Многочлены схема горнера. Схема горнера, вещественная версия, последовательный вариант

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).

И т.д. носит общеобразовательный характер и имеет большое значение для изучения ВСЕГО курса высшей математики. Сегодня мы повторим «школьные» уравнения, но не просто «школьные» – а те из них, которые повсеместно встречаются в различных задачах вышмата. Как обычно, повествование пойдёт в прикладном ключе, т.е. я не буду заострять внимание на определениях, классификациях, а поделюсь с вами именно личным опытом решения. Информация предназначена, прежде всего, для начинающих, но и более подготовленные читатели тоже найдут для себя немало интересных моментов. И, конечно же, будет новый материал, выходящий за рамки средней школы.

Итак, уравнение…. Многие с содроганием вспоминают это слово. Чего только стОят «навороченные» уравнения с корнями... …забудьте о них! Потому что дальше вам будут встречаться самые безобидные «представители» этого вида. Или занудные тригонометрические уравнения с десятками методов решения. Если честно, я и сам их не особо любил…. Без паники! – далее вас ожидают преимущественно «одуванчики» с очевидным решением в 1-2 шага. Хотя и «репейник», безусловно, цепляется – здесь нужно быть объективным.

Как ни странно, в высшей математике гораздо чаще приходится иметь дело с совсем примитивными уравнениями наподобие линейного уравнения .

Что значит решить это уравнение? Это значит – найти ТАКОЕ значение «икс» (корень), которое обращает его в верное равенство. Перебросим «тройку» направо со сменой знака:

и сбросим «двойку» в правую часть (или, то же самое – умножим обе части на ) :

Для проверки подставим завоёванный трофей в исходное уравнение :

Получено верное равенство, значит, найденное значение действительно является корнем данного уравнения. Или, как ещё говорят, удовлетворяет данному уравнению.

Обратите внимание, что корень можно записать и в виде десятичной дроби:
И постарайтесь не придерживаться этого скверного стиля! Причину я повторял неоднократно, в частности, на первом же уроке по высшей алгебре .

Кстати, уравнение можно решить и «по-арабски»:

И что самое интересное – данная запись полностью легальна! Но если Вы не преподаватель, то так лучше не делать, ибо оригинальность здесь наказуема =)

А теперь немного о

графическом методе решения

Уравнение имеет вид и его корень – есть «иксовая» координата точки пересечения графика линейной функции с графиком линейной функции (осью абсцисс) :

Казалось бы, пример настолько элементарен, что разбирать тут больше нечего, однако из него можно «выжать» ещё один неожиданный нюанс: представим то же самое уравнение в виде и построим графики функций :

При этом, пожалуйста, не путайте два понятия : уравнение – это уравнение, а функция – это функция! Функции лишь помогают найти корни уравнения. Коих может быть два, три, четыре и даже бесконечно много. Ближайшим примером в этом смысле является всем известно квадратное уравнение , алгоритм решения которого удостоился отдельного пункта «горячих» школьных формул . И это не случайно! Если вы умеете решать квадратное уравнение и знаете теорему Пифагора , то, можно сказать, «пол высшей математики уже в кармане» =) Преувеличено, конечно, но и не так далеко от истины!

А поэтому не поленимся и прорешаем какое-нибудь квадратное уравнение по стандартному алгоритму :

, значит, уравнение имеет два различных действительных корня:

Легко убедиться, что оба найденных значения действительно удовлетворяют данному уравнению:

Что делать, если вы вдруг позабыли алгоритм решения, и под рукой нет средств/рук помощи? Такая ситуация может возникнуть, например, на зачёте или экзамене. Используем графический метод! И тут есть два пути: можно поточечно построить параболу , выяснив тем самым, где она пересекает ось (если пересекает вообще) . Но лучше поступить хитрее: представим уравнение в виде , начертим графики более простых функций – и «иксовые» координаты их точек пересечения, как на ладони!


Если окажется, что прямая касается параболы, то уравнение имеет два совпавших (кратных) корня. Если окажется, что прямая не пересекает параболу, значит, действительных корней нет.

Для этого, конечно, нужно уметь строить графики элементарных функций , но с другой стороны эти умения по силам даже школьнику.

И вновь – уравнение – это уравнение, а функции , – это функции, которые лишь помогли решить уравнение!

И тут, кстати, уместно будет вспомнить ещё одну вещь: если все коэффициенты уравнения умножить на ненулевое число, то его корни не изменятся .

Так, например, уравнение имеет те же самые корни. В качестве простейшего «доказательства» вынесу константу за скобки:
и безболезненно её уберу (разделю обе части на «минус два») :

НО! Если мы рассматриваем функцию , то здесь уже избавляться от константы нельзя! Допустимо разве что вынесение множителя за скобки: .

Многие недооценивают графический метод решения, считая его чем-то «несолидным», а некоторые и вовсе забывают о такой возможности. И это в корне ошибочно, поскольку построение графиков иногда просто спасает ситуацию!

Ещё один пример: предположим, вы не помните корни простейшего тригонометрического уравнения: . Общая формула есть в школьных учебниках, во всех справочниках по элементарной математике, но они вам недоступны. Однако решить уравнение критически важно (иначе «двойка»). Выход есть! – строим графики функций :


после чего спокойненько записываем «иксовые» координаты их точек пересечения:

Корней бесконечно много и в алгебре принята их свёрнутая запись:
, где ( – множество целых чисел ) .

И, не «отходя от кассы», пару слов о графическом методе решения неравенств с одной переменной. Принцип такой же. Так, например, решением неравенства является любое «икс», т.к. синусоида почти полностью лежит под прямой . Решением неравенства является множество промежутков, на которых куски синусоиды лежат строго выше прямой (оси абсцисс) :

или, если короче:

А вот множество решений неравенства – пусто , поскольку никакая точка синусоиды не лежит выше прямой .

Что-нибудь не понятно? Срочно штудировать уроки о множествах и графиках функций !

Разминаемся:

Задание 1

Решить графически следующие тригонометрические уравнения:

Ответы в конце урока

Как видите, для изучения точных наук совсем не обязательно зубрить формулы и справочники! И более того, это принципиально порочный подход.

Как я уже обнадёжил вас в самом начале урока, сложные тригонометрические уравнения в стандартном курсе высшей математики приходится решать крайне редко. Вся сложность, как правило, заканчивается уравнениями вроде , решением которого являются две группы корней, происходящие от простейших уравнений и . С решением последнего сильно не парьтесь – посмотрите в книжке или найдите в Интернете =)

Графический метод решения может выручить и в менее тривиальных случаях. Рассмотрим, например, следующее «разношёрстное» уравнение:

Перспективы его решения выглядят... вообще никак не выглядят, однако стОит только представить уравнение в виде , построить графики функций и всё окажется невероятно просто. Чертёж есть в середине статьи о бесконечно малых функциях (откроется на соседней вкладке) .

Тем же графическим методом можно выяснить, что уравнение имеет уже два корня, причём один из них равен нулю, а другой, судя по всему, иррационален и принадлежит отрезку . Данный корень можно вычислить приближённо, например, методом касательных . Кстати, в некоторых задачах, бывает, требуется не отыскать корни, а выяснить, есть ли они вообще . И здесь тоже может помочь чертёж – если графики не пересекаются, то корней нет.

Рациональные корни многочленов с целыми коэффициентами.
Схема Горнера

А теперь я предлагаю вам обернуть свой взор в средние века и прочувствовать неповторимую атмосферу классической алгебры. Для лучшего понимания материала рекомендую хоть чуть-чуть ознакомиться с комплексными числами .

Они самые. Многочлены.

Объектом нашего интереса будут наиболее распространённые многочлены вида с целыми коэффициентами . Натуральное число называют степенью многочлена , число – коэффициентом при старшей степени (или просто старшим коэффициентом) , а коэффициент – свободным членом .

Данный многочлен я буду свёрнуто обозначать через .

Корнями многочлена называют корни уравнения

Обожаю железную логику =)

За примерами сходим в самое начало статьи:

С нахождением корней многочленов 1-й и 2-й степеней нет никаких проблем, но по мере увеличения эта задача становится всё труднее и труднее. Хотя с другой стороны – всё интереснее! И как раз этому будет посвящена вторая часть урока.

Сначала буквально пол экрана теории:

1) Согласно следствию основной теоремы алгебры , многочлен степени имеет ровно комплексных корней. Некоторые корни (или даже все) могут быть в частности действительными . При этом среди действительных корней могут встретиться одинаковые (кратные) корни (минимум два, максимум штук) .

Если некоторое комплексное число является корнем многочлена, то и сопряжённое ему число – тоже обязательно корень данного многочлена (сопряжённые комплексные корни имеют вид ) .

Простейший пример – квадратное уравнение, которое впервые встретилось в8 (вроде) классе, и которое мы окончательно «добили» в теме комплексных чисел . Напоминаю: квадратное уравнение имеет либо два различных действительных корня, либо кратные корни, либо сопряжённые комплексные корни.

2) Из теоремы Безу следует, что если число является корнем уравнения , то соответствующий многочлен можно разложить на множители:
, где – многочлен степени .

И опять же, наш старый пример: поскольку – корень уравнения , то . После чего нетрудно получить хорошо знакомое «школьное» разложение .

Следствие теоремы Безу имеет большую практическую ценность: если мы знаем корень уравнения 3-й степени , то можем представить его в виде и из квадратного уравнения легко узнать остальные корни. Если нам известен корень уравнения 4-й степени , то есть возможность разложить левую часть в произведение и т.д.

И вопроса здесь два:

Вопрос первый . Как найти этот самый корень ? Прежде всего, давайте определимся с его природой: во многих задачах высшей математики требуется отыскать рациональные , в частности целые корни многочленов, и в этой связи далее нас будут интересовать преимущественно они…. …они такие хорошие, такие пушистые, что их прямо так и хочется найти! =)

Первое, что напрашивается – метод подбора. Рассмотрим, например, уравнение . Загвоздка здесь в свободном члене – вот если бы он равнялся нулю, то всё было бы в ажуре – выносим «икс» за скобки и корни сами «вываливаются» на поверхность:

Но у нас свободный член равен «тройке», и поэтому мы начинаем подставлять в уравнение различные числа, претендующие на звание «корень». Прежде всего, напрашивается подстановка единичных значений. Подставим :

Получено неверное равенство, таким образом, единица «не подошла». Ну да ладно, подставляем :

Получено верное равенство! То есть, значение является корнем данного уравнения.

Для отыскания корней многочлена 3-й степени существуют аналитический метод (так называемые формулы Кардано) , но сейчас нас интересует несколько другая задача.

Поскольку – есть корень нашего многочлена, то многочлен можно представить в виде и возникает Второй вопрос : как отыскать «младшего собрата» ?

Простейшие алгебраические соображения подсказывают, что для этого нужно разделить на . Как разделить многочлен на многочлен? Тем же школьным методом, которым делят обычные числа – «столбиком»! Данный способ я подробнейшим образом разобрал в первых примерах урока Сложные пределы , и сейчас мы рассмотрим другой способ, который получил название схема Горнера .

Сначала запишем «старший» многочлен со всеми , в том числе нулевыми коэффициентами :
, после чего занесём эти коэффициенты (строго по порядку) в верхнюю строку таблицы:

Слева записываем корень :

Сразу же оговорюсь, что схема Горнера работает и в том случае, если «красное» число не является корнем многочлена. Однако не будем торопить события.

Сносим сверху старший коэффициент:

Процесс заполнения нижних ячеек чем-то напоминает вышивание, где «минус единица» – это своеобразная «игла», которая пронизывает последующие шаги. «Снесённое» число умножаем на (–1) и прибавляем к произведению число из верхней ячейки:

Найденное значение умножаем на «красную иглу» и к произведению прибавляем следующий коэффициент уравнения:

И, наконец, полученное значение снова «обрабатываем» «иглой» и верхним коэффициентом:

Ноль в последней ячейке говорит нам о том, что многочлен разделился на без остатка (как оно и должно быть) , при этом коэффициенты разложения «снимаются» прямо из нижней строки таблицы:

Таким образом, от уравнения мы перешли к равносильному уравнению и с двумя оставшимися корнями всё ясно данном случае получаются сопряжённые комплексные корни) .

Уравнение , к слову, можно решить и графически: построить «молнию» и увидеть, что график пересекает ось абсцисс () в точке . Или тот же «хитрый» приём – переписываем уравнение в виде , чертим элементарные графики и детектируем «иксовую» координату их точки пересечения.

Кстати, график любой функции-многочлена 3-й степени пересекает ось хотя бы один раз, а значит, соответствующее уравнение имеет по меньшей мере один действительный корень. Данный факт справедлив для любой функции-многочлена нечётной степени.

И тут ещё хочется остановиться на важном моменте , который касается терминологии: многочлен и функция-многочлен это не одно и то же ! Но на практике частенько говорят, например, о «графике многочлена», что, конечно, небрежность.

Однако вернёмся к схеме Горнера. Как я недавно упомянул, эта схема работает и для других чисел, но если число не является корнем уравнения , то в нашей формуле появляется ненулевая добавка (остаток):

«Прогоним» по схеме Горнера «неудачное» значение . При этом удобно использовать ту же таблицу – записываем слева новую «иглу», сносим сверху старший коэффициент (левая зелёная стрелка) , и понеслось:

Для проверки раскроем скобки и приведём подобные слагаемые:
, ОК.

Легко заметить, что остаток («шестёрка») – это в точности значение многочлена при . И в самом деле – что так:
, а ещё приятнее – вот так:

Из приведённых выкладок нетрудно понять, что схема Горнера позволяет не только разложить многочлен на множители, но и осуществить «цивилизованный» подбор корня. Предлагаю вам самостоятельно закрепить алгоритм вычислений небольшой задачей:

Задание 2

Используя схему Горнера, найти целый корень уравнения и разложить соответствующий многочлен на множители

Иными словами, здесь нужно последовательно проверять числа 1, –1, 2, –2, … – до тех пор, пока в последнем столбце не «нарисуется» нулевой остаток. Это будет означать, что «игла» данной строки – есть корень многочлена

Вычисления удобно оформить в единой таблице. Подробное решение и ответ в конце урока.

Способ подбора корней хорош для относительно простых случаев, но если коэффициенты и/или степень многочлена велики, то процесс может затянуться. А может быть какие-то значения из того же списка 1, –1, 2, –2 и рассматривать-то смысла нет? И, кроме того, корни ведь могут оказаться и дробными, что приведёт к уж совсем не научному тыку.

К счастью, существуют две мощные теоремы, которые позволяют значительно сократить перебор значений-«кандидатов» в рациональные корни:

Теорема 1 Рассмотрим несократимую дробь , где . Если число является корнем уравнения , то свободный член делится на , а старший коэффициент – на .

В частности , если старший коэффициент , то этот рациональный корень – целый:

И мы начинаем эксплуатировать теорему как раз с этой вкусной частности:

Вернёмся к уравнению . Так как его старший коэффициент , то гипотетические рациональные корни могут быть исключительно целыми, причём свободный член должен обязательно делиться на эти корни без остатка. А «тройку» можно разделить только на 1, –1, 3 и –3. То есть у нас всего лишь 4 «кандидата в корни». И, согласно Теореме 1 , другие рациональные числа не могут быть корнями данного уравнения В ПРИНЦИПЕ.

В уравнении «претендентов» чуть больше: свободный член делится на 1, –1, 2, – 2, 4 и –4.

Обратите внимание, что числа 1, –1 являются «завсегдатаями» списка возможных корней (очевидное следствие теоремы) и самым лучшим выбором для первоочередной проверки.

Переходим к более содержательным примерам:

Задача 3

Решение : поскольку старший коэффициент , то гипотетические рациональные корни могут быть только целыми, при этом они обязательно должны быть делителями свободного члена. «Минус сорок» делится на следующие пары чисел:
– итого 16 «кандидатов».

И здесь сразу появляется заманчивая мысль: а нельзя ли отсеять все отрицательные или все положительные корни? В ряде случаев можно! Сформулирую два признака:

1) Если все коэффициенты многочлена неотрицательны, то он не может иметь положительных корней. К сожалению, это не наш случай(Вот если бы нам было дано уравнение – тогда да, при подстановке любого значение многочлена строго положительно , а значит, все положительные числа (причём, и иррациональные тоже) не могут быть корнями уравнения .

2) Если коэффициенты при нечётных степенях неотрицательны, а при всех чётных степенях (включая свободный член) – отрицательны, то многочлен не может иметь отрицательных корней. Это наш случай! Немного присмотревшись, можно заметить, что при подстановке в уравнение любого отрицательного «икс» левая часть будет строго отрицательна, а значит, отрицательные корни отпадают

Таким образом, для исследования осталось 8 чисел:

Последовательно «заряжаем» их по схеме Горнера. Надеюсь, вы уже освоили устные вычисления:

Удача поджидала нас при тестировании «двойки». Таким образом – есть корень рассматриваемого уравнения, и

Осталось исследовать уравнение . Это легко сделать через дискриминант, но я проведу показательную проверку по той же схеме. Во-первых, обратим внимание, что свободный член равен 20-ти, а значит, по Теореме 1 из списка возможных корней выпадают числа 8 и 40, и для исследования остаются значения (единица отсеялась по схеме Горнера) .

Записываем коэффициенты трёхчлена в верхнюю строку новой таблицы и начинаем проверку с той же «двойки» . Почему? А потому что корни могут быть и кратны, пожалуйста: – это уравнение имеет 10 одинаковых корней. Но не отвлекаемся:

И здесь, конечно, я немного слукавил, заведомо зная, что корни рациональны. Ведь если бы они были иррациональными или комплексными, то мне светила бы безуспешная проверка всех оставшихся чисел. Поэтому на практике руководствуйтесь дискриминантом.

Ответ : рациональные корни: 2, 4, 5

В разобранной задаче нам сопутствовала удача, потому что: а) сразу отвалились отрицательные значения, и б) мы очень быстро нашли корень (а теоретически могли проверить и весь список ).

Но на самом деле ситуация бывает гораздо хуже. Приглашаю вас к просмотру увлекательной игры под названием «Последний герой»:

Задача 4

Найти рациональные корни уравнения

Решение : по Теореме 1 числители гипотетических рациональных корней должны удовлетворять условию (читаем «двенадцать делится на эль») , а знаменатели – условию . Исходя из этого, получаем два списка:

«список эль»:
и «список эм»: (благо, здесь числа натуральные) .

Теперь составим перечень всех возможных корней. Сначала «список эль» делим на . Совершенно понятно, что получатся те же самые числа. Для удобства занесём их в таблицу:

Многие дроби сократились, в результате чего получись значения, которые уже есть в «списке героев». Добавляем только «новичков»:

Аналогично – делим тот же «список эль» на :

и, наконец, на

Таким образом, команда участников нашей игры укомплектована:


К сожалению, многочлен данной задачи не удовлетворяет «положительному» или «отрицательному» признаку, и поэтому мы не можем отбросить верхнюю или нижнюю строку. Придётся работать со всеми числами.

Как ваше настроение? Да ладно, выше нос – есть ещё одна теорема, которую можно образно назвать «теоремой-убийцей»…. …«кандидатов», конечно же =)

Но сначала нужно прокрутить схему Горнера хотя бы для одного целого числа. Традиционно возьмём единицу. В верхнюю строку запишем коэффициенты многочлена и всё как обычно:

Поскольку четвёрка – это явно не ноль, то значение не является корнем рассматриваемого многочлена. Но она нам очень поможет.

Теорема 2 Если при некотором целом значении значение многочлена отлично от нуля: , то его рациональные корни (если они есть) удовлетворяют условию

В нашем случае и поэтому все возможные корни должны удовлетворять условию (назовём его Условием № 1) . Данная четвёрка и будет «киллером» многих «кандидатов». В качестве демонстрации я рассмотрю несколько проверок:

Проверим «кандидата» . Для этого искусственно представим его в виде дроби , откуда хорошо видно, что . Вычислим проверочную разность: . Четыре делится на «минус два»: , а значит, возможный корень прошёл испытание.

Проверим значение . Здесь и проверочная разность составляет: . Разумеется, , и поэтому второй «испытуемый» тоже остаётся в списке.

Существует алгоритм деления многочлена f (x ) на (x – a ), который называется схемой Горнера.

Пусть f (x ) = , deg f (x ) = n , a n 0. Разделим f (x ) на (x – a ), получим: (*) f (x ) = (x – а ) × q (x ) + r , где r Î F , deg q (x ) = n – 1.

Запишем q (x ) = b n -1 x n -1 + b n -2 x n -2 + … + b 1 x + b 0 . Тогда подставив в равенство (*) вместо f (x ) и q (x ) их выражения, получим:

a n x n + a n-1 x n-1 + … + a 1 x + a 0 = (х – а ) (b n-1 x n-1 + b n-2 x n-2 + … + b 1 x + b 0 ) + r

Так как многочлены равны, то и коэффициенты при соответствующих степенях должны быть равны.

r – ab 0 = a 0 r = a 0 + ab 0

b 0 – ab 1 = a 1 b 0 = a 1 + ab 1

…………… .. ……………

b n -1 = a n a n = a n -1

Вычисление коэффициентов многочлена q (x ) удобнее осуществлять с помощью таблицы (схемы Горнера).

a n a n-1 a 1 a 0
b n -1 = a n b n - 2 = ab n-1 + a n-1 b 0 = ab 1 +a 1 r = a 0 + ab 0

С помощью схемы Горнера можно решать такие типы задач:

1. Найти q(x) и r при делении f (x ) на (х – а );

2. Вычислить значение многочлена f (x ) при x = a ;

3. Выяснить, будет ли х = а корнем многочлена f (x ), а F ;

4. Определить кратность корня;

5. Разложить многочлен по степеням (х – а ).

6. Вычислить значение многочлена f (x ) и всех его производных при х = а .

Пример. Пусть f (x ) = x 5 – 15 x 4 + 76 x 3 – 140x 2 + 75x – 125 и а = 5.

Составим схему Горнера:

-15 -140 -125
-10 -10 0 = с 0
-5 -5 0 = с 1
0 =с 2
5 26 = с 3
10 = с 4
1 = с 5

1. Вычислим неполное частное q (x ) и остаток r при делении f (x ) на (х – 5). Во второй строке таблицы видим, что коэффициенты частного q (x ) равны: 1, – 10, 26, – 10, 25, поэтому q (x ) = 1х 4 – 10х 3 + 26х 2 – 10х + 25, а остаток r равен 0.

2. Вычислим значение многочлена f (x ) при x = 5. Воспользуемся теоремой Безу: f (5) = r = 0.

3. Выясним, будет ли х = 5 корнем многочлена f (x ). По определению а – корень f (x ), если f (а ) = 0. Так как f (5) = r = 0, то 5 – корень f (x ).

4. Из второй, третьей и четвертой строк таблицы мы видим, что f (x ) делится на (х – 5) 3 , но f (x ) не делится на (х – 5) 4 . Следовательно, число корень 5 имеет кратность 3.

5. Разложим многочлен f (x ) по степеням (х – 5), коэффициенты разложения с 0 , с 1 , с 2 , с 3 , с 4 , с 5 получаются в последних клетках второй, третьей, четвертой, пятой, шестой и седьмой строки схемы Горнера:

f (x ) = с 0 + с 1 (х – 5)+ с 2 (х – 5) 2 + с 3 (х – 5) 3 + с 4 (х – 5) 4 + с 5 (х – 5) 5 или

f (x ) = 26 (х – 5) 3 + 10 (х – 5) 4 + (х – 5) 5 .

6. Вычислим значение многочлена f (x ) и всех его производных при х = 5.

с 0 = f (5) = 0, с 1 = f ′ (5) = 0, с 2 = = 0 f ′′(5) = 0,

с 3 = = 26 f ′′′ (5) = 26 ∙ 3! = 156, с 4 = = 10 f ′ v (5) = 10 ∙ 4! = 240,

с 5 = = 1 f v (5) = 1 ∙ 5! = 120.

МЕТОДИКА 15. «Логарифмическая функция».

1. Логико – математический анализ темы.

Данная тема изучается в 10 классе.

Основные понятия:

Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Термин – логарифмическая функция.

Род – функция.

Видовые отличия: 1) а>0, а≠0; 2) функция задана формулой у=log а х.

Основные предложения:

Свойства логарифмической функции.

1°. Область определения логарифмической функции – множество всех положительных чисел R + , т.е. D(log)=R + .

2°. Область значений логарифмической функции – множество всех действительных чисел.

3°. Логарифмическая функция на всей области определения возрастает (при а>1) или убывает (при 0<а<1).

Справедливо следующее утверждение: графики показательной и логарифмической функций, имеющих одинаковое основание, симметричны относительно прямой у=х.

Основные идеи и методы изучения:

Определения понятий явные, через ближайший род и видовые отличия – конструктивные.

Методы доказательства:

Дедуктивные (на основе определения) с использованием математических методов: логарифмирование степени, основные свойства степени, метод от противного.

Например, свойство о том, что при а>1 функция возрастает, доказывается с помощью определения возрастающей функции, при этом применяется метод от противного.

Ранее изученный материал Теоретический материал темы Применение изученного материала
- показательная функция; - показательные уравнения и неравенства; - логарифмы и их свойства; - убывающая и возрастающая функции; - график функции. Область определения функции Множество значений функции График функции Логарифм числа Десятичный и натуральный логарифмы Основные логарифмические тождества Логарифмическая функция Свойства логарифма Логарифмические уравнения Логарифмические неравенства - при решении логарифмических уравнений и неравенств; - в астрономии (оценка яркости звезд); - в физике; - в высшей математике (математическая логика, математический анализ).
  1. Основные типы математических задач по теме

Найти область определения функции;



Построить график функции;

Найти область значения функции;

Найти промежутки знакопостоянства функции;

Исследовать функцию и построить ее график;

Найти наибольшее и наименьшее значение функции;

Найти значение выражения.

Типичные ошибки и затруднения изучения темы

Математические ошибки:

ü вычислительные ошибки: при решении уравнений и неравенств, при нахождении значений функции, при действиях со степенями;

ü логические ошибки: в выполнении тождественных преобразований, в использовании свойств логарифмов, при определении понятий, при выводе формул;

ü графические ошибки: при построении графиков функций (не учитывают свойства функций); неправильно применяют преобразование графиков.

3. методы и приемы работы учащихся с учебником математики в соответствии с возрастными особенностями учащихся.

В 5-6 классах используют следующие методы работы с учебником:

1. чтение правил, определений, формулировок теорем учащимися после объяснения учителя

2. чтение вслух учителя ученикам с выделением главного и существенного

3. работа с формулами и иллюстрациями на обложке учебника

4. чтение учебника учащимися и ответы на вопросы учителя

В 7-8 классах добавляются следующие методы работы с учебником:

1. чтение текстов после их объяснения учителем

2. чтение текста учащимися и разбивка его на смысловые абзацы

3. чтение текста из учебника учащимися и запись основных предложений темы по плану, предложенному учителем

В 9 – 11 классах ко всему предложенному добавляется:

1. разбор примеров учащимися в учебнике, после объяснения темы учителем

2. чтение текста учащимися и запись опорного конспекта по данному тексту

3. чтение текста учебника и самостоятельное составление учащимися плана по данному тексту.

4. чтение текста учебника и ответ учащегося по самостоятельно составленному плану

2. Фрагмент урока изучения новой темы: «Логарифмическая функция».

Цели урока:

Обучающие: обеспечить в ходе урока усвоения понятия логарифмическая функция, формировать умения определять свойства логарифмических функций, формировать умение изображать графики логарифмической функции.

Развивающие: способствовать развитию мышления, восприятия, памяти, воображению, внимания.

Воспитательные: воспитывать устойчивый интерес к математике, воспитывать отдельные качества личности: аккуратность, настойчивость, трудолюбие.

Тип урока: изучение нового материала

Структура урока:

1.организационный момент; 2. постановка целей урока; 3.проверка домашнего задания; 4. подготовка к изучению нового материала; 5. изучение нового материала; 6.первичное закрепление и осмысление нового материала; 7.постановка домашнего задания; 8.подведение итогов урока.;

Действия учителя Действия учеников
ответьте на вопрос 1. что называется функцией? 2. какие функции вы узнали в этом году? 3. какие свойства функций вы знаете? 4. что называется графиком функции? Сегодня мы изучим новую функцию логарифмическую. Когда мы изучали показательную функцию, мы оформляли ее свойства в таблицу. Сейчас я предлагаю открыть вам страницу 98 в ваших учебниках прочитать параграф 18 и записать в тетрадях опорный конспект по плану предложенному на доске. Опорный конспект вы будите оформлять так же, как оформляли при изучении показательной функции. План опорного конспекта. 3. определение логарифмической функции 4. свойства логарифмической функции оформите в таблицу.

А теперь к доске я приглашаю одного человека который оформит правильно конспект на доске.

5. Числовой функцией с областью определении D называется соответствие, при котором каждому числу х из множества D сопоставляется по некоторому правилу число у, зависящее от х. 6. степенная, показательная. 7. Область определения, область значений, непрерывность, возрастание, убывание функции. 8. Графиком функции f называют множество всех точек (х; у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f. Ответы: Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.
Алгоритмы , Математика

Вычисление значения многочлена в точке является одной из простейших классических задач программирования.
При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов.
Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера . Но всегда есть маленькое «но», всегда ли схема Горнера является самой эффективной?



Я не ставлю цель точно описать алгоритмы для вычисления многочленов, а лишь показать, что в некоторых случаях можно (нужно) применять схемы отличные правила Горнера. Для тех, кого заинтересует материал, в конце статьи приведен список литературы, с которой можно ознакомиться для более детального изучения вопроса.
Кроме того, иногда становиться обидно, что фамилии наших русских математиков остаются малоизвестными. К тому же мне просто приятно рассказать о работах наших математиков.

Схема Горнера

При вычислении значений многочленов очень широкое применение получило правило Горнера. Метод назван в честь британского математика Уильяма Джорджа Горнера.
В соответствии с этим правилом многочлен n-й степени:

представляется в виде

Вычисление значения многочлена производится в порядке, определяемом скобками. Что имеем? Чтобы вычислить многочлен по схеме Горнера, надо выполнить n умножений и n-k сложений (здесь k – число коэффициентов многочлена, равных 0). Если , то умножений будет n-1.
Можно показать, что для вычисления многочленов, общего вида нельзя построить схему более экономичную по числу операций, чем схема Горнера.
Самая большая привлекательность схемы Горнера состоит в простоте алгоритма для вычисления значения многочлена.

Исключения

При вычислении многочленов специального вида может потребоваться меньшее число операций, чем при применении универсальной схемы Горнера. Например, вычисление степени по схеме Горнера означает последовательное перемножение n множителей и требует n-1 умножение. Однако каждый первый читатель скажет, что для вычисления, например, нужно последовательно вычислить , , , т.е. выполнить всего 3 умножения вместо 7.

А есть что-то еще, ведь схема Горнера самая экономичная?

На самом деле все решают объемы вычислений. Если надо вычислить одно значение многочлена, то лучше схемы Горнера ничего не придумано. Но если значения многочлена вычисляются во многих точках, то появляется возможность сэкономить большое число операций умножения за счет предварительных вычислений, выполняемых ровно один раз. Это может значительно ускорить работу программы.

В некоторых случаях для получения значений полиномов целесообразно использовать двухэтапные схемы. На первом этапе выполняются действия только над коэффициентами многочлена, он преобразуется к специальному виду. На втором же этапе вычисляют уже значение самого многочлена при заданных значениях аргумента. При этом может оказаться, что количество операций, выполняемых на втором этапе будет меньше, чем при вычислениях по схеме Горнера.

Снова замечу, что такие методы вычислений целесообразны при вычислении значений многочлена для большого числа значений x. Выигрыш получается, за счет того, что первый этап для многочлена выполняется лишь один раз. Примером может послужить вычисление элементарных функций, где приближающий многочлен готовиться заранее.

В дальнейших рассуждениях, говоря о количестве операций для вычисления , я буду иметь в виду сложность второго этапа вычислений.

Схема Дж.Тодта для многочленов 6 степени

Имеем следующий многочлен:
Для вычислений используем следующие вспомогательные многочлены:

Коэффициенты определяются методом неопределенных коэффициентов исходя из условия . Из последнего условия составляем систему уравнений, приравнивая коэффициенты при равных степенях многочленов.

Саму систему, здесь приводить не буду. Но она легко решается методом подстановок, при этом приходится решать квадратные уравнения. Коэффициенты могут получиться комплексными, но если коэффициенты оказываются действительными, то вычисления требуют трех умножений и семи сложений вместо пяти умножений и шести сложений по схеме Горнера.

Говорить об универсальности данной схемы не приходится, но зато читатель наглядно может оценить уменьшение числа операций по сравнению со схемой Горнера.

Схема Ю.Л. Кеткова

Наконец-то, добрался и до наших математиков.

Ю.Л. Кетков дал общее представление многочлена n-й степени для n>5, всегда приводящее к действительным выражениям и требующее для вычисления многочлене n-й степени выполнения [(n+1)/2]+ умножений и n+1 сложений.

Например, при n=2k схема Кеткова сводится к нахождению многочленов:






где , при k –четном, и , , если k нечетное (k>2).

Все неизвестные коэффициенты находятся из равенства . В работах Кеткова для решения получающихся систем дается метод, дающий всегда действительные коэффициенты .

Схемы В.Я. Пана

Э. Белага в своих работах дал строгое доказательство невозможности построения схемы вычисления произвольных многочленов n-й степени, использующей на втором этапе меньше, чем [(n+1)/2]+1 умножений и n сложений.

В.Я. Пан занимался вопросами оптимального вычисления многочленов. В частности, им предложено несколько схем для вычисления действительных многочленов, которые весьма близко подобрались к оценкам Э. Белаги. Приведу некоторые схемы Пана для действительных многочленов.
1. Схема для вычисления многочленов четвертой степени.
Рассматривается многочлен .

Представим в виде:



где

2. Схема для вычисления , .
Строим вспомогательные многочлены , , :
, s=1,2,…,k.

Для вычисления значения многочлена используем выражения:

Эта схема на втором этапе требует умножения и сложения.

Особенностью данной схемы является то, что коэффициенты всегда существуют при и действительных коэффициентах исходного многочлена.

У В.Я. Пана существуют и другие схемы для вычисления многочленов, в том числе и для комплексных.

Заключение

Резюмируя сказанное, замечу, что вычисление одного или нескольких значений полинома бесспорно нужно проводить с использованием схемы Горнера.

Однако, если число значений полинома, которые потребуется вычислить велико, а производительность очень важна, то имеет смысл рассмотреть применение специальных методов вычисления многочленов.

Некоторые читатели скажут, что возиться с применением схем, отличных от схемы Горнера, сложно, муторно и не стоит с этим связываться. Однако в реальной жизни встречаются задачи, в которых требуется вычислять просто огромное число значений многочленов с большими степенями (например, на их вычисление могут уходить месяцы), и уменьшение числа умножений в два раза даст существенный выигрыш во времени, даже если вам придется потратить пару дней на реализацию конкретной схемы для вычисления многочленов.

Литература

  1. Кетков Ю.Л. Об одном способе вычисления полиномов на математических машинах. // Известия ВУЗ"ов. Радиофизика, т.1., № 4, 1958
  2. В. Я. Пан, “Вычисление многочленов по схемам с предварительной обработкой коэффициентов и программа автоматического нахождения параметров”, Ж. вычисл. матем. и матем. физ., 2:1 (1962), 133–140
  3. В. Я. Пан, “О способах вычисления значений многочленов”, УМН, 21:1(127) (1966), 103–134
  4. В. Я. Пан, “О вычислении многочленов пятой и седьмой степени с вещественными коэффициентами”, Ж. вычисл. матем. и матем. физ., 5:1 (1965), 116–118
  5. Пан В. Я. Некоторые схемы для вычисления значений полиномов с вещественными коэффициентами. Проблемы кибернетики. Вып. 5. М.: Наука, 1961, 17–29.
  6. Белага Э. Г. О вычислении значений многочлена от одного переменного с предварительной обработкой коэффициентов. Проблемы кибернетики. Вып. 5. М.: Физматгиз, 1961, 7–15.

Вы можете помочь и перевести немного средств на развитие сайта

Вычисление значения многочлена в точке является одной из простейших классических задач программирования.
При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов.
Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера . Но всегда есть маленькое «но», всегда ли схема Горнера является самой эффективной?


Я не ставлю цель точно описать алгоритмы для вычисления многочленов, а лишь показать, что в некоторых случаях можно (нужно) применять схемы отличные правила Горнера. Для тех, кого заинтересует материал, в конце статьи приведен список литературы, с которой можно ознакомиться для более детального изучения вопроса.
Кроме того, иногда становиться обидно, что фамилии наших русских математиков остаются малоизвестными. К тому же мне просто приятно рассказать о работах наших математиков.

Схема Горнера

При вычислении значений многочленов очень широкое применение получило правило Горнера. Метод назван в честь британского математика Уильяма Джорджа Горнера.
В соответствии с этим правилом многочлен n-й степени:

представляется в виде

Вычисление значения многочлена производится в порядке, определяемом скобками. Что имеем? Чтобы вычислить многочлен по схеме Горнера, надо выполнить n умножений и n-k сложений (здесь k – число коэффициентов многочлена, равных 0). Если , то умножений будет n-1.
Можно показать, что для вычисления многочленов, общего вида нельзя построить схему более экономичную по числу операций, чем схема Горнера.
Самая большая привлекательность схемы Горнера состоит в простоте алгоритма для вычисления значения многочлена.

Исключения

При вычислении многочленов специального вида может потребоваться меньшее число операций, чем при применении универсальной схемы Горнера. Например, вычисление степени по схеме Горнера означает последовательное перемножение n множителей и требует n-1 умножение. Однако каждый первый читатель скажет, что для вычисления, например, нужно последовательно вычислить , , , т.е. выполнить всего 3 умножения вместо 7.

А есть что-то еще, ведь схема Горнера самая экономичная?

На самом деле все решают объемы вычислений. Если надо вычислить одно значение многочлена, то лучше схемы Горнера ничего не придумано. Но если значения многочлена вычисляются во многих точках, то появляется возможность сэкономить большое число операций умножения за счет предварительных вычислений, выполняемых ровно один раз. Это может значительно ускорить работу программы.

В некоторых случаях для получения значений полиномов целесообразно использовать двухэтапные схемы. На первом этапе выполняются действия только над коэффициентами многочлена, он преобразуется к специальному виду. На втором же этапе вычисляют уже значение самого многочлена при заданных значениях аргумента. При этом может оказаться, что количество операций, выполняемых на втором этапе будет меньше, чем при вычислениях по схеме Горнера.

Снова замечу, что такие методы вычислений целесообразны при вычислении значений многочлена для большого числа значений x. Выигрыш получается, за счет того, что первый этап для многочлена выполняется лишь один раз. Примером может послужить вычисление элементарных функций, где приближающий многочлен готовиться заранее.

В дальнейших рассуждениях, говоря о количестве операций для вычисления , я буду иметь в виду сложность второго этапа вычислений.

Схема Дж.Тодта для многочленов 6 степени

Имеем следующий многочлен:
Для вычислений используем следующие вспомогательные многочлены:

Коэффициенты определяются методом неопределенных коэффициентов исходя из условия . Из последнего условия составляем систему уравнений, приравнивая коэффициенты при равных степенях многочленов.

Саму систему, здесь приводить не буду. Но она легко решается методом подстановок, при этом приходится решать квадратные уравнения. Коэффициенты могут получиться комплексными, но если коэффициенты оказываются действительными, то вычисления требуют трех умножений и семи сложений вместо пяти умножений и шести сложений по схеме Горнера.

Говорить об универсальности данной схемы не приходится, но зато читатель наглядно может оценить уменьшение числа операций по сравнению со схемой Горнера.

Схема Ю.Л. Кеткова

Наконец-то, добрался и до наших математиков.

Ю.Л. Кетков дал общее представление многочлена n-й степени для n>5, всегда приводящее к действительным выражениям и требующее для вычисления многочлене n-й степени выполнения [(n+1)/2]+ умножений и n+1 сложений.

Например, при n=2k схема Кеткова сводится к нахождению многочленов:






где , при k –четном, и , , если k нечетное (k>2).

Все неизвестные коэффициенты находятся из равенства . В работах Кеткова для решения получающихся систем дается метод, дающий всегда действительные коэффициенты .

Схемы В.Я. Пана

Э. Белага в своих работах дал строгое доказательство невозможности построения схемы вычисления произвольных многочленов n-й степени, использующей на втором этапе меньше, чем [(n+1)/2]+1 умножений и n сложений.

В.Я. Пан занимался вопросами оптимального вычисления многочленов. В частности, им предложено несколько схем для вычисления действительных многочленов, которые весьма близко подобрались к оценкам Э. Белаги. Приведу некоторые схемы Пана для действительных многочленов.
1. Схема для вычисления многочленов четвертой степени.
Рассматривается многочлен .

Представим в виде:



где

2. Схема для вычисления , .
Строим вспомогательные многочлены , , :
, s=1,2,…,k.

Для вычисления значения многочлена используем выражения:

Эта схема на втором этапе требует умножения и сложения.

Особенностью данной схемы является то, что коэффициенты всегда существуют при и действительных коэффициентах исходного многочлена.

У В.Я. Пана существуют и другие схемы для вычисления многочленов, в том числе и для комплексных.

Заключение

Резюмируя сказанное, замечу, что вычисление одного или нескольких значений полинома бесспорно нужно проводить с использованием схемы Горнера.

Однако, если число значений полинома, которые потребуется вычислить велико, а производительность очень важна, то имеет смысл рассмотреть применение специальных методов вычисления многочленов.

Некоторые читатели скажут, что возиться с применением схем, отличных от схемы Горнера, сложно, муторно и не стоит с этим связываться. Однако в реальной жизни встречаются задачи, в которых требуется вычислять просто огромное число значений многочленов с большими степенями (например, на их вычисление могут уходить месяцы), и уменьшение числа умножений в два раза даст существенный выигрыш во времени, даже если вам придется потратить пару дней на реализацию конкретной схемы для вычисления многочленов.

Литература

  1. Кетков Ю.Л. Об одном способе вычисления полиномов на математических машинах. // Известия ВУЗ"ов. Радиофизика, т.1., № 4, 1958
  2. В. Я. Пан, “Вычисление многочленов по схемам с предварительной обработкой коэффициентов и программа автоматического нахождения параметров”, Ж. вычисл. матем. и матем. физ., 2:1 (1962), 133–140
  3. В. Я. Пан, “О способах вычисления значений многочленов”, УМН, 21:1(127) (1966), 103–134
  4. В. Я. Пан, “О вычислении многочленов пятой и седьмой степени с вещественными коэффициентами”, Ж. вычисл. матем. и матем. физ., 5:1 (1965), 116–118
  5. Пан В. Я. Некоторые схемы для вычисления значений полиномов с вещественными коэффициентами. Проблемы кибернетики. Вып. 5. М.: Наука, 1961, 17–29.
  6. Белага Э. Г. О вычислении значений многочлена от одного переменного с предварительной обработкой коэффициентов. Проблемы кибернетики. Вып. 5. М.: Физматгиз, 1961, 7–15.


Понравилась статья? Поделитесь с друзьями!