Интегральное неравенство чебышева. Основы вероятностно-статистических методов описания неопределенностей

План

Первообразная функции и неопределенный интеграл. Основные свойства неопределенного интеграла. Таблица основных неопределенных интегралов. Основные методы интегрирования: непосредственное интегрирование, метод подстановки, интегрирование по частям.

Рациональные дроби. Интегрирование простейших рациональных дробей. Интегрирование рациональных дробей.

Интегрирование тригонометрических функций. Интегрирование некоторых иррациональных функций. Интегралы, не выражающиеся через элементарные функции.

Определенный интеграл. Основные свойства определенного интеграла. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Основные методы вычисления определенного интеграла (замена переменной, интегрирование по частям).

Геометрические приложения определенного интеграла. Некоторые приложения определенного интеграла в экономике.

Несобственные интегралы (интегралы с бесконечными пределами интегрирования, интегралы от неограниченных функций).

Первообразная функции и неопределенный интеграл

В интегральном исчислении основной задачей является нахождение функции y = f (x ) по ее известной производной .

Определение 1. Функция F (x ) называется первообразной функции f (x ) на интервале (a, b ), если для любого выполняется равенство: или .

Теорема 1. Любая непрерывная на отрезке [a , b ] функция f (x ) имеет на этом отрезке первообразную F (x ).

В дальнейшем будем рассматривать непрерывные на отрезке функции.

Теорема 2. Если функция F (x ) является первообразной функции f (x ) на интервале (a, b ), то множество всех первообразных задается формулой F (x )+С , где С – постоянное число.

Доказательство .

Функция F (x )+С является первообразной функции f (x ), так как .



Пусть Ф (x ) – другая, отличная от F (x ) первообразной функции f (x ), т. е. . Тогда имеем

а это означает, что

,

где С – постоянное число. Следовательно,

Определение 2. Множество всех первообразных функций F (x )+С для функции f (x ) называется неопределенным интегралом от функции f (x ) и обозначается символом .

Таким образом, по определению

(1)

В формуле (1) f (x ) называется подынтегральной функцией , f (x )dx подынтегральным выражением , x – переменной интегрирования, знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство кривых (каждому числовому значению С соответствует определенная кривая семейства). График каждой первообразной (кривой) называется интегральной кривой . Они не пересекаются между собой и не касаются друг друга. Через каждую точку плоскости проходит только одна интегральная кривая. Все интегральные кривые получаются одна из другой параллельным переносом вдоль оси Оy .

Основные свойства неопределенного интеграла

Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.

1. Производная от неопределенного интеграла равна подынтегральной функции, дифференциал от неопределенного интеграла равен подынтегральному выражению :

Доказательство .

Пусть Тогда

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

Доказательство .

Действительно, .

3. Постоянный множитель a () можно выносить за знак неопределенного интеграла:

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций :

5. Если F (x ) – первообразной функции f (x ), то

Доказательство .

Действительно,

6 (инвариантность формул интегрирования ). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной :

где u дифференцируемая функция .

Таблица основных неопределенных интегралов

Так как интегрирование есть действие, обратное дифференцированию, то большинство из приводимых формул может быть получено обращением соответствующих формул дифференцирования. Другими словами, таблица основных формул интегрирования получается из таблицы производных элементарных функций при обратном ее чтении (справа налево).

Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может означать как независимую переменную (u =x ), так и функцию от независимой переменной (u =u (x )).)








Интегралы 1–12 называются табличными .

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ - раздел математики, в котором изучаются интегралы различного вида, такие, как определенный интеграл, неопределенный интеграл, криволинейный интеграл, поверхностный интеграл, двойной интеграл, тройной интеграл и т.д., их свойства, способы вычисления, а также приложения этих интегралов к различным задачам естествознания.

Центральной формулой И. и. является формула Ньютона-Лейбница (см. Ньютона-Лейбница формула), связывающая определенный и неопределенный интегралы (см. Определенный интеграл , Неопределенный интеграл) функции - величины, определяемые в совершенно непохожих друг на друга терминах.

Именно эта формула утверждает, что

при следующих условиях и обозначениях:

Отрезок числовой оси, - непрерывная на функция, - разбиение отрезка точками , - отрезок , - точка отрезка , , т. е. максимальная из длин отрезков , - первообразная функция для , т. е. такая, что . Предел в левой части существует в случае непрерывной функции , любого способа измельчения разбиения , при котором , и любого выбора точек .

Пределы вида возникают при вычислении многих величин, связанных с физическими, геометрическими и т. п. понятиями. В то же время вычисление первообразной для простых функций достаточно эффективно выполняется по правилам И. и. В основе этих правил лежат свойства дифференцируемых функций, изучаемых в дифференциальном исчислении, так что И. и. и дифференциальное исчисление составляют неразрывное целее.

При переходе от функций одного переменного к функциям нескольких переменных содержание И. и. становится значительно богаче. Возникают понятия двойного, тройного (и вообще-n-кратного), поверхностного и криволинейного интегралов. И. и. устанавливает правила вычисления этих интегралов путем сведения их к несколько раз повторяемым вычислениям определенных интегралов.

Отдельным разделом И. и. функций нескольких переменных является теория поля (см. Поля теория), существенную часть которой составляют теоремы, устанавливающие связь между интегралами по области и интегралами по границе области (см. Остроградского формула , Грина формулы , Стокса формула).

В дальнейшем своем развитии И. и. привело к изучению интегралов Стилтьеса, Лебега, Данжуа, основанных на более общих идеях, чем рассмотренные выше интегралы.

Возникновение И. и. связано с задачами вычисления площадей и объемов различных тел. Некоторые достижения в этом направлении имели место еще в Древней Греции (Евдокс Киндский, Архимед и др.). Возрождение интереса к задачам подобного рода имело место в Европе в XVI-XVII вв. К этому времени европейские математики имели возможность ознакомиться с трудами Архимеда, переведенными на латинский язык. Но основной причиной такого внимания к И. и. явилось промышленное развитие ряда стран Европы, поставившее перед математикой новые задачи. В это время большой вклад в И. и. внесли И. Кеплер, Б. Кавальери, Э. Торричелли, Дж. Валлис, Б. Паскаль, П. Ферма, X. Гюйгенс.

Качественным сдвигом в И. и. явились труды И. Ньютона и Г. Лейбница, создавших ряд общих методов нахождения пределов интегральных сумм. Важное значение имела удобная символика И. и. (применяемая до сих пор), введенная Г. Лейбницем. После трудов И. Ньютона и Г. Лейбница многие задачи И. и., ранее требовавшие значительного искусства для своего решения, были сведены до уровня чисто технического. При этом особенно большое значение имели формулы дифференцирования сложной функции, правило замены переменной в определенном и неопределенном интегралах и (более всего) формула Ньютона-Лейбница, упомянутая выше.

Дальнейшее историческое развитие И. и. связано с именами И. Бернулли, Л. Эйлера, О. Коши и русских математиков М. В. Остроградского, В. Я. Буняковского, П. Л. Чебышева.

И. и. вместе с дифференциальным исчислением до настоящего времени является одним из основных математических инструментов многих физических и технических наук.

Введение

Символ интеграла введен с 1675 г., а вопросами интегрального исчисления занимаются с 1696 г. Хотя интеграл изучают, в основном, ученые-математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ т введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a) Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инте грал иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласил ись с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило бол ее раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = т f(x)dx - начальная (или первоначальная, или первообразная) для f (x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную b, называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т.е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым, тем не менее, приписывали площадь, равную бесконечно малой величине f(х)dx . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

1609 г. и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э. Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1, б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения

y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b - а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1, в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезны м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу т хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т.п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков, немецкого ученого Б. Римана (1826-1866), французского математика Г. Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875-1941) и А. Данжуа (188 4-1974), советским математиком А.Я. Хинчинчиным (1894-1959).

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Неравенство Чебышева и его значение. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема теории вероятностей (теорема Ляпунова) и ее использование в математической статистике.

Теория вероятностей изучает закономерности, свойственные массовым случайным явлениям. Предельные теоремы теории вероятностей устанавливают зависимость между случайностью и необходимостью. Изучение закономерностей, проявляющихся в массовых случайных явлениях, позволяет научно предсказывать результаты будущих испытаний.

Предельные теоремы теории вероятностей делятся на две группы, одна из которых получила название закона больших чисел , а другая - .

В настоящей главе рассматриваются следующие теоремы, относящиеся к закону больших чисел: неравенство Чебышева, теоремы Чебышева и Бернулли.

Закон больших чисел состоит из нескольких теорем, в которых доказывается приближение средних характеристик при соблюдении определенных условий к некоторым постоянным значениям.

1. Неравенство Чебышева .

Если случайная величина имеет конечное математическое ожидание и дисперсию, то для любого положительного числасправедливо неравенство

, (9.1)

т. е. вероятность того, что отклонение случайной величины от своего математического ожидания по абсолютной величине не превзойдет, больше разности между единицей и отношением дисперсии этой случайной величины к квадрату.

Запишем теперь вероятность события , т. е. события, противоположного событию. Очевидно, что

. (9.2)

Неравенство Чебышева справедливо для любого закона распределения случайной величины и применимо как к положительным, так и к отрицательным случайным величинам. Неравенство (9.2) ограничивает сверху вероятность того, что случайная величина отклонится от своего математического ожидания на величину, большую чем. Из этого неравенства следует, что при уменьшении дисперсии верхняя граница вероятности тоже уменьшается и значение случайной величины с небольшой дисперсией сосредоточиваются около ее математического ожидания.

Пример 1 . Для правильной организации сборки узла необходимо оценить вероятность, с которой размеры деталей отклоняются от середины поля допуска не более чем на . Известно, что середина поля допуска совпадает с математическим ожиданием размеров обрабатываемых деталей, а среднее квадратическое отклонение равно.

Решение. По условию задачи имеем: ,. В нашем случае- размер обрабатываемых деталей. Используя неравенство Чебышева, получим

2. Теорема Чебышева .

При достаточно большом числе независимых испытаний можно с вероятностью, близкой к единице, утверждать, что разность между средним арифметическим наблюдавшихся значений случайной величиныи математическим ожиданием этой величиныпо абсолютной величине окажется меньше сколь угодно малого числапри условии, что случайная величинаимеет конечную дисперсию, т. е.

где - положительное число, близкое к нулю.

Переходя в фигурных скобках к противоположному событию, получим

.

Теорема Чебышева позволяет с достаточной точностью по средней арифметической судить о математическом ожидании или наоборот: по математическому ожиданию предсказывать ожидаемую величину средней. Так, на основании этой теоремы можно утверждать, что если произведено достаточно большое количество измерений определенного параметра прибором, свободным от систематической погрешности, то средняя арифметическая результатов этих измерений сколь угодно мало отличается от истинного значения измеряемого параметра.

Пример 2. Для определения потребности в жидком металле и сырье выборочным путем устанавливают средний вес отливки гильзы к автомобильному двигателю, т. к. вес отливки, рассчитанный по металлической модели, отличается от фактического веса. Сколько нужно взять отливок, чтобы с вероятностью, большей , можно было утверждать, что средний вес отобранных отливок отличается от расчетного, принятого за математическое ожидание веса, не более чем накг ? Установлено, что среднее квадратическое отклонение веса равно кг .

Решение. По условию задачи имеем ,,, где- средний вес отливок гильзы. Если применить к случайной величиненеравенстсво Чебышева, то получим

,

а с учетом равенств (4.4) и (4.5) -

.

Подставляя сюда данные задачи, получим

,

откуда находим .

3. Теорема Бернулли .

Теорема Бернулли устанавливает связь между частостью появления события и его вероятностью.

При достаточно большом числе независмых испытаний можно с вероятностью, близкой к единице, утверждать, что разность между частостью появления событияв этих испытаниях и его вероятностью в отдельном испытании по абсолютной величине окажется меньше сколь угодно малого числа, если вероятность наступления этого события в каждом испытании постоянна и равна .

Утверждение теоремы можно записать в виде следующего неравенства:

, (9.3)

где и- любые сколь угодно малые положительные числа.

Используя свойство математического ожидания и дисперсии, а также неравенсво Чебышева, формулу (9.3) можно записать в виде

, (9.4)

При решении практических задач иногда бывает необходимо оценить вероятность наибольшего отклонения частоты появлений события от ее ожидаемого значения. Случайной величиной в этом случае является число появлений события внезависимых испытаниях. Имеем:

,

.

Используя неравенство Чебышева, в этом случае получим

.

Пример 3. Из изделий, отправляемых в сборочный цех, было подвергнуто обследованию, отобранных случайным образом изделий. Среди них оказалосьбракованных. Приняв долю бракованных изделий среди отобранных за вероятность изготовления бракованного изделия, оценить вероятность того, что во всей партии бракованных изделий окажется не более% и не менее%.

Решение. Определим вроятность изготовления бракованного изделия:

.

Наибольшее отклонение частости появлений бракованных изделий от вероятности по абсолютной величине равно; число испытаний. Используя формулу (9.4), находим искомую вероятность:

,

.

4. Теорема Ляпунова.

Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определенным предельным значениям независимо от их закона распределения. В теории вероятностей существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Эта группа теорем носит общее название центральной предельной теоремы . Различные формы центральной предельной теоремы отличаются между собой условиями, накладываемыми на сумму составляющих случайных величин.

Закон распределения суммы независимых случайных величин () приближается к нормальному закону распределения при неограниченном увеличении, если выполняются следующие условия:

1) все величины имеют конечные математические ожидания и дисперсии:

; ;,

где ,;

2) ни одна из величин по своему значению резко не отличается от всех остальных:

.

При решении многих практических задач используют следующую формулировку теоремы Ляпунова для средней арифметической наблюдавшихся значений случайной величины , которая также является случайной величиной (при этом соблюдаются условия, перечисленные выше):

если случайная величина имеет конечные математическое ожиданиеи дисперсию, то распределение средней арифметической, вычисленной по наблюдавшимся значениям случайной величины внезависимых испытаниях, приприближается к нормальному закону с математическим ожиданиеми дисперсией, т. е .

.

Поэтому вероятность того, что заключено в интервалеможно вычислить по формуле

(9.5)

Используя функцию Лапласа (см. приложение 2), формулу (9.5) можно записать в следующем, удобном для расчетов виде:

; .

Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы может быть заменен нормальным.

Частным случаем предельной центральной теоремы является теорема Лапласа (см. глава 3, п. 5). В ней рассматривается случай, когда случайные величины ,, дискретны, одинаково распределены и принимают только два возможных значения:и. О применении этой теоремы в математической статистике см. п. 6 главы 3.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Что называют законом больших чисел? Какой смысл имеет это название?

2. Сформулируйте неравенство Чебышева и теорему Чебышева.

3. Какова роль предельных теорем в теории вероятностей?

4. Какой из законов распределения фигурирует в качестве предельного закона?

5. В чем состоит центральная предельная теорема Ляпунова?

6. Как можно истолковать теорему Лапласа в качестве предельной теоремы теории вероятностей?

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

1. Длина изготовляемых изделий представляет случайную величину, среднее значение которой (математическое ожидание) равно см . Дисперсия этой величины равна . Используя нераввенство Чебышева, оценить вероятность того, что: а) отклонение длины изготовленного изделия от ее среднего значения по абсолютной величине не превзойдет; б) длина изделия выразится числом, заключенным междуисм .

Ответ: а) ; б).

2. Устройство состоит из независимо работающих элементов. Вероятность отказа каждого элемента за времяравна. Используя неравенство Чебышева, оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за времяокажется меньше.



Понравилась статья? Поделитесь с друзьями!