Алгоритм решения линейных диофантовых уравнений. Диофантовы уравнения

ДИОФАНТОВЫ УРАВНЕНИЯ

Введение 3
Глава 1 Общие сведения о решении уравнений в целых числах. 1.1 Диофантовы уравнения. 4
      Историческая справка. 5
Глава 2. Способы решения уравнений в целых числах. 2.1 Способ перебора вариантов. 6
      Алгоритм Евклида. 7 Цепные дроби. 10 Метод разложения на множители. 11 Решение уравнений в целых числах как квадратных относительно какой-либо переменной. 15 Метод остатков. 16 Метод бесконечного спуска. 17
Глава 2. Известные диофантовы уравнения.
      Теорема Ферма. 19 Пифагоровы тройки. 21 Вокруг теоремы Пифагора. 22 Другие известные диофантовы уравнения. 23
Заключение. 25 Литература 28

Введение

Мы обратились к этой теме, так как она недостаточно полно изложена в действующих учебниках математики, а задачи по этой теме предлагаются как на олимпиадах, так и на вступительных экзаменах в вузы. Безусловно, тема решения уравнений в целых числах была, есть и будет актуальна. Это и без слов понятно. Недаром ей занимались с самого зарождения математики.Линейным диофантовым уравнением называется уравнение с несколькими неизвестными вида а 1 х 1+… а n х n =с, где (известные) коэффициенты а 1 , а n и с – целые числа, а неизвестные х 1 ,…, х n также являются целыми числами. К решению подобных уравнений сводятся разнообразные текстовые задачи, в которых неизвестные величины выражают количество предметов того или иного рода и поэтому являются натуральными (или неотрицательными целыми) числами. Теория решения подобных уравнений является классическим разделом элементарной математики. В ней не приходится писать сложные и громозкие формулы, а необходимо проводить аккуратные рассуждения, базирующиеся на определенных понятиях теории чисел и связанные в стройную логическую конструкцию. В рамках этой теории можно дать исчерпывающее решение рассматриваемого класса задач с четко описанным алгоритмом получения ответа. Конкретные задачи такого рода были решены еще в Древнем Вавилоне около 4 тысяч лет тому назад. Древнегреческий мыслитель Диофант, который жил около 2 тысяч лет тому назад, в своей книге «Арифметика» решил большое число таких и более сложных уравнений в целых числах и в сущности описал общие методы их решения. Следует отметить, что каждая конкретная задача в целых числах может решаться с помощью разных методов Цель работы:

    Рассмотреть методы решения уравнений в целых числах. Узнать об известных диофантовых уравнениях.
Глава 1. Общие сведения о решении уравнений в целых числах.

    1 Диофантовы уравнения .

Диофантовы уравнения – алгебраические уравнения с целыми коэффициентами или системы таких уравнений, у которых разыскиваются целые или рациональные решения. Названы по имени древнегреческого учёного Диофанта (3 век до н. э.), в книге которого «Арифметика» впервые обстоятельно исследовались такие уравнения. Задачи диофантовой «Арифметики» решаются с помощью уравнений, а проблемы решения уравнений относятся скорее к алгебре, чем к арифметике, но они имеют свои особенности:
    они сводятся к уравнениям или системам уравнений с целочисленными коэффициентами. Как правило, эти системы неопределённые, т. е. число уравнений в них меньше числа неизвестных решения требуется найти только целые, часто натуральные.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы: 1. Способ перебора вариантов. 2. Алгоритм Евклида. 3. Цепные дроби. 4. Метод разложения на множители. 5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной. 6. Метод остатков. 7. Метод бесконечного спуска.1. 2 Историческая справка. Современной постановкой диофантовых задач мы обязаны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена. Примерно в то же время, когда жил Диофант, далеко на Востоке в Китае, были популярны задачи на деление с остатком и задачи о птицах. Приведём в качестве примера одну задачу из древнего китайского сборника: «Найти число, которое при делении на 3 даёт остаток 2 , при делении на 5 – остаток 3 , а при делении на 7 – остаток 2 ». (Интересно, что эта задача с теми же числовыми данными почти через тысячелетие встречается в «Книге абака» Леонардо Пизанского.) Древние математики находили в большинстве случаев одно, реже несколько решений неопределённых задач и в основном подбором. Правда за этим подбором, как правило, стояла система, разгадав которую мы, вооружённые современной символикой, можем записать все искомые решения уравнения.Глава 2. Способы решения уравнений в целых числах.

2. 1 Способ перебора вариантов.

Задача 1.

Допустим, в аквариуме живут осьминоги и морские звёзды. У осьминогов по 8 ног, а у морских звёзд – по 5. Всего конечностей насчитывается 39. Сколько в аквариуме животных?

Решение. Пусть х - количество морских звёзд, у – количество осьминогов. Тогда у всех осьминогов по ног, а у всех звёзд ног. Составим уравнение: 5х + 8у = 39. Заметим, что количество животных не может выражаться нецелым или отрицательным числами. Следовательно, если х – целое неотрицательное число, то и у=(39 – 5х)/8 должно быть целым и неотрицательным, а, значит, нужно, чтобы выражение 39 – 5х без остатка делилось на 8 . Простой перебор вариантов показывает, что это возможно только при х = 3 , тогда у = 3 . Ответ: (3; 3)

2. 2 Алгоритм Евклида.

Можно найти НОД натуральных чисел a и b , не раскладывая эти числа на простые множители, а применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот процесс до тех пор, пока не произойдет деление без остатка. Последний отличный от нуля остаток и есть искомый НОД (a , b ). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств: если a > b , то a = bq0 + r1 b = r1q1 + r2 r1 = r2q2 + r3 (1) . . . . . . . . . . . . rn – 1 = rnqn Затем r 1, . . . , rn - положительные остатки, убывающие с возрастанием номера. Из первого равенства следует, что общий делитель чисел a и b делит r 1 и общий делитель b и r 1 делит a , поэтому НОД (a , b ) = НОД (b , r 1) = НОД (r 1, r 2) = … = НОД (rn -1, rn )= = НОД (rn , 0) = rn . Утверждение доказано. Приведённый способ нахождения НОД носит название метода последовательного деления с остатком или алгоритма Евклида, поскольку впервые он был изложен в его «Началах». Обратимся к системе (1). Из первого равенства, выразив остаток r 1 через a и b , получим r 1 = a bq 0 . Продолжая этот процесс, мы можем выразить все остатки через a и b , получим r 1 = a bq 0 . Подставляя его во второе равенство, найдём r 2 = b (1 + q 0 q 1) – aq 1 . Продолжая этот процесс дальше, мы сможем выразить все остатки через a и b, в том числе и последний: rn = Aa + Bb . В результате нами доказано предложение: если d – наибольший общий делитель натуральных чисел a и b , то найдутся такие целые числа A и B , что d = Aa + Bb . Заметим, что коэффициенты A и B имеют разные знаки; если НОД (a , b ) = 1 , то Aa + Bb = 1 . Как найти числа A и B , видно из алгоритма Евклида. Перейдем теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид: ax + by = c (2) Возможны два случая: либо число c делится на d = НОД(a , b ) , либо нет. В первом случае можно разделить обе части уравнения на d и свести задачу к решению в целых числах уравнения a 1 x = b 1 y = c 1 , коэффициенты которого a 1 = a / d и b 1 = b / d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число ax + by делиться на d и поэтому не может равняться числу c , которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты a и b взаимно просты. На основании предыдущего предложения найдутся такие целые числа х0 и у0 , что ax 0 + by 0 = 1 , откуда пара (сх0, су0) удовлетворяет уравнению (2). Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (х, у) целых чисел, которые можно найти по формулам х = сх 0 + bt, y = cy0 – at. (3) Здесь t – любое число. Нетрудно показать, что других целочисленных решений уравнение ах + by = c не имеет. Решение, записанное в виде (3), называется общим решением уравнения (2). Подставив вместо t конкретное целое число, получим его частное решение.

Задача 2.

Найдём, например, целочисленные решения уравнения 2 x + 5 y = 17 . Решение.

Применив к числам 2 и 5 алгоритм Евклида, получим 2 * 3 – 5 = 1 . Значит, пара сх0 = 3 * 17 , су0 = - 1 * 17 удовлетворяет уравнению 2х + 5у = 17 . Поэтому общее решение усходного уравнения таково:

x = 51 + 5 t , у = - 17 – 2 t , где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства  51 + 5 t 0   - 17 - 2 t 0

Отсюда найдём – 51/5 t - 17/2 . Этим неравенством удовлетворяют числа - 10 , - 9 . Соответствующие частные решения запишутся в виде пар: (1,3), (6, 1) .

Задача 3.

Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причём петух стоит 5 монет, курица – 4 , а 4 цыплёнка – одну монету?

Решение.

Пусть х – искомое число петухов, у – кур, а 4 z – цыплят. Составим систему х + у + 4 z = 100

5 x + 4 y + z = 100, которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4 , а второе – на (-1) и, сложив результаты, придём к уравнению - x + 15 z = 300 с целочисленными решениями x = -300 + 15 t , z = t . Подставляя эти значения в первое уравнение, получим y = 400 - 19 t . Значит, целочисленные решения системы имеют вид x = -300 + 15 t ,

y = 400 - 19 t , z = t . Из условия задачи вытекает, что

-300 + 15 t 0

400 – 19 t 0

t 0 , откуда 20 t 21 1/19 , т. е. t = 21 или t = 20 .

Ответ.

На 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыплёнка.

Задача 4.

Крестьянка несла на базар корзину яиц. Неосторожный всадник, обгоняя женщину, задел корзину, и все яйца разбились. Желая возместить ущерб, он спросил у крестьянки, сколько яиц было в корзине. Она ответила, что число яиц не знает, но когда она раскладывала их по 2 , по 3 , по 4 , по 5 и по 6 , то каждый раз одно яйцо оставалось лишним, а когда она разложила по 7 , лишних яиц не осталось. Сколько яиц несла крестьянка на базар?

Решение.

Пусть х – число яиц. Так как х – 1 делится на 2 , на 3 , на 4 , на 5 , на 6 , то оно делится на их НОК, равное 60 . Значит, х имеет вид 60у + 1 . Поэтому для ответа на вопрос задачи надо решить в натуральных числах уравнение 60у + 1 = 7 z . С помощью алгоритма Евклида находим у0 = -2 , z 0 = - 17 , откуда все целочисленные решения уравнения имеют вид у = -2 + 7 t , z = -17 + 60 t , где t – любое целое число. Наименьшее положительное решение получаем при t = 1 . В этом случае у = 5 , z = 43 . Итак, крестьянка несла на базар 301 яйцо.

Ответ.

Крестьянка несла на базар 301 яйцо.

2. 3 Цепные дроби.

Следующий метод связан с непрерывными или цепными дробями.

Обратимся вновь к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь a / b можно записать в виде суммы целой части и правильной дроби: a / b = q 0 + r 1/ b . Но r 1/ b = 1/ b / r 1 , и на основании второго равенства той же системы имеем b / r 1 = q 1 + r 2/ r 1 . Значит, a / b = q 0+1/(q 1+ r 2/ r 1) . Далее получим a / b = q 0 + 1/(q 1+1/(q 2+ r 3/ r 2)). Продолжим этот процесс до тех пор. Пока не придём к знаменателю qn

В результате мы представим обыкновенную дробь a / b в следующем виде: a / b = q 0 + 1 / (q 1 + 1 / (…+ 1 / qn )). Эйлер назвал дроби такого вида непрерывными. Приблизительно в тоже время в Германии появился другой термин – цепная дробь. Так за этими дробями и сохранились оба названия. Ввиду громоздкости развёрнутой записи цепной дроби применяют компактную запись [ q 0; q 1, q 2, …, qn ] .

Задача 5.

Представить дробь 40/31 в виде цепной.

Решение.

40/31 = 1 + 9/31 = 1 + 1/3 /9 = 1 + 1/(3 + 4 / 9) = 1 + 1 / (3 + 1 / 9 / 4) = =1 + 1 / (3 + 1 / (2 +1 / 4)) =

Удобство применения цепных дробей заключается в том, что их свойства не связаны ни с какой системой счисления. По этой причине они эффективно используются в теоретических исследованиях. Но широкого практического применения цепные дроби не получили, так как для них нет удобных правил выполнения арифметических действий.

2. 4 Метод разложения на множители.

Задача 6.

Решите уравнение в целых числах: x ² - y ² = 91 .

Решение.

Разложим левую часть данного уравнения на множители: (х–у)(х+у)= =91 . Так как 91= 1 * 91 =91 * 1=(-1) * (-91) = (-91) * (- 1) = 7 * 13 =

= 13 * 7 = (-7) * (-13) = (-13) * (-7) , то решение данного уравнения сводится к решению восьми систем:

1)x – y = 1

x + y = 91

(46; 45)

2)x – y =- 1

x + y =- 91

(-46; -45)

3)x – y = -91

x + y = 1

(46; -45)

4)x – y = -91

x + y = -1

(-46; 45)

5)x – y = 7

x + y = 13

6)x – y = -7

x + y = -13

(-10; -3)

7)x – y = 13

x + y = 7

(10; -3)

8)x – y = -13

x + y = -7

(-10; 3)

Ответ.

(46; 45),(46; - 45),(-46; -45),(-46; 45),(10; 3),(10; -3),(-10; -3),(-10; 3).

Задача 7.

Решите в целых числах х³ + 91 = у³.

Решение.

Перепишем данное уравнение в следующем виде у³ - х³ = 91 , разложим левую часть на множители (у – х)(у² + ху + х²) = 91. Заметим, что у² + ху + х² = (у + х/2)² + ¾х² 0 при у R .

Значит, решение данного уравнения сводится к решению следующих систем

1)у – х = 1

у² + ху + х² = 91 (5; 6),(-6; -5) ;

2)у – х = 1

у² + ху + х² = 1 система не имеет решения в целых числах;

3)у – х = 13

у² + ху + х² = 7 решений в целых числах нет;

4)у – х = 7

у² + ху + х² = 13 решая данную систему, получаем (-3; 4),(-4;3).

Ответ.

(5; 6), (-6; -5), (5; 6), (-6; -5) .

Задача 8.

Решите в целых числах ху=х+у

Решение.

ху – х – у + 1 = 1 . Левую часть данного уравнения разложим на множители, применяя способ группировки. х(у – 1) – (у – 1) = 1 ; (у – 1)(х – 1) = 1 . Следовательно,

у – 1 = 1

х – 1 = 1

у – 1 = -1

х – 1 = -1

Ответ.

(2; 2), (0; 0).

Задача 9.

Решите в натуральных числах 2х² + 5ху – 12у² = 28 .

Решение.

Разложим левую часть данного уравнения на множители, для этого перепишем уравнение в следующем виде: 2х² - 3ху + 8ху – 12у² = 28 .

Применяя способ группировки, получим (2х – 3у)(х + 4у) = 28. Так как х , у – натуральные числа, то (х + 4у) N и х + 4у 4 , тогда возможны следующие случаи:

1) 2х – 3у = 1

х + 4у = 28

2) 2х – 3у = 4

х + 4у = 7

решений в натуральных числах нет;

3) 2х – 3у = 1

х + 4у = 28

решений в натуральных числах нет.

Ответ.

Задача 10.

Решите в целых числах 2ху = х² + 2у.

Решение.

Перепишем уравнение в следующем виде х² - 2ху + 2у = 0. Данное уравнение также решается методом разложения на множители, однако, с помощью формулы разности квадратов или способа группировки мы не сможем разложить на множители левую часть этого уравнения, поэтому целесообразнее использовать метод выделения полного квадрата.

(х² - 2ху + у²) - у² + 2у – 1 + 1 = 0, (х – у)² - (у – 1)² =-1.

(х – у – у + 1)(х – у + у – 1) = -1, (х – 2у + 1)(х – 1) = -1.

Решение этого уравнения сводится к решению следующих систем:

х – 2у + 1= -1 или х – 1= -1

х – 1= 1 х – 2у + 1= 1

(2; 2) решений в нат. числах нет

Ответ.

Итак, из рассмотренных выше уравнений можно сделать вывод, что при решении уравнений методом разложения на множители применяются: формулы сокращённого умножения, способ группировки, метод выделения полного квадрата.

Теперь рассмотрим более сложные уравнения.

Задача 11.

Решите в натуральных числах х² - 4ху – 5у² = 1996.

Решение.

Перепишем уравнение в виде (х²-4ху+4у²)–9у²=1996, (х-4у)²–9у²=1996.

Разложим левую часть на множители (х – 5у)(х + у) = 1996 .

1996=1 * 1996=2 * 998=4 * 499= -1 * (-1996)= -2 * (-998) = -4 * (-499).

Так как х N , y N , то (х + у) N , причём (х + у) > 1 . Если (х + у) N и (х + у)(х – 5у) = 1996 , то (х – 5у) N . Тогда решение получившегося уравнения сводится к решению следующих систем

1)х - 5у = 1

х + у = 1996

решений в натуральных числах нет

2)х - 5у = 499 или х - 5у = 4

х + у = 4 х + у = 499

системы решений в натуральных числах не имеют

3)х - 5у = 2 или х - 5у = 988

х + у =998 х + у =2

(832; 166) решения в натуральных числах нет

Ответ.

х = 832, у = 166 .

2.5 Решение уравнений в целых числах, как квадратных относительно какой-либо переменной.

Задача 12.

Решите в целых числах 5х²+ 5у² + 8ху + 2у – 2у + 2 = 0 .

Решение.

Если попытаться решить данное уравнение методом разложения на множители, то это достаточно трудоёмкая работа, поэтому это уравнение можно решить более изящным методом. Рассмотрим уравнение, как квадратное относительн о х 5х²+(8у-2 )х+5у²+2у +2=0 , х1,2 = (1 – 4у ± √(1 – 4у) ² - 5(5у² + 2у + 2))/5 = (1 – 4у ± -9(у + 1)²)/5.

Данное уравнение имеет решение тогда, когда дискриминант равен нулю, т.е. –9(у + 1) = 0 , отсюда у = -1 . Если у = -1 , то х =1 .

Ответ.

Задача 13.

Решите в целых числах 3(х² + ху + у²)= х + 8у

Решение.

Рассмотрим уравнение, как квадратное относительно х 3х ² + (3у - 1)х + 3у² - 8у = 0. Найдём дискриминант уравнения D = =(3у – 1) ² - 4 * 3(3у² - 8у) = 9у² - 6у + 1 – 36у² + 96у = -27у² + 90у + 1.

Данное уравн ение имеет корни, если D 0 , т. е. –27у² + 90 у + 1 0

(-45 + √2052)/ (-27) у (-45 -√2052)/ (-27) (4)

Так как у Z , то условию (4) удовлетворяют только 0, 1, 2, 3 . Перебирая эти значения, получим, что уравнение в целых числах имеет решения (0; 0) и (1; 1) .

Ответ.

(0; 0) , (1; 1) .

Задача 14.

Решите уравнение 5х² - 2ху + 2у² - 2х – 2у + 1= 0.

Решение.

Рассмотрим данное уравнение как квадратное относительно х с коэффициентами, зависящими от у, 5х² - 2(у + 1)х + 2у² – 2у + 1= 0.

Найдём четверть дискриминанта D /4=(y +1)²-5(2 y ²-2 y +1)=-(3 y -2)² .

Отсюда следует, что уравнение имеет решение только тогда, когда -(3у – 2)² = 0 , отсюда следует у = ⅔, затем находим х = ⅓.

Ответ.

(⅓; ⅔).

2.6 Метод остатков.

Задача 15.

Решите в целых числах 3ª = 1 + у²

Решение.

Видно, что (0; 0) – решение данного уравнения. Докажем, что других решений нет.

Рассмотрим случаи:

    х N, y N (5)

Если х N , то делится на 3 без остатка, а у² + 1 при делении на 3 даёт остаток либо 1 , либо 2 . Следовательно, равенство (5) при натуральных значениях х и у невозможно.

2)Если х – целое отрицательное число, y Z , тогда 0<3ª<1, а 1+у² 0 и равенство (5) также невозможно. Следовательно, (0; 0) – единственное решение.

Ответ.

Задача 16 .

Докажите, что система уравнений

х² - у² = 7

z ² - 2 y ² = 1

не имеет решений в целых числах.

Решение.

Предположим, что система разрешена. Из второго уравнения z ²=2у+1, т. е. z ²– нечётноё число и z -нечётное, значит z =2 m +1 . Тогда y ²+2 m ²+2 m , значит, у² - чётное число и у – чётное, y = 2 n , n Z .

x ²=8 n ³+7, т. е. х² - нечётное число и х - нечётное число, х=2 k +1, k Z .

Подставим значения х и у в первое уравнение, получим 2(k ² + k - 2 n ³) = 3, что невозможно, так как левая часть делится на 2 , а правая нет.Значит, наше предположение неверно, т.е. система не имеет решений в целых числах.

2.7 Метод бесконечного спуска.

Решение уравнений методом бесконечного спуска проходит по следующей схеме: предположив, что уравнение имеет решения, мы строим некоторый бесконечный процесс, в то время, как по самому смыслу задачи этот процесс должен на чём–то кончаться.Часто метод бесконечного спуска применяется в более простой форме. Предположив, что мы уже добрались до естественного конца, видим, что «остановиться» не можем.

Задача 17.

Решить в целых числах 29х + 13у + 56 z = 17 (6)

Выразим неизвестное, коэффициент при котором наименьший, через остальные неизвестные.

у=(17-29х-56 z )/13=(1-2 x -4 z )+(4-3 x -4 z )/13 (7)

Обозначим (4-3 x -4 z )/13 = t 1 (8)

Из (7) следует, что t 1 может принимать только целые значения. Из (8) имеем 13 t 1 + 3 x + 4 z = 14 (9)

Получим новое диофантово уравнение, но с меньшими, чем в (6) коэффициентами. Применим к (9) те же соображения: x =(4-13 t 1-4 z )/3= =(1-4 t 1- z ) + (1- t 1- z )/3

(1- t 1- z )/3 = t 2 , t 2 – целое, 3 t 2+ t 1+ z = 1 (10)

В (10) коэффициент при z – неизвестном исходного уравнения равен 1 – это конечный пункт «спуска». Теперь последовательно выражаем z , x , y через t 1 и t 2 .

z = -t1 – 3t2 + 1

x = 1 – 4t1 + t1 + 3t2 = 1 +t2 = -t1 + 4t2

y = 1 + 6t1 – 8t2 + 4t1 + 12t2 – 4 + t1= 11t1 + 4t2 - 3

Итак,x = -3t1 + 4t2

y = 11 t 1 + 4 t 2 - 3 z = - t 1 – 3 t 2 + 1 t 1, t 2 - любые целые числа – все целые решения уравнения (6)

Задача 18.

Решить в целых числах x ³ - 3 y ³ - 9 z ³ = 0 (11)

Решение.

Видно, что левая часть уравнения (11) не поддаётся никаким преобразованиям. Поэтому исследуя характер целых чисел x ³=3(y ³- z ³). Число кратно 3 , значит и число х кратно 3 , т. е. х = 3х1 (12) Подставим (12) в (11) 27х1³-3у³-9z³=0, 9x1³-y³-3z³=0 (13)

y³=3(3x1³-z³). Тогда у³ кратно 3 , значит и у кратно 3 , т. е. у=3у1 (14). Подставим (14) в (13) 9х1³ -27у1³ - 3 z ³=0 . Из этого уравнения следует, что z ³ кратно 3, а значит и z кратно 3 , т.е. z =3 z 1 .

Итак, оказалось, что числа, удовлетворяющие уравнению (11), кратны трём, и сколько раз мы не делили бы их на 3 , получаем числа, кратные трём. Единственное целое число, удовлетворяющее трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) .

Глава 3. Известные диофантовы уравнения.

3.1 Большая теорема Ферма.

Большой известностью во всём мире пользуется «Великая теорема Ферма» (она же – «Большая» или «Последняя»). Великой теоремой Ферма называется то заключение, которое было сделано им при чтении изданной Мезириаком «Арифметики» Диофанта. На полях этой книги, против того места, где идёт речь о решении уравнения вида x² + y² = z ², Ферма написал: «Между тем, совершенно невозможно разложить полный куб на сумму кубов, четвёртую степень – на сумму четвёртых степеней, вообще какую-нибудь степень – на сумму степеней с тем же показателем. Я нашёл поистине удивительное доказательство этого предположения, но здесь слишком мало места, чтобы его поместить» («Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.»). Это положение Ферма теперь формулируется как теорема в следующем виде: «Уравнение xª + yª = не может быть решено в рациональных числах относительно x, y и z при целых значениях показателя a , больших 2 » (общеизвестно, что при a=2 такие числа существуют, например, 3, 4, 5 – числа, которые, если являются длинами сторон, образуют знаменитый треугольник Пифагора). Справедливость этой теоремы подтверждается для многих частных случаев, однако доказана в общем виде она была недавно, хотя ей интересовались и её пытались доказать многие крупные математики (в «Истории теории чисел» Диксона прореферировано более трёхсот работ на эту тему). В 1907 году в городе Дармштадте в Германии умер математик Вольфскель, который завещал 100000 марок тому, кто даст полное доказательство теоремы. Немедленно сотни и тысячи людей, движимых одним лишь стремлением к наживе, стали бомбардировать научные общества и журналы своими рукописями, якобы содержащими доказательство теоремы Ферма. Только в Гёттингенское математическое общество за первые три года после объявления завещания Вольфскеля пришло более тысячи «решений». Случай, когда a = 3 , был доказан Эйлером ещё в 1768 году. И тот потребовал ещё много лет, чтобы теория, которой необоснованно пользовался Эйлер при своём доказательстве, была доказана Гауссом. Доказательство теоремы Ферма для случая, когда a = 5 , предложили в 1825 году почти одновременно Дирихле и Лежандр. Своё доказательство Дирихле опубликовал в 1828 году, но оно было очень сложным, и в 1912 году его упростил Племель. Для следующего простого показателя a = 7 теорема Ферма была доказана лишь в 1839 году Ламе. Доказательство Ламе было почти сразу же усовершенствовано Лебегом. В 1847 году Ламе объявил, что ему удалось найти доказательство теоремы Ферма для всех простых показателей a ³ 3 . Метод Ламе представлял собой весьма далёкое развитие идей Эйлера и основывался на арифметических свойствах чисел. Однако сразу же Лиувилль обнаружил в рассуждениях Ламе серьёзный пробел, чем опровергнул это доказательство. Ламе был вынужден признать свою ошибку. На ЭВМ, пользуясь идеями Куммера и Вандивера доказали справедливость теоремы Ферма для всех простых показателей a<100000.

      Пифагоровы тройки.

Читателям, несомненно, хорошо известно уравнениех² + у² = z ² (13)

Конечно это знаменитая теорема Пифагора. Она утверждает, что площадь квадрата, построенного на гипотенузе, равно сумме площадей квадратов, построенных на его катетах. Уравнение (13) – это диофантово уравнение второй степени. Займёмся поиском его решений. Удобно записывать их в виде троек чисел (x , y , z ) , такие тройки называются пифагоровыми.

Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагорову тройку. Значит, от любой пифагоровой тройки легко перейти к пифагоровой тройке, числа которой попарно взаимно просты. Такую тройку называют примитивной. Очевидно, для решения поставленной задачи достаточно найти общий вид примитивных пифагоровых троек.

Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в тоже время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным. Предположим противное: z =2 m , тогда х и у – нечётные числа: x =2 k +1, y = 2 k + 1 . В этом случае сумма х² + у² = 4(k ² + k + l ² + l ) + 2 не делится на 4, в то время как z ² = 4 m ² делится на 4 . Итак, чётным числом является либо х , либо у . Пусть х = 2и , у и z – нечётные числа. Обозначим z + y = 2 v , z y = 2 w . Числа v и w взаимно простые. На самом деле если бы они имели общий делитель d >1 , то он был бы и делителем для z = v + w , и для y = v w , что противоречит взаимной простоте y и z . Кроме того, v и w разной чётности: иначе бы y и z были чётными. Из равенства x ² = (p ² + q ²)² - (p ² - q ²)² = 4 p ² q ². В результате мы доказали, что для любой примитивной пифагоровой тройки найдутся взаимно простые натуральные числа p и q разной чётности, p > q , такие, что x = 2 pq , y = p ² - q ², z = p ² + q ².

Легко видеть, что справедливо и обратное утверждение. Итак, способ нахождения примитивных решений уравнения (13) найден. Все остальные его натуральные решения имеют вид: x = 2 * kpq , y = k (p ² - q ²), z = k (p ² + q ²), где k – произвольное натуральное число.

      Вокруг теоремы Пифагора.

С теоремой Пифагора связано много других диофантовых уравнений. Найдём, например, диофантовы треугольники, У которых один катет длиннее другого на 1. Здесь надо решить в натуральных числах уравнение х² + (х + 1)² = у². (14)Пифагоров треугольник со сторонами 3, 4, 5 удовлетворяет этому требованию. Следовательно, числа х1 = 3, у1 = 5 дают наименьшее натуральное решения уравнения (14). Остальные его решения получаются из рекуррентных соотношений, которые мы приводим без доказательства: х n +1 = 3 xn + 2 yn + 1, yn +1 = 4 xn + 3 yn + 2 Из них находим х2 = 20, у2 = 29; х3 = 119, у3 = 169; х4 = 696, у4 = 985; х5 = 4059, у5 = 5741 и т. д.Уравнение (14) можно переписать так: 2х(х + 1) + 1 = у². Похожий вид имеет уравнение х(х + 1) = у² . Однако в отличие от (14) оно не имеет ни одного решения в натуральных числах. В самом деле, числа х и х + 1 – взаимно просты, а потому их произведение может быть полным квадратом лишь в случае, когда х и х + 1 - полные квадраты, т.е. когда х = и², х + 1 = v ² . Но это невозможно, так как разность квадратов двух натуральных чисел всегда больше 1 .Рассмотрим теперь аналогии уравнения (13) в трёхмерном пространстве. Укажем все прямоугольные параллелепипеды, у которых целочисленны и длины рёбер и длина диагонали. Для этого надо найти все натуральные решения (x, y, z, t) диофантова уравнения x ² + y ² + z ² = t ². По аналогии с пифагоровыми тройками они выражаются формулами x = 2 * k 1 pq , y = kp 2 q 2, z = k (q ² - p 1² - p 2²), t = k (q ² + p 1² + p 2²), где k , q , p 1, p 2 – натуральные числа и q ²> p 1² + p 2². Доказано также, что существуют бесконечно много прямоугольных параллелепипедов, у которых длины рёбер и длины диагоналей всех боковых граней выражаются целыми числами. Иными словами, система уравнений х² + у²=и², х² + z ²= v ², y ² + z ²= w ²

имеет бесконечное множество натуральных решений. Одно из них, например, такое: х = 44, у = 117, z = 240. Однако неизвестно, существует ли прямоугольный параллелепипед, у которого целочисленны и все рёбра и диагонали всех боковых граней и диагональ самого параллелепипеда, то есть, имеет ли хоть одно решение в натуральных числах система уравнений х² = у² = и², х² + z ² = v ², y ² + z ² = w ², x ² + y ² + z ² = t ².

3.4 Известные диофантовы уравнения.

Познакомимся с одной задачей из «Арифметики» Диофанта: «Заданный квадрат разложить на 2 квадрата».

Эта задача эквивалентна уравнению второй степени х² + у² = а²с с неизвестными х и у при заданном значении параметра а , Простейшее решение данного уравнения получается при нулевом значении одного из неизвестных. Другие решения Диофант ищет, выполняя подстановку у = kx a , где k - произвольное рациональное число. В результате исходное уравнение приводится к виду (kx a )² + x ² = a ², откуда после преобразований получаются рациональные выражения для неизвестных x и y .

х = a *2 k / (k ² + 1), y = a * (k ² - 1) / (k ² + 1)

Способ Диофанта позволяет находить так называемые пифагоровы тройки чисел – наборы целых чисел x , y , z , выражающих длины сторон прямоугольного треугольника, т.е. удовлетворяющих уравнению х² + у² = z². Пример такой тройки – 3,4,5 .Запишем неопределенное уравнение х² + у² = z² в виде (x / z )² + + (y / z )² = 1 применим к нему приведенные выше рассуждения Диофанта и получим выражения x / z = 2 k /(k ² +1) , y / z =(m ² - n ²)/(m ²+ n ²) .

Чтобы найти решение в целых числах положим k = m / n , где m , n – произвольные целые, n 0 . Тогда x / z =2 mn /(n ² + m ²) , y / z =(m ²- n ²)/(m ²+ n ²)

и можно взять x = 2 mn , y = m ² - n ², z = m ² + n ².

Около 1630 года перевод «Арифметики» попал в руки выдающемуся французскому математику Пьеру Ферма. Бессмертный труд Диофанта вдохновил Ферма на очень тонкие и глубинные теоретико-числовые исследования, в частности, идя по стопам Диофанта, Ферма доказал, что натуральное число а тогда и только тогда представлено в виде суммы двух квадратов x ² + y ² с целыми x и y , когда все простые делители а , дающие при делении на 4 остаток 3 , входят в а в четной степени. Он также нашел формулу для количества различных пар (х;у) таких чисел.

Знаменитой стала и задача Ферма, написанная, как комментарий на полях книги Диофанта: «Найти прямоугольный треугольник в числах, гипотенуза, которого была бы квадратом а , также и сумма сторон при прямом угле». Эта задача об отыскании таких пифагоровых троек x , y , z , что длина гипотенузы z и сумма длин катетов х + у представляют собой полные квадраты, имеет бесконечно много решений. Минимальные из них, это числа, найденные Ферма: х = 4565486027761 , у = 1061652293520 , z = 4687298610289 (здесь z =2165017 ² ).

Примечательна судьба ещё одного неопределённого уравнения. В своё время Архимед составил задачу о быках четырёх мастей, которые паслись в четырёх стадах, принадлежавших богу солнца Гелиосу. В виде стихотворного послания он отправил её Эратосфену Киренскому. Задача сводится к уравнению х² - 4729494у² = 1. Общее число быков выражается числом порядка 7766 * 10 ²º ¹. Такое стадо старик Гелиос не смог бы разместить даже в границах всей вселенной. По-видимому, лукавил Архимед, посылая своему оппоненту практически не разрешимую задачу и обращаясь к нему со словами:

Если ты это найдёшь, чужестранец, умом пораскинув,

И сможешь назвать каждого стада число,

То уходи, вознаградившись победой, и будет считаться,

Что в мудрости ты всё до конца превзошёл.

За уравнением вида х² - ау² = 1 утвердилось название «уравнение Пелля» - по имени математика Джона Пелля, которому Эйлер ошибочно приписал один из способов его решения. Ферма умел решать это уравнение в целых числах. А позднее выяснилось, что с этой задачей справлялся ещё в XII в. индийский математик Бхаскара, однако, его метод остался науке не известен.

Одна из знаменитых проблем Давида Гильберта, сформулированных на II Международном конгрессе математиков в Париже в 1990 г., заключалась в следующем: пусть дано произвольное диофантово уравнение; требуется указать общий метод, следуя котором, можно было бы за конечное число шагов узнать, имеет ли оно решение в целых числах.

В 1970 г. ленинградский математик Юрий Владимирович Матиясевич доказал, что такого общего метода не существует.

Заключение.

В процессе работы над темой «диофантовы уравнения», заметили множество интереснейших фактов, связанных с решением уравнений в целых числах. Решение уравнений в целых числах – очень увлекательная задача. С древнейших времён накопилось множество способов решения конкретных диофантовых уравнений, однако, только в нашем веке появились общие приёмы их исследования. Терема Пифагора и теорема Ферма также является диофантовым уравнением.Решение уравнений в целых числах – один из самых красивых разделов математики. Ни один крупный математик не прошёл мимо теории диофантовых уравнений. Ферма и Эйлер, Лагранж и Дирихле, Гаусс и Чебышев оставили неизгладимый след в этой интереснейшей теории.

Литература.

    Акимова С. Занимательная математика. – Санкт-Петербург: Издательство «Тригон», 1997 – с.608. Виленкин Н. Я. За страницами учебника математики 10 – 11 класс. – Москва: Издательство «Просвещение», 1996 – с.319. Малинин В. Журнал «Математика», № 21, 2001г., с.–6.

4. Малинин В. Журнал «Математика», № 22, 2001 г., с.–4.

5. Сеть Интернет

(/ref/arh/25/VPV -1330// index . html ).

    Школьная энциклопедия. Математика. / под редакцией Никольский С. М. – Москва: Издательство «Большая российская энциклопедия», 1996 – с.648. Энциклопедия для детей Т. 11 (Математика) / под редакцией М. Д. Аксёнова – Москва: Издательство «Аванта +», 1998 – с.688. Энциклопедический словарь юного математика / под редакцией Гнеденко Б. В. – Москва: Издательство «Педагогика», 1985 – с. 350.
    Бабинская И. Л. Задачи математических олимпиад. – Москва, 1875. Болгарский Б. В. Очерки по истории математики. –Минск, 1979. Васильев Н. Б., Егоров А. А. Задачи Всесоюзных математических олимпиад. – Москва, 1998. Васильев Н. Б., Тутенмахер В. Л. Заочные математические олимпиады. – Москва, 1986. Выгодский М. Я. Справочник по элементарной математике. – Москва, 1974. Гальперин Г. А., Тольпыго А. К. Московские математические олимпиады. – Москва, 1986. Генкин С. А., Интенберг И. В., Фомин Д. В. Ленинградские математические кружки. – Киров, 1994. Егоров А. А. О дискриминанте. – Приложение к журналу «Квант», № 2/1994. с – 117. Задачи математических олимпиад школьников Нижегородской области. – Н. Новгород, 1998. Заочные математические олимпиады. – Москва, 1981. Курляндчик Л. Метод бесконечного спуска. – Приложение к журналу «Квант», №3/1999. Литвиненко В. Н., Мордкович А. Т. Практикум по элементарной математике. Алгебра. Тригонометрия. – Москва, 1991. Малинин В. А. Подготовка учащихся 9-11 классов к математическим олимпиадам. Задачи с целыми числами. – Н. Новгород, 2000. Постников М. М. Теорема Ферма. – Москва, 1978. Сивашинский И. Х. Теоремы и задачи по алгебре и элементарным функциям. – Москва, 1971. Яковлев Г. Н. Всесоюзные математические олимпиады школьников. – Москва, 1992.

Сегодня предлагаю поразмышлять над некоторой интересной математической задачкой.
А именно, давайте-ка для разминки решим следующее линейной уравнение:

«Чего сложного?» - спросите вы. Действительно, лишь одно уравнение и целых четыре неизвестных. Следовательно, три переменных есть свободные, а последняя зависит от оных. Так давайте выразим скорее! Например, через переменную , тогда множество решений следующее:

где - множество любых действительных чисел.

Что же, решение действительно оказалось слишком тривиальным. Тогда будем нашу задачу усложнять и делать её более интересной.

Вспомним про линейные уравнения с целыми коэффициентами и целыми корнями , которые, собственно, являются разновидностью диофантовых уравнений . Конкретно - наложим на наше уравнение соответствующие ограничение на целочисленность коэффициентов и корней. Коэффициенты при неизвестных у нас и так целые (), а вот сами неизвестные необходимо ограничить следующим:

где - множество целых чисел.

Теперь решение, полученное в начале статьи, «не проканает», так как мы рискуем получить как рациональное (дробное) число. Так как же решить это уравнение исключительно в целых числах?

Заинтересовавшихся решением данной задачи прошу под кат.

А мы с вами продолжаем. Попробуем произвести некоторые элементарные преобразования искомого уравнения:

Задача выглядит по-прежнему непонятной, в таких случаях математики обычно производят какую-нибудь замену. Давайте и мы с вами её бахнем:

Опа, мы с вами достигли интересного результата! Коэффициент при у нас сейчас равен единице , а это значит, что мы с вами можем выразить эту неизвестную через остальные неизвестные в этом уравнении без всяких делений (чем грешили в самом начале статьи). Сделаем это:

Обращу внимание, что это говорит нам о том, что какие бы не были (в рамках диофантовых уравнений), всё равно останется целым числом, и это прекрасно.

Вспоминая, что справедливо говорить, что . А подставив заместо полученный выше результат получим:

Тут мы также видим, что что какие бы не были , всё равно останется целым числом, и это по-прежнему прекрасно.

Тогда в голову приходит гениальная идея: так давайте же объявим как свободные переменные, а будем выражать через них! На самом деле, мы уже это сделали. Осталось только записать ответ в систему решений:

Теперь можно лицезреть, что в системе решений нигде нет деления , а это значит, что всегда решения будут целочисленными. Попробуем найти частное решение исходного уравнения, положив, к примеру, что :

Подставим в исходное уравнение:

Тождественно, круто! Давайте попробуем ещё разок на другом примере?

Тут мы видим отрицательный коэффициент, он может доставить нам изрядных проблем, так что давайте от греха избавимся от него заменой , тогда уравнение будет следующим:

Как мы помним, наша задача сделать такие преобразования, чтобы в нашем уравнении оказалась неизвестная с единичным коэффициентом при ней (чтобы затем выразить её через остальные без любого деления). Для этого мы должны снова что-нибудь взять «за скобку», самое быстрое - это брать коэффициенты из уравнения которые самые близкие к единице. Однако нужно понимать, что за скобку можно взять только лишь то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Итак:

Введем замену , тогда получим:

Вновь возьмем за скобку и наконец получим в уравнении неизвестную с единичным коэффициентом:

Введем замену , тогда:

Выразим отсюда нашу одинокую неизвестную :

Из этого следует, что какие бы мы не взяли, все равно останется целым числом. Тогда найдем из соотношения :

Аналогичным образом найдем из соотношения :

На этом наша система решений созрела - мы выразили абсолютно все неизвестные, не прибегая к делению, тем самым показывая, что решение точно будет целочисленным. Также не забываем, что , и нам надо ввести обратную замену. Тогда окончательная система решений следующая:

Таким образом, осталось ответить на вопрос - а любое ли подобное уравнение можно так решить? Ответ: нет, если уравнение в принципе нерешаемо. Такое возникает в тех случаях, если свободный член не делится нацело на НОД всех коэффициентов при неизвестных. Иными словами, имея уравнение:

Для его решения в целых числах достаточно выполнение следующего условия:

(где - наибольший общий делитель).

Доказательство

Доказательство в рамках этой статьи не рассматривается, так как это повод для отдельной статьи. Увидеть его вы можете, например, в чудесной книге В. Серпинского «О решении уравнений в целых числах» в §2.

Резюмируя вышесказанное, выпишем алгоритм действий для решения линейных диофантовых уравнений с любым числом неизвестных:

В заключение стоит сказать, что также можно добавить ограничения на каждый член уравнения в виде неравенства на оного (тогда к системе решений добавляется система неравенств, в соответствии с которой нужно будет скорректировать ответ), а также добавить ещё чего-нибудь интересное. Ещё не стоит забывать и про то, что алгоритм решения является строгим и поддается записи в виде программы для ЭВМ.

С вами был Петр,
спасибо за внимание.

Диофантовые уравнения

Способы решения диофантовых уравнений

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z=300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

10 и еще один способ решения квадратных уравнений

1. СПОСОБ: Разложение левой части уравнения на множители. 2. СПОСОБ: Метод выделения полного квадрата. 3. СПОСОБ: Решение квадратных уравнений по формуле. 4. СПОСОБ: Графическое решение квадратного уравнения...

10 способов решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических...

Диофантовые уравнения

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том...

Линейные диофантовы уравнения

Диофант (Diophantos) представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он...

Логические задачи и методы их решения

Математическая модель системы слежения РЛС

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной...

Математические уравнения и их использование в решении задач

Уравнением с одним неизвестным называется запись вида А (х)=В (х) - выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные...

Методические особенности обучения решению текстовых задач учащихся начальной школы

Решить задачу - это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос)...

Методы геометрии чисел для решения диофантовых уравнений

Теорема Лагранжа о четырех квадратах. Теорема: Всякое натуральное может быть представлено в виде суммы четырех квадратов целых чисел (*) Ясно, что достаточно доказать существование представления (*) лишь для бесквадратных чисел...

Нестандартные методы решения задач по математике

К числу наиболее сложных задач на вступительных конкурсных экзаменах по математике относятся задачи, решение которых сводится к рассмотрению функциональных уравнений вида или где, --- некоторые функции и...

Нестандартные методы решения уравнений и неравенств

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения...

Министерство образования и науки

Научное Общество Учащихся

Секция «Алгебра»

Работа по теме:

«Диофантовы уравнения»

Выполнила:

ученица 10 «А» классаМОУ СОШ № 43

Булавина Татьяна

Научный руководитель:Пестова

Надежда Ивановна

Нижний новгород2010


Введение

О диофантовых уравнениях

Способы решения диофантовых уравнений

Список литературы

Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.

Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.

Необычайный расцвет древнегреческой науки в IV-III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии - надгробной надписи.

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять, лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход, как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.


О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении, так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая, что коэффициент перед xможно взять и другой. Решая уравнения

(x+2)²+(kx-3)²=13,

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

(x+2)²+(kx-3)²=13

x=2(3k-2)/k²+1.

А=2(k²+3k-1)/k²+1,

В=3k²-4k-3/k²+1.

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число, при котором А и В положительны.

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма, позволяющего по любому целому числу x узнавать, разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое, тоже будут решениями).

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 . (5)


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и wвзаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того, v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом, то каждый из множителей является квадратом. Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность. Теперь имеем


z=p²+q² , y=p²-q²,

x²=(p²+q²)²-(p²-q²)²=4 p² q².

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и qразной чётности, p>q , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n - целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать, чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

Введение …………………………………………………………………………………………………1-2

1. Диофант и его труды ……………………………………………………………………………3-4

2. Решение Диофантовых уравнений……………………………………………………..4-7

2.1. Диофантовы уравнения с одним неизвестным ……………………………..4-5

2.2. Неопределенные уравнения II-ой степени вида x2 + y2 = z2………….5-6

2.3. Примеры решения задач………………………………………………………………….7

3. Мои исследования………………………………………………………………………………8-11

4. О «многоугольных числах» Диофанта………………………………………………11-14

5. Заключение ………………………………………………………………………………………..15

6. Список используемой литературы ……………………………………………………16

Введение.

Не много истории. О подробностях жизни Диофанта Александрийского практически ничего не известно. Диофант цитирует Гипсикла - II век до нашей эры, о Диофанте пишет Теон Александрийский - около 350 года нашей эры, можно предположить, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его «Арифметика» посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий - никто иной, как епископ Дионисий Александрийский, живший в середине III века нашей эры. Место жительства Диофанта хорошо известно – это знаменитая Александрия. Центр научной мысли эллинистического мира. В Палатинской антологии содержится эпиграмма–задача:

Прах Диофанта гробница покоит; дивись ей - и камень.

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая. С подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской, возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

(Перевод)

Используя современные методы решения уравнений можно сосчитать, сколько лет прожил Диофант.

Пусть Диофант прожил x лет. Составим и решим уравнение:

Умножим уравнение на 84, чтобы избавиться от дробей:

Таким образом, Диофант прожил 84 года.*(Энциклопедический словарь юного математика. составитель – Москва: педагогика, 1989 г.)

При исследовании диофантовых уравнений обычно ставятся следующие вопросы:

1. Имеет ли уравнение целочисленные решения;

2. Конечное, или бесконечное множество его целочисленных решений;

3. Решить уравнение на множестве целых чисел, т. е. найти все его целочисленные решения

4. Решить уравнение на множестве целых положительных чисел;

Поэтому мне представляется интересным самому исследовать на основе фактов представленных ранее «Диофантовы уравнения».

Отсюда целью моей работы является:

Исследовать варианты решения уравнений с одной неизвестной;

Исследовать варианты уравнений с двумя неизвестными;

Найти общие закономерности результатов решений поставленных задач.

Актуальность исследования обусловлена трудностями решения уравнений и задач на составление «Диофантовых уравнений»

Материал, представленный в данной работе, основывается на исследовании олимпиадных задачах и экзаменационных работах.

I . Диофант и его труды

Основное произведение Диофанта – «Арифметика» в тринадцати книгах. К сожалению, до наших дней сохранились только шесть первых книг из тринадцати. «Арифметика» Диофанта – это сборник задач их всего 189, каждая из которых снабжена решением или несколькими способами решения и необходимыми пояснениями. Поэтому, с первого взгляда, кажется, что она не является теоретическим произведением. Однако, при внимательном чтении видно, что задачи тщательно подобраны и служат для иллюстрации вполне определенных, строго продуманных методов. Как это было принято в древности, методы не формулируются в общем виде, а повторяются для решения однотипных задач. Главная проблематика «Арифметики» – это нахождение положительных рациональных решений неопределенных уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков. Сначала Диофант исследует системы уравнений второго порядка от двух неизвестных. Он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней. В X веке «Арифметика» была переведена на арабский язык, после чего математики стран ислама, Абу Камил и другие, продолжили некоторые исследования Диофанта. В Европе интерес к «Арифметике» возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из его в своей «Алгебре» (1572 года). В 1621 году появился классический, подробно прокомментированный латинский перевод «Арифметики», выполненный Баше де Мезириаком. Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма, впрочем, в Новое время неопределенные уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант. Известны и другие сочинения Диофанта. Трактат «О многоугольных числах» сохранился не полностью. В сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем. Из сочинений Диофанта «Об измерении поверхностей» и «Об умножении» также сохранились лишь отрывки. Книга Диофанта «Поризмы» известна только по нескольким теоремам, используемым в Арифметике.*(Перельман математика. – Москва, 1962 г.)

Вывод: На основании вышеизложенного материала следует сделать вывод о том, что Диофант Александрийский не останавливается на одном решении, он старается обнаружить второе и последующее в поставленной задаче.

2. Решение Диофантовых уравнений.

2.1. Диофантовы уравнения с одним неизвестным.

где - целые числа.

Теорема. Если уравнение с целыми коэффициентами имеет целый корень, то этот корень является делителем числа (свободного члена уравнения). Таким образом, при отыскании целых корней уравнения с целыми коэффициентами достаточно испытать лишь делители свободного члена.*(Приглашение в элементарную теорию чисел. , .)

Задача 1

Решение. Свободный член уравнения имеет следующие делители https://pandia.ru/text/78/308/images/image009_5.gif" width="92 height=23" height="23">.

Задача 2 . Решить в целых числах уравнение

2x4 + 7x3 - 12x2 - 38x + 21 = 0.

Решение . Свободный член уравнения имеет следующие делители

Подстановкой в исходное уравнение убеждаемся, что из этого множества только

число -3 является его целым корнем.

Ответ: х=-3.

2.2. Неопределенные уравнения II -ой степени вида x 2 + y 2 = z 2

Существует еще одна частная задача на неопределенные уравнения – теперь уже второй степени, возникшая примерно за две тысячи лет до Диофанта в Древнем Египте.

Если стороны треугольника пропорциональны числам 3, 4 и 5, то этот треугольник – прямоугольный. Этот факт использовали для построения на местности прямых углов. Поступали довольно просто. На веревке на равном расстоянии друг от друга завязывали узлы (Рис. 1)

Рис. 1.

В точке С где надо было построить прямой угол, забивали колышек, веревку натягивали в направлении, нужном строителям, забивали колышек в точке В (СВ = 4) и натягивали веревку так, чтобы АС = 3 и АВ = 5. Треугольник с такими длинами сторон называют египетским. Мы, конечно, понимаем, что безошибочность такого построения следует из теоремы, обратной теореме Пифагора. Действительно,

32 + 42 = 52..gif" width="85 height=24" height="24"> в целых числах оказался довольно простым. Запишем подряд квадраты натуральных чисел, отделив их друг от друга запятой. Под каждой запятой запишем разность между последовательными квадратами:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196 … .

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 … .

А теперь внимание! Нет ли и в нижней строке квадратных чисел? Есть! Первое из них 9 = 32, над ним 16 = 42 и 25 = 52, знакомая нам тройка 3, 4, 5.

Следующее квадратное число в нижней строке 25, ему соответствует 144 и 169, отсюда находим вторую известную нам тройку 5, 12, 13 и т. д. Отсюда мы имеем право сформулировать такую теорему: Каждое нечетное число есть разность двух последовательных квадратов. Составлять такие строки – довольно скучное и трудоемкое занятие. По формулам находить такие тройки чисел и проще и быстрее. Проверим что если - нечетное число, то и . Проверим также, что в этом случае равенство DIV_ADBLOCK443">

если https://pandia.ru/text/78/308/images/image019_2.gif" width="88" height="41 src=">.gif" width="37" height="18 src=">.gif" width="100" height="42 src="> - вторая тройка и т. д.*(Башмакова, и диофантовы уравнения– М.:«Наука», 1972г.)

2.3. Примеры решения задач.

Задача 1 .Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение вида: https://pandia.ru/text/78/308/images/image026_0.gif" width="63" height="21">, получим две системы уравнений, решив которые мы сможем найти искомые числа:

Первая система имеет решение https://pandia.ru/text/78/308/images/image030_0.gif" width="91" height="21">.

Ответ: .

Задача 2 . Доказать, что уравнение

Не имеет целых решений.

Решение. Разложим левую часть уравнения на множители и запишем данное уравнение в виде. 1 случай..gif" width="57" height="24 src=">, но это число не является целым. Значит, при у=0 данное уравнение не имеет целых решений. 2 случай. Пусть , тогда все пять множителей в левой части уравнения различны. С другой стороны число 33 можно представить в виде произведения максиму четырёх различных множителей (33=1·3·11 или 33=-1·3·(-11)·1 и т. д.). Следовательно, при данное уравнение также не имеет целых решений.*(Новоселов курс элементарной алгебры. – М:Советская наука, 1956). Следует сделать вывод о том, что решения уравнений сводятся к нахождению натуральных чисел; с помощью «Пифагоровой тройки»

3. Мои исследования.

1. Найти все натуральные числа с, для которых уравнение Зх + 5у = с имеет решение в неотрицательных целых числах.

Ясно, что при с = 3,5, 6, 8, 9 уравнение Зх + 5 у = с имеет решение в неотрицательных числах х и у, а при с = 1, 2, 4, 7 таких решений уравнение не имеет. Заметим также, что если Зn + 5т = с, (n, m Є N), то 3(n +1) + 5т = с + 3, поэтому, так как 3*1 + 5*1 = 8, то уравнение Зх + 5у = с при с = 8, 8 + 3 = 11, 11 + 3 = 14, 17, 20, 23,... имеет решение. Аналогично, так как 3*3 = 9 и 5*2 = 10, то при с = 9, 9 + 3 = 12, 15, 18,... и при с = 10, 13, 16, 19,... уравнение Зх + 5 у = с имеет решение в неотрицательных целых числах. Но в последовательностях 8 + 3t, 9 + 3t, 10 + 3t, где t = 0,1, 2, 3,... содержатся все натуральные числа больше 7. Таким образом, при любом натуральном с > 1 уравнение Зх + 5 у = с имеет решение в неотрицательных целых числах х и у. Приведу еще один способ решения задания. Этот способ менее изощренный, чем ранее приведенный, но более универсальный. Состоит он в том, что сначала мы находим все целочисленные решения уравнения по формулам (1), а затем в силу неотрицательности х и у получаем некоторые ограничения на целочисленный параметр t. Итак, из 3*2 + 5*(-1) = 1 следует, 3*(2с) + 5*(-с) = с, то есть х0=2с и у0=-с. Откуда, по формулам (1) получаем х = 2с-5t, у = - с + 3t. Далее, из условий 2c-5t≥0 и - с+ 3t≥0 получаем t Є . Таким образом, для решения задачи нам надо указать все такие натуральные значения с, при которых отрезок содержит хотя бы одно целое число. Ясно, что если длина отрезка

2c/5 – c/3 = c/15 не менее единицы, то в нем обязательно содержится целое число. Отсюда следует, что при с ≥15 уравнение 3х +5у=с разрешимо в неотрицательных целых числах. Случаи, когда 1≤с≤14, можно легко проверить простым перебором. Найдем, что с Є {3;5;6;8;9;10;11;12;13;14}. Таким образом, получаем ответ: с Є {3;5;6} U {z Є Z │ z≥8 }.

2. Решить в целых числах уравнение:

Разделим 5 на -4 с «остатком», , преобразуем исходное уравнение к виду

Заменив https://pandia.ru/text/78/308/images/image041.gif" width="140" height="21 src=">, следовательно

DIV_ADBLOCK445">

Откуда 2х+у+7(3х-2у+z)=5. Полагая теперь и= 3х-2у+z, получаем уравнение: 2х+у+7и=5.

Таким образом, окончательно получаем: У= 5-2х-7и, z=10-7х-13и, где параметры х, и Є Z дают общее решение предположенного диофантова уравнения. Этот метод «наименьшего коэффициента» применим и для решения диофантовых уравнений вида ax+by=c.

4. Найти натуральное число, которое при делении на 3 дает остаток 2, а при делении на 5- остаток 3.

Обозначим искомое число через х. Если частное от деления х на 3 обозначим через у, а частное от деления на 5 через z, то по теореме о делении с остатком получим х=3у+2, х=5z+3. Таким образом, нам надо решить в натуральных числах уравнение 5z-3у+1=0. Применяя описанный ранее алгоритм решения этого уравнения, получаем z=1+3t, y= 2+5t (t Є Z) и, значит, x=5z+3=5(2+3t)+3= 8+15t. Так как х по условию должен быть натуральным числом, то параметр t в ответе должен принимать только неотрицательные целые значения, т. е. Х=8+15t, t Є Z.

5. Куплены фломастеры по 7 рублей и карандаши по 4 рубля за штуку, всего на сумму 53 рубля. Сколько куплено фломастеров и карандашей?

Пусть х – число фломастеров, у – число карандашей, тогда по условию 7х+ 4у=53. Частное решение этого линейного диофантова уравнения есть: х=7, у=1. Тогда общее решение его имеет вид: х= 7-4t, y= 1+7t, t Є Z. Однако, так как по условию х> 0, y>0, то значениями параметра t могут быть лишь t=0 и t=1. При t=0 получаем х=7, у=1, а при t=1 имеем: х=3, у=8. Таким образом, решений два, т. е. возможны два варианта покупки фломастеров и карандашей на сумму 53 рубля.

6. Разность двух натуральных чисел равна 66, а их НОК равно 360. Найти эти числа.

Пусть а и b данные натуральные числа, тогда, по условию, имеем систему уравнений: Так как

а| 360, b | 360, то 360 = а*n, 360 = b*т, где n, m Є N. Отсюда получаем

https://pandia.ru/text/78/308/images/image045.gif" width="27" height="15">.gif" width="31" height="41 src=">, и, подставляя эти выражения в первое уравнение системы, приведя к общему знаменателю, имеем 60m-60n=11mn, откуда находим

Так как m>0 и n - натуральное число, причем n0, то перебором находим n=4, n=5, тогда m=15, m=60, а значит, https://pandia.ru/text/78/308/images/image054.gif" width="31" height="41 src=">.gif" width="31" height="41 src=">.gif" width="31" height="41 src=">.gif" width="31" height="41 src=">=6. Таким образом, получаем, что две пары чисел удовлетворяют условию задачи:

а=90, b=24 и a=72, b=6. *(Форков олимпиады в школе. – Москва: Айрис - пресс, 2003 г.)

Вывод: На основании проведенных мною исследований по Диофантовым уравнениям следует сделать вывод о том, что можно использовать различные подходы при их решении.

4. О «многоугольных числах» Диофанта

Каждое из возрастающих от единицы чисел, начиная с трех, является первым, начиная от единицы, называется многоугольником и имеет столько углов, сколько в нем содержится единиц, стороной же его будет число, которое следует за единицей, т. е. 2. Тогда 3 будет треугольником, 4 - четырехугольником, 5 - пятиугольником и т. д. О квадратах хорошо известно, что они получаются от умножения некоторого числа на самого себя. Доказывается также, что каждый многоугольник, умноженный на число, зависящее от количества его углов, и сложенный с квадратом некоторого числа, тоже зависящего от количества его углов, может быть представлен как некоторый квадрат. Если три числа имеют одинаковые разности, то восемь раз взятое произведение наибольшего и среднего, сложенное с квадратом наименьшего, будет квадратом, сторона которого равна сумме наибольшего и двух средних.

Действительно, пусть три числа АВ, В Г и ВД имеют одинаковые разности; нужно доказать, что 8АВ*ВГ, (сложенное с АВ2, образует квадрат, сторона которого равна сумме АВ и 2ВГ.

8АВ*ВГ разложим на 8ВГ2 и 8АГ*ВГ.) Затем каждое из упомянутых разделим пополам, получим 4АВ*ВГ, 4ВГ2 и 4АГ*ВГ т. е. 4ВГ*ГД, ибо АГ равно ГД; вместе же с ДВ2 получится АВ2 . Второе из произведений 4АГ-ГВ, сложенное с ДВ2, дает В А2. Теперь остается узнать, каким образом АВ2 вместе с 4АВ*ВГ и 4ВГ2 даст в сумме квадрат. Если мы положим АЕ, равным ВГ, то 4АВ*ВГ преобразуется в 4ВА*АЕ, которое, будучи сложено с 4ГВ2 или с 4АЕ2, сделается равным 4ВЕ*ЕА (ВА*АЕ + АЕ2 = АЕ*(АЕ + АВ) = ВЕ*ЕА.), а оно, сложенное с АВ2, сделается равным квадрату на сумме BE и ЕА, как одной прямой (4ВЕ-ЕА + АВ2 = (BE + ЕА)2.). Но сумма BE и ЕА равна сумме АВ и 2АЕ, т. е. 2ВГ. Что и требовалось доказать. Если дано любое количество чисел с одинаковыми разностями, то разность между наибольшим и наименьшим равняется разности чисел, умноженной на уменьшенное, на единицу количество заданных чисел. Пусть даны любые числа АВ, ВГ, ВД, BE с одинаковыми разностями, нужно показать, что разность между

АВ и BE равна разности между АВ и ВГ, умноженной на количество АВ, ВГ, ВД, BE, уменьшенное на единицу.

Действительно, поскольку предполагается, что АВ, ВГ, ВД, BE имеют между собой одинаковые разности, то, значит, АГ, ГД, ДЕ будут между собой равными. Следовательно, ЕА равняется АГ, умноженному на количество АГ, ГД, ДЕ; количество же АГ, ГД, ДЕ будет на единицу меньше количества АВ, ВГ, ВД, BE; таким образом, ЕА кратно АГ в число раз, на единицу меньшее количества АВ, ВГ, В Д, BE. И АЕ представляет разность между наибольшим и наименьшим числами, а АГ есть их одна общая разность. Простым же языком говоря, то существуют треугольные, четырехугольные, пятиугольные и т. д.

Треугольные числа

https://pandia.ru/text/78/308/images/image064.gif" alt="\frac{n(n+1)}{2}" width="73" height="42">

Свойства:

· Сумма двух последовательных треугольных чисел даёт полный квадрат (квадратное число).

    Чётность элемента последовательности меняется с периодом 4: нечётное, нечётное, чётное, чётное.

Квадратные числа

Квадратные числа представляют собой произведение двух одинаковых натуральных чисел, то есть являются полными квадратами:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, …, n².

Пятиугольные числа

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …, *(Арифметика и книга о многоугольных числах. Перевод с древнегреческого)

Вывод: С помощью геометрической интерпретации, Диофант вывел формулы последовательностей многоугольных чисел, что вызывает интерес у математиков.

5. Заключение.

Диофант Александрийский, стремится свести решения от простого к сложному, основываясь на различных подходах к решению уравнений, а так же используя «Пифагоровы тройки».

В заключительной части своей работы мне особенно хотелось подчеркнуть, что изучив специальную литературу, посвященную диофантовым уравнениям, я расширил свои математические навыки и получил дополнительные знания о самом Диофанте, его последователях, а также о влиянии его научных трудов на дальнейшее развитие научной математической мысли. Именно благодаря методам Диофанта были разгаданы методы самого Архимеда. И если история интеграционных методов Архимеда в основном завершается созданием интегрального и дифференциального исчисления Ньютоном и Лейбницем, то история методов Диофанта растягивается еще на несколько сотен лет, переплетаясь с развитием теории алгебраических функций и алгебраической геометрии. Развитие идей Диофанта можно проследить вплоть до работ Анри Пуанкаре и Андре Вейля. Именно Диофант открыл нам мир арифметики и алгебры. Поэтому история Диофантова анализа показалась мне особенно интересной.

6. Список используемой литературы.

1. Арифметика и книга о многоугольных числах. Перевод с древнегреческого

2. Башмакова, и диофантовы уравнения– М.:«Наука», 1972г.

3. Задания городских и районных олимпиад.

4.Новоселов курс элементарной алгебры. – М:Советская наука, 1956

5. Перельман математика. – Москва, 1962 г.

6. Приглашение в элементарную теорию чисел. , .

7. Форков олимпиады в школе. – Москва: Айрис-пресс, 2003 г.

8.Черкасов. Интенсивный курс подготовки к экзамену.- М.: Рольф. 2000.

9.Энциклопедический словарь юного математика. Составитель – Москва: педагогика, 1989 г.



Понравилась статья? Поделитесь с друзьями!