Théorie de la progression arithmétique et exemples. Progression des différences et ses éléments arbitraires

Somme d'une progression arithmétique.

La somme d’une progression arithmétique est une chose simple. Tant dans le sens que dans la formule. Mais il existe toutes sortes de tâches sur ce sujet. Du basique au assez solide.

Tout d'abord, comprenons la signification et la formule du montant. Et puis nous déciderons. Pour votre propre plaisir.) La signification du montant est aussi simple qu'un meuglement. Pour trouver la somme d’une progression arithmétique, il suffit d’additionner soigneusement tous ses termes. Si ces termes sont peu nombreux, vous pouvez les ajouter sans aucune formule. Mais s'il y en a beaucoup, ou beaucoup... l'addition est gênante.) Dans ce cas, la formule vient à la rescousse.

La formule du montant est simple :

Voyons quels types de lettres sont inclus dans la formule. Cela clarifiera beaucoup les choses.

S n - la somme d'une progression arithmétique. Résultat de l'addition tout le monde membres, avec d'abord Par dernier. C'est important. Ils s'additionnent exactement Tous membres d'affilée, sans sauter ni sauter. Et précisément, à partir de d'abord. Dans des problèmes comme trouver la somme des troisième et huitième termes, ou la somme du cinquième au vingtième termes, l'application directe de la formule sera décevante.)

un 1 - d'abord membre de la progression. Tout est clair ici, c'est simple d'abord numéro de ligne.

un- dernier membre de la progression. Le dernier numéro de la série. Ce n’est pas un nom très familier, mais appliqué au montant, il convient très bien. Ensuite, vous verrez par vous-même.

n - numéro du dernier membre. Il est important de comprendre que dans la formule ce nombre coïncide avec le nombre de termes ajoutés.

Définissons le concept dernier membre un. Question délicate : quel membre sera le dernier si donné sans fin progression arithmétique?)

Pour répondre avec assurance, vous devez comprendre le sens élémentaire de la progression arithmétique et... lire attentivement la tâche !)

Dans la tâche consistant à trouver la somme d'une progression arithmétique, le dernier terme apparaît toujours (directement ou indirectement), qui devrait être limité. Dans le cas contraire, un montant définitif et précis n'existe tout simplement pas. Pour la solution, peu importe que la progression soit donnée : finie ou infinie. Peu importe comment cela est donné : une série de nombres ou une formule pour le nième terme.

Le plus important est de comprendre que la formule fonctionne du premier terme de la progression jusqu'au terme avec numéro n. En fait, le nom complet de la formule ressemble à ceci : la somme des n premiers termes d’une progression arithmétique. Le nombre de ces tout premiers membres, soit n, est déterminé uniquement par la tâche. Dans une tâche, toutes ces informations précieuses sont souvent cryptées, oui... Mais qu'à cela ne tienne, dans les exemples ci-dessous nous vous révélons ces secrets.)

Exemples de tâches sur la somme d'une progression arithmétique.

Tout d’abord, des informations utiles :

La principale difficulté des tâches impliquant la somme d'une progression arithmétique réside dans la détermination correcte des éléments de la formule.

Les rédacteurs des tâches chiffrent ces mêmes éléments avec une imagination sans limites.) L'essentiel ici est de ne pas avoir peur. Comprendre l'essence des éléments, il suffit simplement de les déchiffrer. Examinons quelques exemples en détail. Commençons par une tâche basée sur un véritable GIA.

1. La progression arithmétique est donnée par la condition : a n = 2n-3,5. Trouvez la somme de ses 10 premiers termes.

Bon travail. Facile.) Pour déterminer le montant à l’aide de la formule, que devons-nous savoir ? Premier membre un 1, dernier terme un, oui le numéro du dernier membre n.

Où puis-je obtenir le numéro du dernier membre ? n? Oui, sur place, sous condition ! Il dit : trouvez la somme 10 premiers membres. Eh bien, avec quel numéro sera-t-il ? dernier, dixième membre ?) Vous ne le croirez pas, son numéro est le dixième !) Par conséquent, au lieu de un Nous substituerons dans la formule un 10, et plutôt n- dix. Je le répète, le numéro du dernier membre coïncide avec le nombre de membres.

Reste à déterminer un 1 Et un 10. Ceci est facilement calculé à l’aide de la formule du nième terme, donnée dans l’énoncé du problème. Vous ne savez pas comment faire cela ? Assistez à la leçon précédente, sans cela, il n'y a aucun moyen.

un 1= 2 1 - 3,5 = -1,5

un 10=2·10 - 3,5 =16,5

S n = S10.

Nous avons découvert la signification de tous les éléments de la formule de la somme d'une progression arithmétique. Il ne reste plus qu'à les substituer et à compter :

C'est ça. Réponse : 75.

Une autre tâche basée sur le GIA. Un peu plus compliqué :

2. Étant donné une progression arithmétique (a n) dont la différence est de 3,7 ; une 1 =2,3. Trouvez la somme de ses 15 premiers termes.

On écrit immédiatement la formule de somme :

Cette formule nous permet de trouver la valeur de n'importe quel terme par son numéro. Nous recherchons une substitution simple :

une 15 = 2,3 + (15-1) 3,7 = 54,1

Il reste à substituer tous les éléments dans la formule de la somme d'une progression arithmétique et à calculer la réponse :

Réponse : 423.

À propos, si dans la formule de somme au lieu de un On substitue simplement la formule au nième terme et on obtient :

Présentons-en des similaires et obtenons une nouvelle formule pour la somme des termes d'une progression arithmétique :

Comme vous pouvez le voir, le nième terme n'est pas obligatoire ici un. Dans certains problèmes, cette formule aide beaucoup, oui... Vous vous souvenez de cette formule. Ou vous pouvez simplement l’afficher au bon moment, comme ici. Après tout, vous devez toujours vous rappeler la formule de la somme et la formule du nième terme.)

Maintenant, la tâche sous la forme d'un court cryptage) :

3. Trouvez la somme de tous les nombres positifs à deux chiffres qui sont des multiples de trois.

Ouah! Ni votre premier membre, ni votre dernier, ni progression du tout... Comment vivre !?

Vous devrez réfléchir avec votre tête et extraire tous les éléments de la somme de la progression arithmétique de la condition. Nous savons ce que sont les nombres à deux chiffres. Ils se composent de deux nombres.) Quel sera le nombre à deux chiffres d'abord? 10, vraisemblablement.) Un dernière chose numéro à deux chiffres ? 99, bien sûr ! Les chiffres à trois chiffres le suivront...

Multiples de trois... Hm... Ce sont des nombres divisibles par trois, ici ! Dix n'est pas divisible par trois, 11 n'est pas divisible... 12... est divisible ! Alors, quelque chose se dessine. Vous pouvez déjà écrire une série selon les conditions du problème :

12, 15, 18, 21, ... 96, 99.

Cette série sera-t-elle une progression arithmétique ? Certainement! Chaque terme diffère du précédent par strictement trois. Si vous ajoutez 2 ou 4 à un terme, disons, le résultat, c'est-à-dire le nouveau nombre n'est plus divisible par 3. Vous pouvez immédiatement déterminer la différence de la progression arithmétique : d = 3. Cela sera utile !)

Ainsi, nous pouvons noter en toute sécurité quelques paramètres de progression :

Quel sera le numéro ? n dernier membre ? Quiconque pense que 99 se trompe fatalement... Les chiffres s'enchaînent toujours, mais nos membres dépassent trois. Ils ne correspondent pas.

Il y a deux solutions ici. Une solution est pour les super travailleurs. Vous pouvez noter la progression, toute la série de nombres et compter le nombre de membres avec votre doigt.) La deuxième façon est destinée aux réfléchis. Vous devez vous rappeler la formule du nième terme. Si nous appliquons la formule à notre problème, nous constatons que 99 est le trentième terme de la progression. Ceux. n = 30.

Regardons la formule de la somme d'une progression arithmétique :

Nous regardons et nous réjouissons.) Nous avons extrait de l'énoncé du problème tout le nécessaire pour calculer le montant :

un 1= 12.

un 30= 99.

S n = S 30.

Il ne reste plus que l'arithmétique élémentaire. Nous remplaçons les nombres dans la formule et calculons :

Réponse : 1665

Un autre type de puzzle populaire :

4. Étant donné une progression arithmétique :

-21,5; -20; -18,5; -17; ...

Trouvez la somme des termes du vingtième à trente-quatre.

On regarde la formule du montant et... on s'énerve.) La formule, je vous le rappelle, calcule le montant Depuis le premier membre. Et dans le problème, vous devez calculer la somme depuis le vingtième... La formule ne fonctionnera pas.

Vous pouvez bien sûr écrire toute la progression dans une série et ajouter des termes de 20 à 34. Mais... c'est en quelque sorte stupide et prend beaucoup de temps, non ?)

Il existe une solution plus élégante. Divisons notre série en deux parties. La première partie sera du premier mandat au dix-neuvième. Deuxième partie - de vingt à trente-quatre heures. Il est clair que si l'on calcule la somme des termes de la première partie S1-19, ajoutons-le avec la somme des termes de la deuxième partie S20-34, on obtient la somme de la progression du premier mandat au trente-quatrième S1-34. Comme ça:

S1-19 + S20-34 = S1-34

De là, nous pouvons voir que trouver la somme S20-34 peut être fait par simple soustraction

S20-34 = S1-34 - S1-19

Les deux montants du côté droit sont pris en compte Depuis le premier membre, c'est-à-dire la formule de somme standard leur est tout à fait applicable. Commençons?

Nous extrayons les paramètres de progression de l'énoncé du problème :

d = 1,5.

un 1= -21,5.

Pour calculer les sommes des 19 premiers et des 34 premiers termes, nous aurons besoin des 19e et 34e termes. On les calcule à l'aide de la formule du nième terme, comme dans le problème 2 :

un 19= -21,5 +(19-1) 1,5 = 5,5

un 34= -21,5 +(34-1) 1,5 = 28

Il ne reste rien. De la somme de 34 termes soustrayez la somme de 19 termes :

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Réponse : 262,5

Une remarque importante ! Il existe une astuce très utile pour résoudre ce problème. Au lieu d'un calcul direct ce dont vous avez besoin (S 20-34), nous avons compté quelque chose qui ne semble pas nécessaire - S 1-19. Et puis ils ont déterminé S20-34, en supprimant l'inutile du résultat complet. Ce genre de « feinte avec les oreilles » vous évite souvent de graves problèmes.)

Dans cette leçon, nous avons examiné des problèmes pour lesquels il suffit de comprendre la signification de la somme d'une progression arithmétique. Eh bien, vous devez connaître quelques formules.)

Conseils pratiques :

Lors de la résolution d'un problème impliquant la somme d'une progression arithmétique, je recommande d'écrire immédiatement les deux formules principales de ce sujet.

Formule pour le nième terme :

Ces formules vous diront immédiatement quoi rechercher et dans quelle direction penser pour résoudre le problème. Aide.

Et maintenant les tâches pour une solution indépendante.

5. Trouvez la somme de tous les nombres à deux chiffres qui ne sont pas divisibles par trois.

Cool ?) L'indice est caché dans la note du problème 4. Eh bien, le problème 3 vous aidera.

6. La progression arithmétique est donnée par la condition : a 1 = -5,5 ; un n+1 = un n +0,5. Trouvez la somme de ses 24 premiers termes.

Insolite ?) C’est une formule récurrente. Vous pouvez en lire davantage dans la leçon précédente. N’ignorez pas le lien, de tels problèmes se retrouvent souvent à l’Académie nationale des sciences.

7. Vasya a économisé de l'argent pour les vacances. Jusqu'à 4550 roubles ! Et j'ai décidé d'offrir à ma personne préférée (moi-même) quelques jours de bonheur). Vivez magnifiquement sans rien vous priver. Dépensez 500 roubles le premier jour et chaque jour suivant, dépensez 50 roubles de plus que le précédent ! Jusqu'à ce que l'argent soit épuisé. Combien de jours de bonheur Vasya a-t-il eu ?

Difficile ?) Une formule supplémentaire de la tâche 2 vous aidera.

Réponses (en désarroi) : 7, 3240, 6.

Si vous aimez ce site...

Au fait, j'ai quelques autres sites intéressants pour vous.)

Vous pouvez vous entraîner à résoudre des exemples et découvrir votre niveau. Test avec vérification instantanée. Apprenons - avec intérêt !)

Vous pouvez vous familiariser avec les fonctions et les dérivées.

Le concept de séquence de nombres implique que chaque nombre naturel correspond à une valeur réelle. Une telle série de nombres peut être arbitraire ou avoir certaines propriétés - une progression. Dans ce dernier cas, chaque élément (membre) suivant de la séquence peut être calculé à l'aide du précédent.

Une progression arithmétique est une séquence de valeurs numériques dans laquelle ses membres voisins diffèrent les uns des autres par le même nombre (tous les éléments de la série, à partir du 2ème, ont une propriété similaire). Ce nombre - la différence entre les termes précédents et suivants - est constant et est appelé différence de progression.

Différence de progression : définition

Considérons une séquence composée de j valeurs A = a(1), a(2), a(3), a(4) ... a(j), j appartient à l'ensemble des nombres naturels N. Une arithmétique la progression, selon sa définition, est une séquence dans laquelle a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – une(j-1) = ré. La valeur d est la différence souhaitée de cette progression.

d = une(j) – une(j-1).

Souligner:

  • Une progression croissante, auquel cas d > 0. Exemple : 4, 8, 12, 16, 20, ...
  • Progression décroissante, puis d< 0. Пример: 18, 13, 8, 3, -2, …

Progression des différences et ses éléments arbitraires

Si 2 termes arbitraires de la progression sont connus (i-ème, k-ème), alors la différence pour une séquence donnée peut être déterminée sur la base de la relation :

a(i) = a(k) + (i – k)*d, ce qui signifie d = (a(i) – a(k))/(i-k).

Différence de progression et son premier terme

Cette expression permettra de déterminer une valeur inconnue uniquement dans les cas où le numéro de l'élément de séquence est connu.

Différence de progression et sa somme

La somme d'une progression est la somme de ses termes. Pour calculer la valeur totale de ses j premiers éléments, utilisez la formule appropriée :

S(j) =((a(1) + a(j))/2)*j, mais puisque a(j) = a(1) + d(j – 1), alors S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

Premier niveau

Progression arithmétique. Théorie détaillée avec exemples (2019)

Séquence numérique

Alors asseyons-nous et commençons à écrire quelques chiffres. Par exemple:
Vous pouvez écrire n'importe quel nombre, et il peut y en avoir autant que vous le souhaitez (dans notre cas, il y en a). Peu importe le nombre de nombres que nous écrivons, nous pouvons toujours dire lequel est le premier, lequel est le deuxième, et ainsi de suite jusqu'au dernier, c'est-à-dire que nous pouvons les numéroter. Voici un exemple de séquence de nombres :

Séquence numérique
Par exemple, pour notre séquence :

Le numéro attribué est spécifique à un seul numéro de la séquence. En d’autres termes, il n’y a pas de nombres de trois secondes dans la séquence. Le deuxième nombre (comme le ème nombre) est toujours le même.
Le nombre avec nombre est appelé le ème terme de la séquence.

Nous appelons généralement la séquence entière par une lettre (par exemple,), et chaque membre de cette séquence est la même lettre avec un indice égal au numéro de ce membre : .

Dans notre cas:

Disons que nous avons une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale.
Par exemple:

etc.
Cette suite de nombres est appelée progression arithmétique.
Le terme « progression » a été introduit par l'auteur romain Boèce au VIe siècle et était compris dans un sens plus large comme une séquence numérique infinie. Le nom « arithmétique » a été transféré de la théorie des proportions continues, étudiée par les anciens Grecs.

Il s'agit d'une séquence de nombres dont chaque membre est égal au précédent ajouté au même nombre. Ce nombre est appelé la différence d'une progression arithmétique et est désigné.

Essayez de déterminer quelles suites de nombres sont une progression arithmétique et lesquelles ne le sont pas :

un)
b)
c)
d)

J'ai compris? Comparons nos réponses :
Est progression arithmétique - b, c.
N'est pas progression arithmétique - a, d.

Revenons à la progression donnée () et essayons de trouver la valeur de son ème terme. Existe deux moyen de le trouver.

1. Méthode

On peut ajouter le numéro de progression à la valeur précédente jusqu'à atteindre le ème terme de la progression. C'est bien que nous n'ayons pas grand chose à résumer - seulement trois valeurs :

Ainsi, le ème terme de la progression arithmétique décrite est égal à.

2. Méthode

Et s’il fallait trouver la valeur du ème terme de la progression ? La sommation nous prendrait plus d'une heure, et ce n'est pas un fait que nous ne ferions pas d'erreurs en additionnant des nombres.
Bien entendu, les mathématiciens ont trouvé une méthode selon laquelle il n’est pas nécessaire d’ajouter la différence d’une progression arithmétique à la valeur précédente. Regardez de plus près l'image dessinée... Vous avez sûrement déjà remarqué un certain motif, à savoir :

Voyons par exemple en quoi consiste la valeur du ième terme de cette progression arithmétique :


Autrement dit:

Essayez de trouver vous-même la valeur d'un membre d'une progression arithmétique donnée de cette manière.

As-tu calculé ? Comparez vos notes avec la réponse :

Veuillez noter que vous avez obtenu exactement le même nombre que dans la méthode précédente, lorsque nous avons ajouté séquentiellement les termes de la progression arithmétique à la valeur précédente.
Essayons de « dépersonnaliser » cette formule - mettons-la sous forme générale et obtenons :

Équation de progression arithmétique.

Les progressions arithmétiques peuvent être croissantes ou décroissantes.

En augmentant- des progressions dans lesquelles chaque valeur suivante des termes est supérieure à la précédente.
Par exemple:

Descendant- des progressions dans lesquelles chaque valeur suivante des termes est inférieure à la précédente.
Par exemple:

La formule dérivée est utilisée dans le calcul des termes en termes croissants et décroissants d'une progression arithmétique.
Vérifions cela en pratique.
On nous donne une progression arithmétique composée des nombres suivants : Vérifions quel sera le ème nombre de cette progression arithmétique si nous utilisons notre formule pour le calculer :


Depuis lors:

Ainsi, nous sommes convaincus que la formule fonctionne à la fois en progression arithmétique décroissante et croissante.
Essayez de trouver vous-même les ième et ième termes de cette progression arithmétique.

Comparons les résultats :

Propriété de progression arithmétique

Compliquons le problème - nous en dériverons la propriété de progression arithmétique.
Disons qu'on nous donne la condition suivante :
- progression arithmétique, trouver la valeur.
Facile, dites-vous et commencez à compter selon la formule que vous connaissez déjà :

Laissez, ah, alors :

Absolument raison. Il s'avère que nous trouvons d'abord, puis l'ajoutons au premier nombre et obtenons ce que nous recherchons. Si la progression est représentée par de petites valeurs, alors cela n’a rien de compliqué, mais que se passe-t-il si on nous donne des nombres dans la condition ? D'accord, il est possible de se tromper dans les calculs.
Demandez-vous maintenant s'il est possible de résoudre ce problème en une seule étape en utilisant n'importe quelle formule ? Bien sûr que oui, et c’est ce que nous allons essayer de faire ressortir maintenant.

Notons le terme requis de la progression arithmétique car la formule pour le trouver nous est connue - c'est la même formule que nous avons dérivée au début :
, Alors:

  • le terme précédent de la progression est :
  • le terme suivant de la progression est :

Résumons les termes précédents et suivants de la progression :

Il s'avère que la somme des termes de progression précédents et suivants est la double valeur du terme de progression situé entre eux. En d’autres termes, pour trouver la valeur d’un terme de progression avec des valeurs précédentes et successives connues, vous devez les additionner et diviser par.

C'est vrai, nous avons le même numéro. Sécurisons le matériel. Calculez vous-même la valeur de la progression, ce n’est pas du tout difficile.

Bien joué! Vous savez presque tout sur la progression ! Il ne reste plus qu'à découvrir une seule formule qui, selon la légende, a été facilement déduite par l'un des plus grands mathématiciens de tous les temps, le « roi des mathématiciens » - Karl Gauss...

Lorsque Carl Gauss avait 9 ans, un enseignant, occupé à vérifier le travail des élèves d'autres classes, lui a confié la tâche suivante en classe : « Calculer la somme de tous les nombres naturels de à (selon d'autres sources à) inclus. » Imaginez la surprise du professeur lorsqu'un de ses élèves (c'était Karl Gauss) a donné une minute plus tard la bonne réponse à la tâche, tandis que la plupart des camarades de classe du casse-cou, après de longs calculs, ont reçu le mauvais résultat...

Le jeune Carl Gauss a remarqué une certaine tendance que vous pouvez facilement remarquer aussi.
Disons que nous avons une progression arithmétique composée de -èmes termes : nous devons trouver la somme de ces termes de la progression arithmétique. Bien sûr, nous pouvons additionner manuellement toutes les valeurs, mais que se passe-t-il si la tâche nécessite de trouver la somme de ses termes, comme le recherchait Gauss ?

Décrivons la progression qui nous est donnée. Examinez de plus près les nombres en surbrillance et essayez d'effectuer diverses opérations mathématiques avec eux.


L'as tu essayé? Qu'avez-vous remarqué ? Droite! Leurs sommes sont égales


Maintenant, dites-moi, combien y a-t-il de telles paires au total dans la progression qui nous est donnée ? Bien sûr, exactement la moitié de tous les chiffres.
Partant du fait que la somme de deux termes d'une progression arithmétique est égale et que les paires similaires sont égales, on obtient que la somme totale est égale à :
.
Ainsi, la formule de la somme des premiers termes de toute progression arithmétique sera :

Dans certains problèmes, nous ne connaissons pas le ème terme, mais nous connaissons la différence de progression. Essayez de remplacer la formule du ème terme par la formule de somme.
Qu'est-ce que vous obtenez?

Bien joué! Revenons maintenant au problème qui a été posé à Carl Gauss : calculez vous-même à quoi est égale la somme des nombres à partir du ème et la somme des nombres à partir du ème.

Combien as-tu reçu ?
Gauss a découvert que la somme des termes est égale, ainsi que la somme des termes. C'est ce que tu as décidé ?

En fait, la formule de la somme des termes d'une progression arithmétique a été prouvée par l'ancien scientifique grec Diophante au 3ème siècle, et tout au long de cette période, des gens pleins d'esprit ont pleinement utilisé les propriétés de la progression arithmétique.
Par exemple, imaginez l'Égypte ancienne et le plus grand projet de construction de cette époque - la construction d'une pyramide... La photo en montre un côté.

Où est la progression ici, dites-vous ? Regardez attentivement et trouvez une régularité dans le nombre de blocs de sable dans chaque rangée du mur de la pyramide.


Pourquoi pas une progression arithmétique ? Calculez combien de blocs sont nécessaires pour construire un mur si des blocs de briques sont placés à la base. J'espère que vous ne compterez pas en déplaçant votre doigt sur le moniteur, vous vous souvenez de la dernière formule et de tout ce que nous avons dit sur la progression arithmétique ?

Dans ce cas, la progression ressemble à ceci : .
Différence de progression arithmétique.
Le nombre de termes d'une progression arithmétique.
Remplaçons nos données dans les dernières formules (calculons le nombre de blocs de 2 manières).

Méthode 1.

Méthode 2.

Et maintenant, vous pouvez calculer sur le moniteur : comparez les valeurs obtenues avec le nombre de blocs qui se trouvent dans notre pyramide. J'ai compris? Bravo, vous maîtrisez la somme des nièmes termes d'une progression arithmétique.
Bien sûr, on ne peut pas construire une pyramide à partir de blocs à la base, mais à partir de ? Essayez de calculer combien de briques de sable sont nécessaires pour construire un mur dans cette condition.
Avez-vous réussi ?
La bonne réponse est les blocs :

Entraînement

Tâches:

  1. Masha se met en forme pour l'été. Chaque jour, elle augmente le nombre de squats. Combien de fois Masha fera-t-elle des squats par semaine si elle faisait des squats lors de la première séance d'entraînement ?
  2. Quelle est la somme de tous les nombres impairs contenus.
  3. Lors du stockage des journaux, les enregistreurs les empilent de manière à ce que chaque couche supérieure contienne un journal de moins que la précédente. Combien y a-t-il de rondins dans une maçonnerie, si les fondations de la maçonnerie sont constituées de rondins ?

Réponses:

  1. Définissons les paramètres de la progression arithmétique. Dans ce cas
    (semaines = jours).

    Répondre: Dans deux semaines, Masha devrait faire des squats une fois par jour.

  2. Premier nombre impair, dernier nombre.
    Différence de progression arithmétique.
    Le nombre de nombres impairs est la moitié, cependant, vérifions ce fait à l'aide de la formule pour trouver le ème terme d'une progression arithmétique :

    Les nombres contiennent des nombres impairs.
    Remplaçons les données disponibles dans la formule :

    Répondre: La somme de tous les nombres impairs contenus dans est égale.

  3. Rappelons-nous le problème des pyramides. Pour notre cas, a , puisque chaque couche supérieure est réduite d'un journal, alors au total, il y a un tas de couches, c'est-à-dire.
    Remplaçons les données dans la formule :

    Répondre: Il y a des rondins dans la maçonnerie.

Résumons-le

  1. - une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale. Il peut être croissant ou décroissant.
  2. Trouver une formule Le ème terme d'une progression arithmétique s'écrit par la formule - , où est le nombre de nombres dans la progression.
  3. Propriété des membres d'une progression arithmétique- - où est le nombre de nombres en progression.
  4. La somme des termes d'une progression arithmétique peut être trouvé de deux manières :

    , où est le nombre de valeurs.

PROGRESSION ARITHMÉTIQUE. NIVEAU MOYEN

Séquence numérique

Asseyons-nous et commençons à écrire quelques chiffres. Par exemple:

Vous pouvez écrire n’importe quel nombre, et il peut y en avoir autant que vous le souhaitez. Mais nous pouvons toujours dire lequel est le premier, lequel est le deuxième, et ainsi de suite, c'est-à-dire que nous pouvons les numéroter. Ceci est un exemple de séquence de nombres.

Séquence numérique est un ensemble de nombres, chacun pouvant se voir attribuer un numéro unique.

En d’autres termes, chaque nombre peut être associé à un certain nombre naturel et unique. Et nous n’attribuerons ce numéro à aucun autre numéro de cet ensemble.

Le nombre avec nombre est appelé le ème membre de la séquence.

Nous appelons généralement la séquence entière par une lettre (par exemple,), et chaque membre de cette séquence est la même lettre avec un indice égal au numéro de ce membre : .

C'est très pratique si le ème terme de la séquence peut être spécifié par une formule. Par exemple, la formule

définit la séquence :

Et la formule est la séquence suivante :

Par exemple, une progression arithmétique est une suite (le premier terme ici est égal et la différence l'est). Ou (, différence).

Formule nième terme

On appelle récurrente une formule dans laquelle, pour connaître le ème terme, il faut connaître le ou plusieurs précédents :

Pour trouver, par exemple, le ième terme de la progression à l'aide de cette formule, il faudra calculer les neuf précédents. Par exemple, laissez-le. Alors:

Eh bien, est-ce que la formule est claire maintenant ?

Dans chaque ligne, nous ajoutons, multiplié par un certain nombre. Lequel? Très simple : c'est le numéro du membre actuel moins :

Beaucoup plus pratique maintenant, non ? Nous vérifions:

Décider vous-même:

Dans une progression arithmétique, trouvez la formule du nième terme et trouvez le centième terme.

Solution:

Le premier terme est égal. Quelle est la différence? Voici quoi :

(C'est pourquoi on l'appelle différence car elle est égale à la différence des termes successifs de la progression).

Donc la formule :

Alors le centième terme est égal à :

Quelle est la somme de tous les nombres naturels de à ?

Selon la légende, le grand mathématicien Carl Gauss, alors qu'il avait 9 ans, aurait calculé ce montant en quelques minutes. Il a remarqué que la somme du premier et du dernier nombre est égale, la somme du deuxième et de l'avant-dernier est la même, la somme du troisième et du troisième à partir de la fin est la même, et ainsi de suite. Combien y a-t-il de telles paires au total ? C'est vrai, exactement la moitié du nombre de tous les nombres, bien sûr. Donc,

La formule générale de la somme des premiers termes de toute progression arithmétique sera :

Exemple:
Trouvez la somme de tous les multiples à deux chiffres.

Solution:

Le premier de ces chiffres est le suivant. Chaque numéro suivant est obtenu en ajoutant au numéro précédent. Ainsi, les nombres qui nous intéressent forment une progression arithmétique avec le premier terme et la différence.

Formule du ème terme pour cette progression :

Combien de termes y a-t-il dans la progression s’ils doivent tous être à deux chiffres ?

Très facile: .

Le dernier terme de la progression sera égal. Alors la somme :

Répondre: .

Maintenant, décidez vous-même :

  1. Chaque jour, l'athlète court plus de mètres que la veille. Combien de kilomètres au total parcourra-t-il en une semaine s'il courait des km m le premier jour ?
  2. Un cycliste parcourt chaque jour plus de kilomètres que la veille. Le premier jour, il a parcouru des kilomètres. Combien de jours faut-il parcourir pour parcourir un kilomètre ? Combien de kilomètres parcourra-t-il lors du dernier jour de son voyage ?
  3. Le prix d'un réfrigérateur dans un magasin diminue du même montant chaque année. Déterminez de combien le prix d'un réfrigérateur a diminué chaque année si, mis en vente pour des roubles, six ans plus tard, il était vendu pour des roubles.

Réponses:

  1. Le plus important ici est de reconnaître la progression arithmétique et de déterminer ses paramètres. Dans ce cas, (semaines = jours). Il faut déterminer la somme des premiers termes de cette progression :
    .
    Répondre:
  2. Ici, il est donné : , doit être trouvé.
    Évidemment, vous devez utiliser la même formule de somme que dans le problème précédent :
    .
    Remplacez les valeurs :

    La racine ne convient évidemment pas, donc la réponse est.
    Calculons le chemin parcouru au cours du dernier jour à l'aide de la formule du ème terme :
    (km).
    Répondre:

  3. Donné: . Trouver: .
    Rien de plus simple :
    (frotter).
    Répondre:

PROGRESSION ARITHMÉTIQUE. EN BREF SUR LES CHOSES PRINCIPALES

Il s'agit d'une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale.

La progression arithmétique peut être croissante () et décroissante ().

Par exemple:

Formule pour trouver le nième terme d'une progression arithmétique

s'écrit par la formule, où est le nombre de nombres en progression.

Propriété des membres d'une progression arithmétique

Il permet de retrouver facilement un terme d'une progression si ses termes voisins sont connus - où est le nombre de nombres dans la progression.

Somme des termes d'une progression arithmétique

Il existe deux façons de connaître le montant :

Où est le nombre de valeurs.

Où est le nombre de valeurs.

Premier niveau

Progression arithmétique. Théorie détaillée avec exemples (2019)

Séquence numérique

Alors asseyons-nous et commençons à écrire quelques chiffres. Par exemple:
Vous pouvez écrire n'importe quel nombre, et il peut y en avoir autant que vous le souhaitez (dans notre cas, il y en a). Peu importe le nombre de nombres que nous écrivons, nous pouvons toujours dire lequel est le premier, lequel est le deuxième, et ainsi de suite jusqu'au dernier, c'est-à-dire que nous pouvons les numéroter. Voici un exemple de séquence de nombres :

Séquence numérique
Par exemple, pour notre séquence :

Le numéro attribué est spécifique à un seul numéro de la séquence. En d’autres termes, il n’y a pas de nombres de trois secondes dans la séquence. Le deuxième nombre (comme le ème nombre) est toujours le même.
Le nombre avec nombre est appelé le ème terme de la séquence.

Nous appelons généralement la séquence entière par une lettre (par exemple,), et chaque membre de cette séquence est la même lettre avec un indice égal au numéro de ce membre : .

Dans notre cas:

Disons que nous avons une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale.
Par exemple:

etc.
Cette suite de nombres est appelée progression arithmétique.
Le terme « progression » a été introduit par l'auteur romain Boèce au VIe siècle et était compris dans un sens plus large comme une séquence numérique infinie. Le nom « arithmétique » a été transféré de la théorie des proportions continues, étudiée par les anciens Grecs.

Il s'agit d'une séquence de nombres dont chaque membre est égal au précédent ajouté au même nombre. Ce nombre est appelé la différence d'une progression arithmétique et est désigné.

Essayez de déterminer quelles suites de nombres sont une progression arithmétique et lesquelles ne le sont pas :

un)
b)
c)
d)

J'ai compris? Comparons nos réponses :
Est progression arithmétique - b, c.
N'est pas progression arithmétique - a, d.

Revenons à la progression donnée () et essayons de trouver la valeur de son ème terme. Existe deux moyen de le trouver.

1. Méthode

On peut ajouter le numéro de progression à la valeur précédente jusqu'à atteindre le ème terme de la progression. C'est bien que nous n'ayons pas grand chose à résumer - seulement trois valeurs :

Ainsi, le ème terme de la progression arithmétique décrite est égal à.

2. Méthode

Et s’il fallait trouver la valeur du ème terme de la progression ? La sommation nous prendrait plus d'une heure, et ce n'est pas un fait que nous ne ferions pas d'erreurs en additionnant des nombres.
Bien entendu, les mathématiciens ont trouvé une méthode selon laquelle il n’est pas nécessaire d’ajouter la différence d’une progression arithmétique à la valeur précédente. Regardez de plus près l'image dessinée... Vous avez sûrement déjà remarqué un certain motif, à savoir :

Voyons par exemple en quoi consiste la valeur du ième terme de cette progression arithmétique :


Autrement dit:

Essayez de trouver vous-même la valeur d'un membre d'une progression arithmétique donnée de cette manière.

As-tu calculé ? Comparez vos notes avec la réponse :

Veuillez noter que vous avez obtenu exactement le même nombre que dans la méthode précédente, lorsque nous avons ajouté séquentiellement les termes de la progression arithmétique à la valeur précédente.
Essayons de « dépersonnaliser » cette formule - mettons-la sous forme générale et obtenons :

Équation de progression arithmétique.

Les progressions arithmétiques peuvent être croissantes ou décroissantes.

En augmentant- des progressions dans lesquelles chaque valeur suivante des termes est supérieure à la précédente.
Par exemple:

Descendant- des progressions dans lesquelles chaque valeur suivante des termes est inférieure à la précédente.
Par exemple:

La formule dérivée est utilisée dans le calcul des termes en termes croissants et décroissants d'une progression arithmétique.
Vérifions cela en pratique.
On nous donne une progression arithmétique composée des nombres suivants : Vérifions quel sera le ème nombre de cette progression arithmétique si nous utilisons notre formule pour le calculer :


Depuis lors:

Ainsi, nous sommes convaincus que la formule fonctionne à la fois en progression arithmétique décroissante et croissante.
Essayez de trouver vous-même les ième et ième termes de cette progression arithmétique.

Comparons les résultats :

Propriété de progression arithmétique

Compliquons le problème - nous en dériverons la propriété de progression arithmétique.
Disons qu'on nous donne la condition suivante :
- progression arithmétique, trouver la valeur.
Facile, dites-vous et commencez à compter selon la formule que vous connaissez déjà :

Laissez, ah, alors :

Absolument raison. Il s'avère que nous trouvons d'abord, puis l'ajoutons au premier nombre et obtenons ce que nous recherchons. Si la progression est représentée par de petites valeurs, alors cela n’a rien de compliqué, mais que se passe-t-il si on nous donne des nombres dans la condition ? D'accord, il est possible de se tromper dans les calculs.
Demandez-vous maintenant s'il est possible de résoudre ce problème en une seule étape en utilisant n'importe quelle formule ? Bien sûr que oui, et c’est ce que nous allons essayer de faire ressortir maintenant.

Notons le terme requis de la progression arithmétique car la formule pour le trouver nous est connue - c'est la même formule que nous avons dérivée au début :
, Alors:

  • le terme précédent de la progression est :
  • le terme suivant de la progression est :

Résumons les termes précédents et suivants de la progression :

Il s'avère que la somme des termes de progression précédents et suivants est la double valeur du terme de progression situé entre eux. En d’autres termes, pour trouver la valeur d’un terme de progression avec des valeurs précédentes et successives connues, vous devez les additionner et diviser par.

C'est vrai, nous avons le même numéro. Sécurisons le matériel. Calculez vous-même la valeur de la progression, ce n’est pas du tout difficile.

Bien joué! Vous savez presque tout sur la progression ! Il ne reste plus qu'à découvrir une seule formule qui, selon la légende, a été facilement déduite par l'un des plus grands mathématiciens de tous les temps, le « roi des mathématiciens » - Karl Gauss...

Lorsque Carl Gauss avait 9 ans, un enseignant, occupé à vérifier le travail des élèves d'autres classes, lui a confié la tâche suivante en classe : « Calculer la somme de tous les nombres naturels de à (selon d'autres sources à) inclus. » Imaginez la surprise du professeur lorsqu'un de ses élèves (c'était Karl Gauss) a donné une minute plus tard la bonne réponse à la tâche, tandis que la plupart des camarades de classe du casse-cou, après de longs calculs, ont reçu le mauvais résultat...

Le jeune Carl Gauss a remarqué une certaine tendance que vous pouvez facilement remarquer aussi.
Disons que nous avons une progression arithmétique composée de -èmes termes : nous devons trouver la somme de ces termes de la progression arithmétique. Bien sûr, nous pouvons additionner manuellement toutes les valeurs, mais que se passe-t-il si la tâche nécessite de trouver la somme de ses termes, comme le recherchait Gauss ?

Décrivons la progression qui nous est donnée. Examinez de plus près les nombres en surbrillance et essayez d'effectuer diverses opérations mathématiques avec eux.


L'as tu essayé? Qu'avez-vous remarqué ? Droite! Leurs sommes sont égales


Maintenant, dites-moi, combien y a-t-il de telles paires au total dans la progression qui nous est donnée ? Bien sûr, exactement la moitié de tous les chiffres.
Partant du fait que la somme de deux termes d'une progression arithmétique est égale et que les paires similaires sont égales, on obtient que la somme totale est égale à :
.
Ainsi, la formule de la somme des premiers termes de toute progression arithmétique sera :

Dans certains problèmes, nous ne connaissons pas le ème terme, mais nous connaissons la différence de progression. Essayez de remplacer la formule du ème terme par la formule de somme.
Qu'est-ce que vous obtenez?

Bien joué! Revenons maintenant au problème qui a été posé à Carl Gauss : calculez vous-même à quoi est égale la somme des nombres à partir du ème et la somme des nombres à partir du ème.

Combien as-tu reçu ?
Gauss a découvert que la somme des termes est égale, ainsi que la somme des termes. C'est ce que tu as décidé ?

En fait, la formule de la somme des termes d'une progression arithmétique a été prouvée par l'ancien scientifique grec Diophante au 3ème siècle, et tout au long de cette période, des gens pleins d'esprit ont pleinement utilisé les propriétés de la progression arithmétique.
Par exemple, imaginez l'Égypte ancienne et le plus grand projet de construction de cette époque - la construction d'une pyramide... La photo en montre un côté.

Où est la progression ici, dites-vous ? Regardez attentivement et trouvez une régularité dans le nombre de blocs de sable dans chaque rangée du mur de la pyramide.


Pourquoi pas une progression arithmétique ? Calculez combien de blocs sont nécessaires pour construire un mur si des blocs de briques sont placés à la base. J'espère que vous ne compterez pas en déplaçant votre doigt sur le moniteur, vous vous souvenez de la dernière formule et de tout ce que nous avons dit sur la progression arithmétique ?

Dans ce cas, la progression ressemble à ceci : .
Différence de progression arithmétique.
Le nombre de termes d'une progression arithmétique.
Remplaçons nos données dans les dernières formules (calculons le nombre de blocs de 2 manières).

Méthode 1.

Méthode 2.

Et maintenant, vous pouvez calculer sur le moniteur : comparez les valeurs obtenues avec le nombre de blocs qui se trouvent dans notre pyramide. J'ai compris? Bravo, vous maîtrisez la somme des nièmes termes d'une progression arithmétique.
Bien sûr, on ne peut pas construire une pyramide à partir de blocs à la base, mais à partir de ? Essayez de calculer combien de briques de sable sont nécessaires pour construire un mur dans cette condition.
Avez-vous réussi ?
La bonne réponse est les blocs :

Entraînement

Tâches:

  1. Masha se met en forme pour l'été. Chaque jour, elle augmente le nombre de squats. Combien de fois Masha fera-t-elle des squats par semaine si elle faisait des squats lors de la première séance d'entraînement ?
  2. Quelle est la somme de tous les nombres impairs contenus.
  3. Lors du stockage des journaux, les enregistreurs les empilent de manière à ce que chaque couche supérieure contienne un journal de moins que la précédente. Combien y a-t-il de rondins dans une maçonnerie, si les fondations de la maçonnerie sont constituées de rondins ?

Réponses:

  1. Définissons les paramètres de la progression arithmétique. Dans ce cas
    (semaines = jours).

    Répondre: Dans deux semaines, Masha devrait faire des squats une fois par jour.

  2. Premier nombre impair, dernier nombre.
    Différence de progression arithmétique.
    Le nombre de nombres impairs est la moitié, cependant, vérifions ce fait à l'aide de la formule pour trouver le ème terme d'une progression arithmétique :

    Les nombres contiennent des nombres impairs.
    Remplaçons les données disponibles dans la formule :

    Répondre: La somme de tous les nombres impairs contenus dans est égale.

  3. Rappelons-nous le problème des pyramides. Pour notre cas, a , puisque chaque couche supérieure est réduite d'un journal, alors au total, il y a un tas de couches, c'est-à-dire.
    Remplaçons les données dans la formule :

    Répondre: Il y a des rondins dans la maçonnerie.

Résumons-le

  1. - une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale. Il peut être croissant ou décroissant.
  2. Trouver une formule Le ème terme d'une progression arithmétique s'écrit par la formule - , où est le nombre de nombres dans la progression.
  3. Propriété des membres d'une progression arithmétique- - où est le nombre de nombres en progression.
  4. La somme des termes d'une progression arithmétique peut être trouvé de deux manières :

    , où est le nombre de valeurs.

PROGRESSION ARITHMÉTIQUE. NIVEAU MOYEN

Séquence numérique

Asseyons-nous et commençons à écrire quelques chiffres. Par exemple:

Vous pouvez écrire n’importe quel nombre, et il peut y en avoir autant que vous le souhaitez. Mais nous pouvons toujours dire lequel est le premier, lequel est le deuxième, et ainsi de suite, c'est-à-dire que nous pouvons les numéroter. Ceci est un exemple de séquence de nombres.

Séquence numérique est un ensemble de nombres, chacun pouvant se voir attribuer un numéro unique.

En d’autres termes, chaque nombre peut être associé à un certain nombre naturel et unique. Et nous n’attribuerons ce numéro à aucun autre numéro de cet ensemble.

Le nombre avec nombre est appelé le ème membre de la séquence.

Nous appelons généralement la séquence entière par une lettre (par exemple,), et chaque membre de cette séquence est la même lettre avec un indice égal au numéro de ce membre : .

C'est très pratique si le ème terme de la séquence peut être spécifié par une formule. Par exemple, la formule

définit la séquence :

Et la formule est la séquence suivante :

Par exemple, une progression arithmétique est une suite (le premier terme ici est égal et la différence l'est). Ou (, différence).

Formule nième terme

On appelle récurrente une formule dans laquelle, pour connaître le ème terme, il faut connaître le ou plusieurs précédents :

Pour trouver, par exemple, le ième terme de la progression à l'aide de cette formule, il faudra calculer les neuf précédents. Par exemple, laissez-le. Alors:

Eh bien, est-ce que la formule est claire maintenant ?

Dans chaque ligne, nous ajoutons, multiplié par un certain nombre. Lequel? Très simple : c'est le numéro du membre actuel moins :

Beaucoup plus pratique maintenant, non ? Nous vérifions:

Décider vous-même:

Dans une progression arithmétique, trouvez la formule du nième terme et trouvez le centième terme.

Solution:

Le premier terme est égal. Quelle est la différence? Voici quoi :

(C'est pourquoi on l'appelle différence car elle est égale à la différence des termes successifs de la progression).

Donc la formule :

Alors le centième terme est égal à :

Quelle est la somme de tous les nombres naturels de à ?

Selon la légende, le grand mathématicien Carl Gauss, alors qu'il avait 9 ans, aurait calculé ce montant en quelques minutes. Il a remarqué que la somme du premier et du dernier nombre est égale, la somme du deuxième et de l'avant-dernier est la même, la somme du troisième et du troisième à partir de la fin est la même, et ainsi de suite. Combien y a-t-il de telles paires au total ? C'est vrai, exactement la moitié du nombre de tous les nombres, bien sûr. Donc,

La formule générale de la somme des premiers termes de toute progression arithmétique sera :

Exemple:
Trouvez la somme de tous les multiples à deux chiffres.

Solution:

Le premier de ces chiffres est le suivant. Chaque numéro suivant est obtenu en ajoutant au numéro précédent. Ainsi, les nombres qui nous intéressent forment une progression arithmétique avec le premier terme et la différence.

Formule du ème terme pour cette progression :

Combien de termes y a-t-il dans la progression s’ils doivent tous être à deux chiffres ?

Très facile: .

Le dernier terme de la progression sera égal. Alors la somme :

Répondre: .

Maintenant, décidez vous-même :

  1. Chaque jour, l'athlète court plus de mètres que la veille. Combien de kilomètres au total parcourra-t-il en une semaine s'il courait des km m le premier jour ?
  2. Un cycliste parcourt chaque jour plus de kilomètres que la veille. Le premier jour, il a parcouru des kilomètres. Combien de jours faut-il parcourir pour parcourir un kilomètre ? Combien de kilomètres parcourra-t-il lors du dernier jour de son voyage ?
  3. Le prix d'un réfrigérateur dans un magasin diminue du même montant chaque année. Déterminez de combien le prix d'un réfrigérateur a diminué chaque année si, mis en vente pour des roubles, six ans plus tard, il était vendu pour des roubles.

Réponses:

  1. Le plus important ici est de reconnaître la progression arithmétique et de déterminer ses paramètres. Dans ce cas, (semaines = jours). Il faut déterminer la somme des premiers termes de cette progression :
    .
    Répondre:
  2. Ici, il est donné : , doit être trouvé.
    Évidemment, vous devez utiliser la même formule de somme que dans le problème précédent :
    .
    Remplacez les valeurs :

    La racine ne convient évidemment pas, donc la réponse est.
    Calculons le chemin parcouru au cours du dernier jour à l'aide de la formule du ème terme :
    (km).
    Répondre:

  3. Donné: . Trouver: .
    Rien de plus simple :
    (frotter).
    Répondre:

PROGRESSION ARITHMÉTIQUE. EN BREF SUR LES CHOSES PRINCIPALES

Il s'agit d'une séquence de nombres dans laquelle la différence entre les nombres adjacents est la même et égale.

La progression arithmétique peut être croissante () et décroissante ().

Par exemple:

Formule pour trouver le nième terme d'une progression arithmétique

s'écrit par la formule, où est le nombre de nombres en progression.

Propriété des membres d'une progression arithmétique

Il permet de retrouver facilement un terme d'une progression si ses termes voisins sont connus - où est le nombre de nombres dans la progression.

Somme des termes d'une progression arithmétique

Il existe deux façons de connaître le montant :

Où est le nombre de valeurs.

Où est le nombre de valeurs.



Avez-vous aimé l'article? Partage avec tes amis!