмкости ближе всего к третьему варианту ответа.

Правильный ответ: 3.

Часть B

В1. Груз массой m , подвешенный на пружине, совершает гармонические колебания с периодом T и амплитудой . Что произойдёт с максимальной потенциальной энергией пружины, периодом и частотой колебаний, если при неизменной амплитуде уменьшить массу груза?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

А Б В

Получившуюся последовательность цифр перенесите в бланк ответов (без пробелов).

Решение. Период колебаний связан с массой груза и жёсткостью пружины k соотношением

При уменьшении массы период колебаний уменьшится (А - 2). Частота обратно пропорциональная периоду, значит, частота увеличится (Б - 1). Максимальная потенциальная энергия пружины равна , при неизменной амплитуде колебаний она не изменится (В - 3).

Ответ: 213.

В2 . Используя первый закон термодинамики, установите соответствие между описанными в первом столбце особенностями изопроцесса в идеальном газе и его названием.

А Б

Получившуюся последовательность цифр перенесите в бланк ответов (без пробелов и каких-либо символов).

Решение. Внутренняя энергия идеальная газа остаётся неизменной при неизменной температуре газа, то есть, в изотермическом процессе (А - 1). Теплообмен с окружающими телами отсутствует в адиабатическом процессе (Б - 4).

В3. Летящий снаряд разрывается на два осколка. По отношению к направлению движения снаряда первый осколок летит под углом 90° со скоростью 50 м/с, а второй - под углом 30° со скоростью 100 м/с. Найдите отношение массы первого осколка к массе второго осколка.

Решение. Изобразим направления движения снаряда и двух осколков (см. рисунок). Запишем закон сохранения проекции импульса на ось, перпендикулярную направлению движения снаряда:

В4. В теплоизолированный сосуд с большим количеством льда при температуре заливают m = 1 кг воды с температурой . Какая масса льда Δm расплавится при установлении теплового равновесия в сосуде? Ответ выразите в граммах.

Решение. При охлаждении вода отдаст количество теплоты . Эта теплота растопит лёд массой

Ответ: 560.

В5. Предмет высотой 6 см расположен на главной оптической оси тонкой собирающей линзы на расстоянии 30 см от её оптического центра. Оптическая сила линзы 5 дптр. Найдите высоту изображения предмета. Ответ выразите в сантиметрах (см).

Решение. Обозначим высоту предмета h = 6 см, расстояние от линзы до предмета , оптическую сила линзы D = 5 дптр. Используя формулу для тонкой линзы, определим положение изображения предмета:

.

Увеличение составит

.

Высота изображения равна

Часть C

С1. Человек в очках вошёл с улицы в теплую комнату и обнаружил, что его очки запотели. Какой должна быть температура на улице, чтобы наблюдалось это явление? В комнате температура воздуха 22 °С, а относительная влажность воздуха 50 %. Поясните, как вы получили ответ.

(При ответе на этот вопрос воспользуйтесь таблицей для давления насыщенных паров воды.)

Давление насыщенных паров воды при различных температурах

Решение. Из таблицы находим, что давление насыщенных паров в комнате составляет 2,64 кПа. Поскольку относительная влажность воздуха равна 50 %, парциальное давление паров воды в комнате равно 2,164 кПа50 % = 1,32 кПа.

В первый момент, как человек вошёл с улицы, его очки имеют уличную температуру. Комнатный воздух, соприкасаясь с очками, охлаждается. Из таблицы видно, что если комнатный воздух охладится до 11 °С или ниже, когда парциальное давление паров воды станет больше давления насыщенных паров, пары воды конденсируются - очки запотеют. Температура на улице должна быть не выше 11 °С.

Ответ: не выше 11 °С.

С2. Небольшая шайба после удара скользит вверх по наклонной плоскости из точки А (см. рисунок). В точке В наклонная плоскость без излома переходит в наружную поверхность горизонтальной трубы радиусом R . Если в точке А скорость шайбы превосходит , то в точке В шайба отрывается от опоры. Длина наклонной плоскости АВ = L = 1 м, угол α = 30°. Коэффициент трения между наклонной плоскостью и шайбой μ = 0,2. Найдите внешний радиус трубы R .

Решение. Найдём скорость шайбы в точке B , используя закон сохранения энергии. Изменение полной механической энергии шайбы равно работе силы трения:

Условием отрыва является равенство силы реакции опоры нулю. Центростремительное ускорение вызвано только силой тяжести, при этом для минимальной начальной скорости, для которой наблюдается отрыв шайбы, радиус кривизны траектории в точке B равен R (для бо́льших скоростей радиус будет больше):

Ответ: 0,3 м.

С3. Воздушный шар, оболочка которого имеет массу М = 145 кг и объём , наполняется горячим воздухом при нормальном атмосферном давлении и температуре окружающего воздуха . Какую минимальную температуру t должен иметь воздух внутри оболочки, чтобы шар начал подниматься? Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие.

Решение. Шар начнёт подниматься, когда сила Архимеда превысит силу тяжести. Сила Архимеда равна . Плотность наружного воздуха равна

где p - нормальное атмосферное давление, μ - молярная масса воздуха, R - газовая постоянная, - температура наружного воздуха.

Масса шара складывается из массы оболочки и массы воздуха внутри оболочки. Сила тяжести равна

где T - температура воздух внутри оболочки.

Решая неравенство , находим минимальную температуру T :

Минимальная температура воздух внутри оболочки должна быть 539 К или 266 °C.

Ответ: 266 °C.

С4. Тонкий алюминиевый брусок прямоугольного сечения, имеющий длину L = 0,5 м, соскальзывает из состояния покоя по гладкой наклонной плоскости из диэлектрика в вертикальном магнитном поле с индукцией B = 0,1 Тл (см. рисунок). Плоскость наклонена к горизонту под углом α = 30°. Продольная ось бруска при движении сохраняет горизонтальное направление. Найдите величину ЭДС индукции на концах бруска в момент, когда брусок пройдёт по наклонной плоскости расстояние l = 1,6 м.

Решение. Найдём скорость бруска в нижнем положении, используя закон сохранения энергии:

Алюминий является проводником, поэтому в бруске возникнет ЭДС индукции. ЭДС индукции на концах бруска будет равно

Ответ: 0,17 В.

С5. В электрической цепи, показанной на рисунке, ЭДС источника тока равна 12 В, ёмкость конденсатора 2 мФ, индуктивность катушки 5 мГн, сопротивление лампы 5 Ом и сопротивление резистора 3 Ом. В начальный момент времени ключ К замкнут. Какая энергия выделится в лампе после размыкания ключа? Внутренним сопротивлением источника тока, а также сопротивлением катушки и проводов пренебречь.

Решение. Введём обозначения: ε - ЭДС источника тока, C - ёмкость конденсатора, L - индуктивность катушки, r - сопротивление лампы, R - сопротивление резистора.

Пока ключ замкнут через конденсатор и лампу ток не течёт, а через резистор и катушку течёт ток

Энергия системы конденсатор - лампа - катушка - резистор равна

.

После размыкания ключа в системе будут протекать переходные процессы, пока конденсатор не разрядится и ток не станет равным нулю. Вся энергия выделится в виде тепла в лампе и резисторе. В каждый момент времени в лампе выделяется количества тепла , а в резисторе - . Поскольку через лампу и резистор будет течь один и тот же ток, отношение выделившегося тепла будет в пропорции сопротивлений . Таким образом, в лампе выделится энергия

Ответ: 0,115 Дж.

С6. -мезон массой распадается на два γ-кванта. Найдите модуль импульса одного из образовавшихся γ-квантов в системе отсчёта, где первичный -мезон покоится.

Решение. В системе отсчёта, где первичный -мезон покоится, его импульс равен нулю, а энергия равна энергии покоя . По закону сохранения импульса γ-кванты разлетятся в противоположных направлениях с одинаковыми импульсами. Значит, энергии γ-квантов одинаковы и, следовательно, равны половине энергии -мезона: . Тогда импульс γ-кванта равен

ООЧЕНЬ ПРОСТАЯ ЗАДАЧА, ПОМОГИТЕ! При движении по горизонтальной поверхности на тело массой 10 кг действует сила трения-скольжения 50 Н. Какой станет сила трения-скольжения после уменьшения массы тела в 5 раз, если коэфициент трения не изменится?

Ответы:

в 5 раз менше трение, значит станет 10 Ньютон

Похожие вопросы

  • найти сумму чисел от 15 до 73
  • сокращенное ионное уравнение реакции Н + ОН = Н2О соответствует взаимодействию: 1) гидрооксида меди(2) и раствора серной кислоты 2)гидрооксиа натрия и раствора азотной кислоты 3)оксид меди(2) и солятной кислоты 4) цинка и раствора серной кислоты
  • ПОМОГИТЕ ОЧЕНЬ НАДО, ГЕОМЕТРИЮ ВООБЩЕ НЕ ПОНИМАЮ в четерехугольнике МРКН,угол РМК= углу НКМ, РК параллельно МН. Через точку пересечения диагоналей проведена прямая, пересекающая стороны РК и МН в точках А и В соответственно. докажите что,АР=НВ
  • составить со словом степь три предложения так чтобы в 1 оно было подлежащим во 2 дополнением в 3 обстоятельством пожалуйста срочно
  • Найдите деепричастные и причастные обороты Создавая свои замечательные полотна, Константин Фёдорович Юон любуется сам и заставляет любоваться чарующей красотой покрытых инеем деревьев, заснеженными сверкающими на солнце равнинами. Рассматривая картины Юога, мы вспоминаем сказочную, русскую зиму с её пушистым снегом, каждый год одевающим землю, густым покровом. Вспоминается и лёгкая морозная дымка, окутывающая все предметы в ясные, студеные дни и весёлые стайки задорных мальчишек, радующихся снежному раздолью. Мастеру русского зимнего пейзажа удаётся серебристо-серый, жемчужный колорит, который прекрасно передаёт состояние морозного, зимнего дня. О своём творчестве художник говорил: «Мне хотелось написать картины, как пишутся песни о жизни, об истории русского народа, о природе, о древних русских городах». Всё творчество К. Ф. Юона, это гимн красоте, русской жизни, красоте родной природы, её жизнеутверждающей силе.

ЗАДАНИЕ:

Внутренняя энергия монеты увеличивается, если ее

1) заставить вращаться;

2) заставить двигаться с большей скоростью;

3) подбросить вверх;

4) подогреть.

РЕШЕНИЕ:

Внутренняя энергия - это сумма энергий взаимодействий и тепловых движений молекул. В нее не входят кинетическая энергия тела как целого и его энергия во внешних поля, таких как гравитационное. Таким образом, единственный способ увеличить внутреннюю энергию монеты из перечисленных - это нагреть ее.

ОТВЕТ: 4.

А3

ЗАДАНИЕ:

Камень массой 200 г брошен под углом 45 о к горизонту с начальной скоростью V = 15 м/с. Модуль силы тяжести в момент броска, равен:

1) 0;

2) 1,33 Н;

3) 3,0 Н;

4) 2,0 Н .

РЕШЕНИЕ:

Довольно типичная для ЕГЭ по физике задача с большим количеством лишних данных. Модуль силы тяжести, действующей на камень, в любой момент времени равен: F = mg. И угол броска вместе со скоростью здесь ни при чем! Переводим массу в килограммы (200 г = 0,2 кг), учитываем, что g = 10 м/с 2 , и получаем: F = 0,2 х 10 = 2,0 Н.

ОТВЕТ:

4) 2,0 Н.

А21

ВОПРОС:

Среди приведенных примеров электромагнитных волн максимальной длиной волны обладает:

1) инфракрасное излучение Солнца;
2) ультрафиолетовое излучение Солнца;
3) излучение y-радиоактивного препарата;
4) излучение антенны радиопередатчика.

ОТВЕТ:

Для того чтобы правильно выбрать ответ, стоит знать, что длины волн для каждого из указанных источников заключаются в пределах:

радиоволны – 10 км – 1 мм;
инфракрасное излучение – 1 мм – 780 нм;
видимое (оптическое) излучение – 780–380 нм;
ультрафиолетовое – 380–10 нм;
рентгеновские – 10 нм – 5 пм;
гамма – менее 5 пм.

Таким образом, максимальной длиной волны обладает излучение антенны радиопередатчика – ответ: 4.

ЗАДАЧА

Тело равномерно движется по плоскости. Сила давления тела на плоскость равна 20 Н, сила трения 5 Н. Коэффициент трения скольжения равен:

1) 0,8;
2) 0,25;
3) 0,75;
4) 0,2.

РЕШЕНИЕ

Сила трения определяется по формуле: Fтр = k * N, где k – коэффициент трения скольжения, N – сила давления тела на плоскость.

Подставив в эту формулу известные данные, получим уравнение: 5 = k * 20, решив это уравнение относительно k, получим, что k = 0,25. Таким образом, правильный ответ: 2).

А2

ЗАДАЧА

Льдинку, плавающую в стакане с пресной водой, перенесли в стакан с соленой водой. При этом архимедова сила, действующая на льдинку:

1) уменьшилась, так как плотность пресной воды меньше плотности соленой;
2) уменьшилась, так как уменьшилась глубина погружения льдинки в воду;
3) увеличилась, так как плотность соленой воды выше, чем плотность пресной воды;
4) не изменилась, так как выталкивающая сила равна весу льдинки в воздухе.

РЕШЕНИЕ

По первому закону Ньютона: всякое тело продолжает находиться в состоянии покоя или равномерного и прямолинейного движения, пока на него не действует никаких сил или их действие скомпенсировано. Льдинка, плавающая на поверхности воды (пресной или соленой), находится в состоянии покоя, следовательно, действие всех сил на нее скомпенсировано, или, другими словами, сила тяжести равна архимедовой силе, а так как сила тяжести в обоих случаях одинакова, то и архимедова сила в пресной и соленой воде будет одинакова и равна весу льдинки в воздухе.

В результате получаем, что правильный ответ – 4).

Атомная и ядерная физика

ЗАДАЧА

Для разгона космических аппаратов и коррекции их орбит предложено использовать солнечный парус – скрепленный с аппаратом легкий экран большой площади из тонкой пленки, которая зеркально отражает свет. Какой должна быть площадь паруса S, чтобы аппарат массой m = 500 кг (включая массу паруса) под действием солнечных лучей изменил скорость на dV = 10 м/с за сутки? Мощность солнечного излучения составляет 1370 Вт/м 2 .

РЕШЕНИЕ

Давление солнечных лучей (давление света) при нормальном падении на поверхность выражается законом: Р = W x (1 + k) / с, где с = 3 x 10 8 м/с – скорость света, k – коэффициент отражения. По условию поверхность зеркально отражает свет, значит k = 1, таким образом Р = 2 x W / с. В результате на парус будет действовать сила F = P x S, создающая ускорение космическому аппарату: a = dV / dt. По второму закону Ньютона F = m x a, следовательно: 2 x W x S / с = m х dV / dt, где dt – время действия силы – по условию 1 сутки, или 86400 с.
Отсюда: S = (m x dV x с) / (2 x W x dt) = (500 x 10 x 3 x 10 8) / (2 x 1370 x 86400) = 6336 м 2 .

ЗАДАЧА

При движении по горизонтальной поверхности на тело массой 40 кг действует сила трения скольжения 10 Н. Какой станет сила трения скольжения после уменьшения массы тела в 5 раз, если коэффициент трения не изменится?
Выберите один из вариантов:
1) 1Н;
2) 2Н;
3) 4Н;
4) 8Н.

РЕШЕНИЕ

Так как сила трения Fтр = N х k , где N – сила реакции опоры (при движении по горизонтальной поверхности равна силе тяжести: N = m х g), k – коэффициент трения.
Таким образом:
Fтр = m х g х k,
значит при уменьшении массы тела в 5 раз в те же 5 раз уменьшится и сила трения и составит 2 Н.

На данном уроке, тема которого: «Решение задач по динамике. Движение по горизонтали и вдоль наклонной плоскости», мы рассмотрим решения ряда задач по данной теме, применив общий алгоритм решения задач по динамике.

Мы продолжаем изучать динамику. Это раздел физики, который изучает причины механического движения.

Сегодня мы займемся решением задач на движение по горизонтали и вдоль наклонной плоскости. Как решать такие задачи?

У нас есть тело, которое находится на горизонтальной или наклонной плоскости. На него в любом случае действует сила тяжести и сила реакции опоры. Если поверхность не гладкая, на тело действует сила трения, направленная против направления движения. Тело могут тащить за нить, в таком случае на него будет действовать сила натяжения нити. Наличие той или иной силы зависит от условия задачи, но равнодействующая всех сил, действующих на тело, в общем случае вызывает ускорение тела, . Это следствие из второго закона Ньютона - главного инструмента решения задач по динамике.

Итак, мы разобрали, что происходит при движении тела вдоль плоскости, определили действующие на тело силы и описали процесс математически, применив второй закон Ньютона. На этом физика заканчивается, и остается математика.

Решать уравнения в векторной форме математически сложно, поэтому нужно переписать следствие из второго закона Ньютона в проекциях на оси координат.

Если плоскость наклонная, она ориентирована под определенным углом к горизонту, а значит, сила тяжести будет направлена под углом к плоскости, знаем мы этот угол или нет. Это делает важным выбор системы координат.

Мы свободны в выборе, результат не будет зависеть от выбора системы координат, но нужно выбрать такую, при которой математические преобразования будут максимально простыми. Мы увидим это на примере одной из задач.

И только теперь, когда получена система уравнений, описывающая физический процесс, мы решаем задачу математически: решаем уравнения и находим неизвестное.

Приступим к решению задач.

Камень, скользивший по горизонтальной поверхности льда, остановился, пройдя расстояние S =48 м. Найдите начальную скорость камня, если сила трения скольжения камня о лед составляет 0,06 силы нормального давления камня на лед.

Анализ условия:

В задаче описано тело, которое движется под действием сил, значит, будем применять второй закон Ньютона;

На камень действует сила тяжести, сила реакции опоры и сила трения. Отметим их (см. рис. 1).

Рис. 1. Действующие на камень силы

Сила трения равна ;

Камень останавливается, движется с ускорением, которое по второму закону Ньютона вызвано равнодействующей силой;

При равноускоренном движении тело проходит путь и приобретает скорость .

Выберем систему координат. Удобно направить ось х в направлении движения камня, а ось у перпендикулярно оси х (см. рис. 2).

Рис. 2. Выбор системы координат

Учитывая, что сила трения равна , запишем в проекциях на выбранные оси координат. Сила трения направлена против движения камня, туда же направлено и ускорение (камень замедляется) (см. рис. 3):

За время остановки камень по условию задачи пройдет расстояние . Начальная скорость направлена в направлении оси х, ее проекция будет иметь знак «+», ускорение - против оси х, ставим знак «-»:

Тело остановится, то есть его скорость через время будет равна нулю:

Получили систему уравнений, которую остается решить и получить начальную скорость камня, равную 7,6 м/с:

Выразим из второго уравнения силу реакции опоры:

Подставим ее в первое уравнение:

Выразим из четвертого уравнения время Т:

Подставим его в третье уравнение:

Выразим скорость и подставим найденное выше ускорение:

Теперь решим задачу на движение вдоль наклонной плоскости.

Тело массы m без начальной скорости соскальзывает с наклонной плоскости с углом с высоты h (см. рис. 4).

Рис. 4. Рисунок к условию задачи 2

Коэффициент трения тела о поверхность равен . За какое время тело достигнет подножья?

Анализ условия

Задан прямоугольный треугольник, в котором известна одна сторона и угол. Значит, известны все стороны, и определен путь, который проходит тело.

На тело действуют сила тяжести, сила реакции опоры и сила трения (см. рис. 5).

Рис. 5. Силы, которые действуют на тело

Равнодействующая этих сил создает ускорение - будем применять второй закон Ньютона.

В задаче нужно найти время движения тела, которое движется с ускорением, равноускоренное движение описывается уравнениями кинематики.

Выберем систему координат. Здесь есть своя особенность: движение бруска происходит вдоль наклонной плоскости, сила трения направлена противоположно направлению движения, сила реакции опоры перпендикулярна плоскости, а сила тяжести направлена под углом к плоскости. Нам особенно важно выбрать удобную систему координат. Для математических расчетов удобно направить оси координат, как показано на рисунке: ось х вдоль в направлении движения бруска, ось у перпендикулярно поверхности (см. рис. 6).

Рис. 6. Выбор системы координат

Применим второй закон Ньютона:

Учитывая, что сила трения равна , запишем в проекциях на выбранные оси координат.

Сила тяжести направлена под углом к обеим осям координат. Треугольники АВС и авс подобны, и угол равен углу cab. Следовательно, проекция силы тяжести на ось х равна , на ось у - (см. рис. 7).

Рис. 7. Проекции сил на оси координат

Нахождение проекций силы тяжести

Чтобы найти проекцию силы на координатную ось, нужно знать угол, под которым она направлена к оси. Расположим вектор силы тяжести на рисунке (см. рис. 8).

Рис. 8. Вектор силы тяжести

Если его продолжить, получим прямоугольный треугольник . Угол . В треугольнике , тоже прямоугольном, т. к. - проекция , угол (см. рис. 9).

Рис. 9. Определение углов

Тогда . В - проекция . Угол , т. к. , - секущая. (см. рис. 10).

Рис. 10. Равенство углов

Таким образом, нам нужно, используя знания по геометрии, определить, где в треугольниках, образованных проекциями, находится заданный угол наклона плоскости , чтобы правильно применять синус или косинус угла наклона.

Тело проходит путь АВ, равный из треугольника АВС . Путь, пройденный телом при равноускоренном движении без начальной скорости, равен:

Получили систему уравнений, из которой остается найти время:

Математическая часть решения задачи

Из первого уравнения получим N:

Подставим во второе и выразим ускорение:

Из третьего уравнения, подставив ускорение, выразим время:

Выбор системы координат

При решении задачи мы направили оси координат (см. рис. 6) и получили следующую систему уравнений:

Система координат - это наш выбор, и решение задачи от ее выбора не зависит. Для этой же задачи направим оси координат по-другому (см. рис. 11).

Рис. 11. Выбор системы координат

Запишем уравнения в проекциях на оси координат в данной системе:

Формулу для перемещения при равноускоренном движении также запишем в проекциях на выбранные оси:

Как видите, уравнения получились более сложными, но, решив их, вы убедитесь, что результат получится тот же, что при другом выборе системы координат. Рекомендую вам проделать это самостоятельно.

На наклонной плоскости с углом наклона 30 0 покоится брусок с привязанной нитью. При какой минимальной силе натяжения нити брусок сдвинется с места, если потянуть за нить вниз так, что она будет параллельна плоскости? Масса бруска - 0,5 кг, коэффициент трения скольжения бруска о плоскость равен 0,7, ускорение свободного падения принять равным 10 м/с 2 .

Анализ условия

В задаче описано тело, на которое действуют сила тяжести, сила реакции опоры, сила трения и сила натяжения нити (см. рис. 12).

Рис. 12. Действие сил на тело

Тело стаскивают вниз, сила трения направлена против возможного направления движения.

По условию задачи при некотором минимальном значении силы натяжения нити брусок сдвигается с места, брусок не будет разгоняться, ускорение равно нулю. Будем применять второй закон Ньютона, ускорение равно 0.

Выберем систему координат. Мы уже убедились на примере предыдущей задачи, что удобно направить ось х параллельно плоскости (см. рис. 13), а ось у - перпендикулярно плоскости.

Рис. 13. Выбор системы координат

По второму закону Ньютона сумма сил, действующих на брусок, равна , в нашем случае :

Учитывая, что сила трения равна , запишем в проекциях на выбранные оси координат:

Получили систему уравнений, решив которую, найдем минимальное значение .

Математическая часть решения задачи

Выразим из первого уравнения силу реакции опоры:

Подставим ее во второе уравнение и выразим Т:

Вычислим:

Как видите, задачи на движение тел вдоль наклонной плоскости, как и большинство других задач по динамике, сводятся к применению законов Ньютона в выбранной удобной системе координат.

На этом наш урок закончен, спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  2. А.В. Русаков, В.Г. Сухов. Сборник задач по физике (физико-математическая школа № 2, г. Сергиев Посад). - 1998 г.
  1. Интернет портал «Exir.ru» ()
  2. Интернет портал «Izotovmi.ru» ()

Домашнее задание



Понравилась статья? Поделитесь с друзьями!